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We present a systematic study of interface roughness and its effect on coherent dynamical processes in
quantum dots. The potential due to a sharp, flat interface lifts the degeneracy of the lowest energy valleys and
yields a set of valley eigenstates. Interface roughness is characterized by fluctuations in the location of the
interface and in the magnitude of the potential step. Variations in the position of the interface, which are
expected to occur on the length scale of the lattice constant, reduce the magnitude of the valley-orbit coupling.
Variations in the size of the interface potential step alter the magnitude of the valley-orbit coupling and induce
transitions between different valley eigenstates in dynamics involving two �or more� dots. Such transitions can
be studied experimentally by manipulating the bias between two dots and can be detected by charge sensing.
However, if the random variable characterizing the position of the interface is correlated over distances on the
order of a quantum dot, which is unlikely but possible, the phase of the valley-orbit coupling may be different
in adjacent dots. In this case tunneling between like and opposite valley eigenstates is in effect a random
variable and cannot be controlled. We suggest a resonant tunneling experiment that can identify the matrix
elements for tunneling between like and opposite valley eigenstates.
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I. INTRODUCTION

Of all semiconductors investigated in quantum computa-
tion �QC� only C, Si, and Ge in group IV have isotopes with
zero nuclear spin, allowing long coherence times, with Si
long known as an outstanding candidate.1 QC architectures
are based on donor electron or nuclear spins in Si:P,2,3 single
electron spins in gate-defined quantum dots �QDs� in Si/SiGe
�Refs. 4 and 5� or Si /SiO2,6–8 and SiGe nanowires,9 and
singlet-triplet qubits.10 Experimentally, significant progress
has been made recently in Si:P donor-based devices11–19 and
gate-defined Si quantum dots.6,7,19–23 Graphene has also been
proposed for QC,24 and observation of the Coulomb-
blockade effect in a graphene quantum dot has been
reported.25 Carbon nanotube quantum dots offer another
physically interesting possibility with promising experimen-
tal advances.26 The theory of QDs in group-IV materials has
also taken off in recent years.27–32

The conduction band of group-IV semiconductors con-
sists of a series of equivalent valleys: bulk Si has six, Ge has
four, whereas in C bulk diamond has six valleys while graph-
ite, graphene, and nanotubes have two. This multiplicity is
known to affect spin quantum computing schemes in Si:P
donors,33,34 Si QDs,27,29,30 and carbon nanotube QDs.31,32

Confinement partially lifts the valley degeneracy, and it is
often necessary to consider only two valleys. In Si �001� the
ẑ confinement lowers the energy of the z valleys, perpendicu-
lar to the interface, by several tens of millielectron volts
relative to those in the plane of the interface. The interface
potential produces a valley-orbit coupling � between the two
ẑ valleys,35 which is sample dependent.27 Measurements of �
have been performed on quantum Hall systems23,36 and at
low magnetic fields.21 A large valley splitting was recently
reported in Si /SiO2 �Ref. 37� and work is underway to con-
firm this claim.

The valley-orbit coupling has been studied theoretically
within the effective-mass approximation �EMA� by many
groups.4,27,38–44 Reference 38 determined � using a hard-
wall boundary, requiring the wave function to vanish at the
interface, whereas in Refs. 27, 43, and 44 the wave function
was allowed to leak into the insulator. Reference 27 high-
lighted the importance of interface miscuts in reducing �.
Beyond the EMA, Ref. 45 performed atomistic calculations
for Si/SiGe, finding that the presence of different bonds at
the interface suppresses �. References 46–48 also included
models of interface roughness. Nevertheless, EMA studies to
date have not considered systematically the effect of inter-
face roughness on the valley-orbit coupling and on the
energy-level spectrum of multivalley semiconductor QDs,
highlighting the importance of devising a systematic way to
quantify interface roughness and study its interplay with the
valley degree of freedom.

Interface roughness embodies variations in the position of
the interface and variations in the magnitude of the potential
step at the interface. Variations in the position of the inter-
face are characterized by two length scales. The rms fluctua-
tions are a measure of the vertical extent of the roughness
while the correlation length contains information about its
horizontal spread. The study of roughness began with the
theoretical work of Prange and Nee,49 followed by Ando,50,51

yet theoretical and numerical studies have focused mostly on
roughness effects on transport.52–57 Experimentally Good-
nick et al.58 used TEM to study roughness at the Si /SiO2
interface, determining the magnitude of the fluctuations and
their correlation length. Ourmazd et al.,59 also using TEM,
determined that the transition layer between Si and SiO2
spans a distance of approximately 5 Å, in other words ap-
proximately two monolayers. The rms fluctuations in the po-
sition of the interface are generally found to be on the order
of 2–4 Å �Refs. 51 and 58� while their correlations extend
over a few lattice constants. Experimental studies indicate
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that state-of-the-art technology can be used to reduce the rms
roughness in metal-oxide-semiconductor field-effect transis-
tors �MOSFETs� to the range 0.7–1 Å.60,61 Later experi-
ments have hinted that the correlation length characterizing
roughness may be larger. Yoshinobu et al.62 used atomic
force microscopy to infer a correlation length of 15 nm, a
conclusion upheld by Gotoh et al.63 using scanning tunneling
microscopy, who found a correlation length of 23–26 nm.
Even small amplitude rms fluctuations can result in short
time scales for mixing valley-split levels, since the wave
vectors of the bottoms of the two valleys correspond to very
short length scales ��1 Å in Si�. All the above works have
concentrated on variations in the position of the interface.
Variations in the size of the potential step, that is, the local
roughness, have not been studied to date.

In this paper we extend the EMA to study the effect of
interface roughness on multivalley QDs. The approach
adopted in this work is equivalent to that of Ref. 44, except
that an analytical wave function is used here rather than one
determined numerically. Our theory is applicable provided
that fluctuations in the location of the interface are much
smaller than the spatial extent of the two-dimensional elec-
tron gas �2DEG�, and the fluctuations in the magnitude of the
interface potential step are small compared to its average
value. We demonstrate that interface roughness has two main
effects: it suppresses the valley-orbit coupling and gives rise
to tunneling between valley eigenstates in certain dynamical
processes in multidot systems. Our starting point is the
effective-mass approximation in the presence of valleys44

with a modified Hamiltonian incorporating interface rough-
ness. Our model of roughness accounts for variations in the
position of the interface and variations in the magnitude of
the interface potential step. For one electron on one dot
�1e1d� we study the way interface roughness enters the ex-
pression for �. If roughness correlations occur on a spatial
scale smaller than that of the dot, variations in the position of
the interface reduce the magnitude of �. For one electron in
a double quantum dot �1e2d�, under these circumstances � is
expected to be the same on each dot. Local roughness can
cause � to be different on the two dots and induce transitions
between valley eigenstates. Interdot transitions between val-
ley eigenstates can be understood as coherent rotations of
valley states and offer the possibility of manipulating valley
eigenstates by accessing the appropriate region of the energy
spectrum. We subsequently study transitions between two-
electron states in a double quantum dot �2e2d�, which repre-
sent the most promising scenario for observing such transi-
tions. For roughness correlations on the order of the size of
the double quantum dot �DQD�, � is not suppressed, yet its
phase may differ between adjacent dots. Tunneling between
valley eigenstates is enabled in this case. The size of this
tunneling matrix element cannot be controlled, although it
can be measured experimentally. The findings of this work
are general, yet when concrete examples are called for we
will discuss QDs made in a Si /SiO2 MOSFET structure,
which are actively studied in quantum information.

It should be pointed out that the long spin coherence time
in Si and the possibility of further enhancing the spin coher-
ence time using isotopic purification, which eliminates the
29Si nuclei, give Si an enormous advantage for quantum in-

formation processing. In addition, the dominant Si-based
semiconductor technology allows, in principle, for scalability
with the real hope that once a few Si spin qubits are demon-
strated in the laboratory, many qubits could be developed
without great difficulties. These �i.e., long spin coherence
time and scalability� are the reasons that Si spin qubits re-
main a most active area of research in the context of quan-
tum computation architecture studies. However, the
conduction-band valleys in Si, which are degenerate in the
simplest effective-mass approximation, cause considerable
difficulties in fabricating Si spin qubits since the electron
spin by itself does not define the state of a Si electron. This
is the context in which our detailed theoretical study in this
work has been undertaken. The ultimate goal is to help un-
derstand the role of valleys in Si spin quantum computation,
in particular, to see if the interface roughness naturally
present at the Si surface could somehow be utilized to cir-
cumvent or even control the Si spin qubit valley degeneracy
problem.

The outline of this paper is as follows. In Sec. II we
consider the case of a single quantum dot, valleys, and
valley-orbit coupling. We provide an analytical scheme for
calculating the valley-orbit coupling. In Sec. III we introduce
a simple model of interface roughness and study the addi-
tional terms it introduces into the 1e1d problem. In Sec. IV
we introduce a model of a double quantum dot. In Sec. V A
we study intervalley transitions induced by interface rough-
ness for 1e2d strong tunneling and 1e2d strong roughness. In
Sec. V B we study transitions among 2e2d singlets and
among 2e2d triplets while Sec. VI concentrates on the case
when interface roughness correlations are on the order of the
size of a quantum dot. An extensive discussion of the results,
as well as numerical estimates, are contained in Sec. VII. We
end with a summary of our findings.

II. SINGLE QUANTUM DOT

The EMA assumes the overall potential experienced by
the charge carriers is separable and smooth. Conventionally
the EMA is understood to apply to physics parallel to the
interface, within the 2DEG, as long as the system under
study is a few lattice constants away from the interface. The
smoothness requirement can be relaxed and the EMA
generalized64 to account for the presence of an interface by
considering a z-dependent effective mass, smoothly interpo-
lating between the two effective masses on two sides of the
interface plane, as we do in this work. In this section we
introduce our theoretical model and study a smooth interface
as a benchmark for subsequent comparison.

A. Model Hamiltonian

We study first one electron on one dot. The full Hamil-
tonian H0�x ,y ,z� includes the kinetic and potential energy
contributions. The confinement potential is approximated as
quadratic in the xy plane while in the ẑ direction one has the
interface potential V�z� and electric field F

VD�x,y,z� =
�2

2m�a2� �x − xD�2 + y2

a2 � + V�z� + eFz . �1�

The dot is located at �xD ,0 ,0� and has a Fock-Darwin radius
a. The interface potential V will be discussed in Sec. III.
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Within the EMA the wave functions for the quantum dot are
written as D��x ,y ,z�=�D�x ,y���z�u��r�eik�z, where, as in our
previous work, we have introduced a valley index �= �z , z̄�
that will become relevant below, and kz,z̄= �k0� �0.85
�2� /aSi�, with aSi the lattice constant of Si.29,30 For the en-
velopes �D�x ,y� we use the Fock-Darwin states

�D�x,y� =
1

a	�
e−
�x − xD�2+y2�/2a2

. �2�

The effective-mass equation for motion in the z direction,
perpendicular to the interface, is

�−
�2

2mz

�2

�z2 + V�z� + eFz���z� = �z��z� . �3�

The effective mass for SiGe is the bare electron mass m0
while for SiO2 it is found to range between 0.3m0 and
0.4m0.65,66 For ��z� we use a modified Fang-Howard varia-
tional wave function.67 With the interface at z=0

��z� = Mekbz/2, z 	 0 = N�z + z0�e−kSiz/2, z 
 0. �4�

We will also use b=1 /kSi as a length scale characteristic of
the size of the 2DEG along the growth direction. Continuity
of the wave function at the interface requires M =Nz0, and
that of �1 /mz�d� /dz gives

N =
1

	 2

kSi
3 +

2z0

kSi
2 + z0

2� 1

kSi
+

1

kb
 . �5�

The parameter z0 is given by

z0 =
2

kSi + kb�mSi

mb
 . �6�

In this work kb is fixed at kb=	2mbU0

�2 , leaving kSi as the only
variational parameter. The energy �z that is to be minimized
is given by

�z =
�2N2

8mzb
�2b2 + 2bz0 − z0

2� +
N2eF

2
b2�6b2 + 4bz0 + z0

2�

−
�2M2kb

8mbb
+

M2U0

kb
−

M2eF

2kb
2 , �7�

which includes a factor of 1/2 in the electric field term to
account for double counting of electrons.67

B. Valley-orbit coupling for a sharp flat interface

The conduction band of some materials consists of a se-
ries of equivalent valleys. In such circumstances, for a
smooth potential the effective mass equation has two equiva-
lent solutions. If the potential is not smooth the solutions
could be mixed, leading to valley-orbit coupling. Consider
the basis states �D��, where D=L ,R represents either of the
left and right dots. The z and z̄ states have a vanishingly
small overlap, which is neglected here. With this approxima-
tion these states are orthogonal. To determine the one-dot

energy levels we require first the matrix elements of the
Hamiltonian in the basis spanned by �D��=either �L�� or
�R��

H1e1d = �D + � 0 �D

�D
� 0

 , �8�

where �D is the confinement energy, which is large, thus we
consider only the lowest level �D��D

�0�, generally on the or-
der of tens of millielectron volts. The lowest energy level for
each dot consists of two valleys connected by a valley-orbit
coupling �D= ��D�e−i�D. The eigenstates of H1e1d can be ex-
pressed as

�D�� =
1
	2

��Dz� � ei�D�Dz̄�� . �9�

In this work intervalley refers to matrix elements connecting
the z , z̄ states whereas between valley eigenstates refers to
matrix elements connecting + and − states. The valley eigen-
states are the same for both dots if the interface is sharp
along the growth direction and flat perpendicular to it. The
valley-orbit coupling is represented by the matrix element44

�D = �Dz��V + eFz��Dz̄� . �10�

Its magnitude gives the valley splitting ��D�. The dominant
contribution to �D comes from the interface potential while
the contribution due to F has been found to be negligible.44

For a perfectly smooth and perfectly sharp interface �D is
equal to

�D = U0� � dxdy���x,y��2�
−�

�

dz��− z�

���z��2e−2ikzzuz
��r�uz̄�r�

= U0N2z0
2 �

K,Qz

cK
z�cK+Qzz

z̄

qz
, �11�

where q�=kb+ iQz−2ik�. The matrix element between the
same valley states �D= �D��V�D�� is given by

�D = U0� � dxdy���x,y��2� dz��− z����z��2�u��r��2

= U0N2z0
2 �

K,Qz

cK
��cK+Qzz

�

��

, �12�

where ��=kb+ iQz. We have used the general notation
� for the valley indices in �D since we anticipate
�Dz�V�Dz�= �Dz̄�V�Dz̄�. Detailed derivations of Eqs. �11� and
�12� are presented in Appendix A. The coefficients cK

� for Si
were determined in Ref. 68. Using these values, we find that
by far the biggest contributions to �D and �D come from
the terms with Qz=0. Given that the magnitude of
�kb−2ik0��2k0, it follows that �D can be approximated sim-
ply by �D� iU0�N2z0

2 / �2k0�, where �=�KcK
��cK

−�. The Um-
klapp terms, which have Qz=2��2� /aSi�, give imaginary
contributions and sum to zero. We will refer to the valley-
orbit coupling arising from the sharp flat interface as the
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global valley-orbit coupling �0 without the dot subscript,
and similarly for the global �D=�0.

To obtain numerical estimates of ��0� in Si /SiO2 and Si/
SiGe an interfacial electric field of 150 kV/cm is assumed,
which is the same value that was used in Ref. 44, in order to
enable a direct comparison. For a Si /SiO2 interface, with
U0�3 eV �as discussed in Ref. 51� and mb=0.4m0, b is
optimized at 1.058 nm, for which we find ��0��0.11 meV.
Since the effective mass is not well defined for SiO2, we
have also used mb=0.3m0, finding b�1.01 nm and
��0��0.08 meV. For a Si/SiGe interface, with
U0�150 meV, b is optimized at 1.215 nm, whence
��0��0.1 meV. Considering the relatively simple varia-
tional function that is used in this work, the comparison with
accurate numerics44 is extremely encouraging. The real and
imaginary parts of �0 are given to a very good approxima-
tion by kb /	kb

2+4k0
2 and 2k0 /	kb

2+4k0
2. Consequently, with k0

fixed, as the interface potential step becomes stronger the
imaginary part of �0 also increases. For the Si /SiO2 inter-
face the ratio of the imaginary and real parts of �0 is found
to be 3.5 while for the Si/SiGe interface it is 15.7.69 The ratio
of the off-diagonal matrix element �0 of the interface poten-
tial to its diagonal matrix element �0 is given approximately
by kb / �kb−2ik0�, and the magnitude of this ratio is 0.28 for
the Si /SiO2 interface and 0.06 for the Si/SiGe interface. The
final result varies significantly as a function of b.70

III. INTERFACE ROUGHNESS

An interface may be observed to be sharp and of a high
quality, yet the transition layer between two materials still
always has a finite width. The atoms on the two sides of
the interface have different bonding, as do the atoms at the
interface. For example, between Si on one side and SiO2
on the other there exists a region a few monolayers thick
composed of SiOx with 0�x�2.59 Consequently, even when
the interface is sharp the finite transition layer alters the en-
ergy landscape.71 Experimentally roughness can be detected
by transmission electron microscopy,58,59 atomic force
microscopy,62 scanning tunneling microscopy,63 and other
surface characterization techniques such as Auger spectros-
copy, angle-resolved photoemission spectroscopy, low-
energy electron diffraction, and resonant high-energy elec-
tron diffraction.72

The notion of a sharp barrier breaks down at the atomic
scale. The ideal method for dealing with this issue is to use
the exact microscopic structure of the interface. Such a treat-
ment is only possible numerically, yet even then the interface
structure is not known exactly and, when one of the materials
is amorphous, it can only be dealt with approximately and/or
statistically. Therefore, there exists a scope for gaining ana-
lytical insight by refining the effective-mass approximation
to include the effects of interface roughness. Within the
EMA the interface is modeled in such a way that the atomic
structure is smoothed out, and an effective mass appropriate
for the insulator is used. In the same way that the smoothness
requirement can be relaxed as long as the region under study
is a few monolayers away from the interface, one can also
relax the requirement that the interface be sharp and flat.

Corrections to this picture can be made so that the location of
the interface varies on an atomic scale but with an amplitude
much smaller than the effective size of the confinement.
Then the xy motion and the z motion are still approximately
separable. Beyond this refinement, a random potential is
added to allow the magnitude of the interface step to fluctu-
ate. These two features can be regarded as corrections to the
effective-mass picture, which is entirely based on bulk pa-
rameters.

A simple model, which was introduced by Prange and
Nee49 and developed by Ando,50,51 has become the standard
model used in studies of surface roughness. Within this
model the interface is described by a potential V
z−��x ,y��,
in which the fluctuating position of the interface ��x ,y� is
treated as a random function of x and y. Prange and Nee49

assumed that the probability for an electron to be specularly
reflected at the interface is nearly unity with a boundary con-
dition that the wave function vanish at the interface.
Ando50,51 approached the problem by expanding V in � and
retaining the term linear in �. This approach may be satisfac-
tory for calculating the scattering matrix element due to
roughness. Yet, as Refs. 50 and 51 themselves clearly state,
there is no rigorous justification for this expansion. As we
will show in this work, indeed this expansion is not at all
justified when the effect of roughness on the valley-orbit
coupling is required. The breakdown of the perturbative ex-
pansion is most emphatically manifest in Sec. VI, when long
interface correlations are considered, yet the expansion is
also not valid if the � correlations span a small spatial scale,
as Sec. V demonstrates.

A. Model of roughness

We treat interface roughness using a slightly different ap-
proach from that of Refs. 50 and 51. We consider an inter-
face potential given by

V�x,y,z� = 
U0 + V�x,y��f
z − ��x,y�� , �13�

where U0�V for all x and y. We take a general function
f�z−�� to describe the interface, where f�z� is a well-defined
function of z while � is a random function of x and y ac-
counting for the variation in the location of the interface. For
an interface that is perfectly sharp in the ẑ direction and
perfectly smooth in the xy plane �the ideal interface�, one can
write V�z�=U0��−z�. For an interface whose location fluc-
tuates in the xy plane, but is still sharp, one can use
f�z−��=�
−�z−���. The potential V�x ,y� represents the lo-
cal roughness, which gives fluctuations in the magnitude of
the potential step at the interface. We treat V�x ,y� perturba-
tively, since we expect V�x ,y��U0, but we do not do per-
turbation theory in ��x ,y�. In this problem the criterion for
smallness is generally nontrivial. The discussion of this cri-
terion will follow naturally after the analytical expressions
for the effect of the roughness are presented.

Aside from variations in the location of the interface,
sources of roughness include dangling bonds, impurities, and
variations in bond length in the vicinity of the interface. All
of these contribute to the local roughness V�x ,y�. We expect,
however, that variations in bond length will occur on the
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atomic length scale, which is orders of magnitude smaller
than the spatial extent of a quantum dot. This implies that the
effect of bond-length fluctuations averages to zero over the
quantum dot and is washed out. We do not consider it ex-
plicitly in what follows.

B. Applicability of the EMA

The location of the interface � is a random function of x
and y. It has an average value ���=0 while its variance will
be denoted simply by ��2�. The notation � � denotes the av-
erage over the xy plane while � �QD denotes the average over
x and y spanning the region occupied by the quantum dot
�1 / ��a2���dxdye−�x2+y2�/a2

. It is assumed that the fluctua-
tions around ��� are small compared to b, which represents
the spatial scale over which the wave function changes by a
significant amount in the ẑ direction �i.e., the size of the
confinement.� The spatial scale of the roughness divided by
the spatial scale over which the wave function changes sig-
nificantly is an important parameter. The size of this param-
eter in comparison to unity determines the applicability of
the EMA. It is necessary for ��x ,y� to be small so that the
potential acting on the charge carriers remains approximately
separable and use of the effective-mass approximation is jus-
tified. If ����a ,b the fluctuation in the z direction is consid-
erably less than the spatial extent in all three directions so
that the wave function is still approximately separable in
x ,y ,z. This condition must be augmented by a formal crite-
rion according to which the potential is weak. In principle all
applied electric fields, such as F in this problem, violate the
criterion for being weak, since the potential eFz eventually
becomes large on any scale relevant to the problem once z
exceeds a certain threshold. This fact, however, is not usually
a problem as long as the potential V does not vary too fast on
lattice length scales, that is, as long as eFaSi is significantly
smaller than the average atomic potential in a unit cell. To
summarize, the EMA should remain valid as long as the
random potential V�x ,y��U0 for all x, y and the fluctuations
in the location of the interface are much smaller than the
spatial extent of the 2DEG.

C. Roughness effect on the valley-orbit coupling

We use the notation �0 for the unperturbed valley-orbit
coupling in the absence of interface roughness, which is the
same on both dots. The valley-orbit coupling in the presence
of roughness is denoted by �. We require ��−�0�� ��0� for
any x, y. In the presence of an interface located at z=� the
wave function must be altered as ��z�→��z−��. The matrix
elements of the interface potential are found in the same way
as before

�D =� � dxdy�U0 + V����x,y��2

� dz�
− �z − ������z − ���2e−2ikzzuz
��r�u−z�r�

=
N2z0

2��U0 + V�ei�z��QD

qz
. �14�

The effect of the interface is contained in two terms: the
spatial average of the exponential ei��� and the spatial aver-
age of the product V�x ,y�ei���. We recall that in Si the con-
tribution to � due to one wave vector, namely, Qz=0, over-
whelms all the others. Therefore a good indication of the
effect of interface roughness is given by the averages
�e2ik0��QD and �V�x ,y�e2ik0��QD. The appearance of the simple
exponential oscillatory terms such as ei��� is a consequence
of the fact that we are using the effective-mass approxima-
tion. In a more complicated numerical treatment we still ex-
pect a strong dependence on ���, though it will likely not be
expressible as a simple exponential. Since it is predomi-
nantly the term with Qz=0 that contributes to �D, this quan-
tity should not be affected by the presence of �. This can be
seen immediately by considering

�D =� � dxdy�U0 + V����x,y��2

� dz�
− �z − ������z − ���2�u��r��2

=
N2z0

2��U0 + V��QD

��

. �15�

We distinguish between V�x ,y�, which can be treated pertur-
batively, and ei���, which is nonperturbative. The most suit-
able approach to the problem is determined by the spatial
scales involved. Experiments indicate that the spatial scales
characterizing � are 2–4 Å for the rms and 5–15 Å for the
correlation length. Several studies have indicated that the
roughness in Si /SiO2 could be reduced, to an rms on the
order of �1 Å �Ref. 61� and even as far as 0.7 Å.60 At the
same time, a series of experiments using scanning tunneling
microscopy suggested that the horizontal correlations of �
could stretch over distances on the order of 30 nm. We will
use short correlations to refer to spatial correlations of � on a
scale much smaller than the typical extent of a quantum dot
�approximately 50 nm�, and long correlations for spatial cor-
relations of � on a scale on the order of or greater than the
typical extent of a quantum dot. The problem of valley-orbit
coupling is vastly different for short interface correlations
and long interface correlations. Physically, fluctuations asso-
ciated with a random interface ought to occur on the scale of
the lattice constant. We anticipate that the true physical pic-
ture is represented by short correlations but given the exist-
ing uncertainty we will study both cases in this paper.

In the most general case the valley-orbit coupling may be
different on the two dots. Since the valley-orbit coupling is a
complex number, in principle, one should expect both the
amplitude and the phase to be different between the two dots.
This fact is not of much significance when a sharp flat inter-
face is considered, yet is of enormous importance when in-
terface roughness is concerned. In addition, roughness is ex-
pected to show significant sample dependence. In double
quantum dots in different samples the roughness profile on
the left dot may be qualitatively similar to or very different
from the roughness profile on the right dot. One also expects
a significant difference between SiO2 and SiGe with the
former generally having larger interface roughness. From
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this perspective it will be useful to be able to compare, e.g.,
gate-defined quantum dots with disordered quantum dots.

In addition, we have noted that, in sums of the type
�GcGeiG·r, the only sizable terms correspond to the reciprocal
lattice vector G= �000�. We infer that terms with wave vec-
tors larger than that, corresponding to spatial scales of 1 Å
or less �atomic-scale roughness�, should not be important in
determining �D and �D. This reinforces the observation of
Sec. III A concerning variations in bond length.

IV. DOUBLE QUANTUM DOT

In a single quantum dot interface roughness affects the
valley-orbit coupling. In a double quantum dot it affects in
addition the relative values of the dot-averaged valley-orbit
splitting �D on the two dots, as well as interdot tunneling,
potentially giving rise to interesting electron dynamics. The
confinement of a double quantum dot is modeled by a biqua-
dratic potential

VDQD�x,y,z� =
��0

2
�min� �x − X0�2

a2 ,
�x + X0�2

a2 � +
y2

a2� − eEx

+ eFz + V�z� . �16�

As in Ref. 30, we orthogonalize the wave functions �D�� to

get the Wannier functions �D̃��, given by L̃�=
L�−gR�

	1−2lg+g2 and

R̃�=
R�−gL�

	1−2lg+g2 , where g= �1−	1− l2� / l and l= �L� �R��. This en-

sures that �R̃� � L̃��=0. One diagonalizes the Hamiltonians H̃D

and determines the eigenfunctions �D̃��. We will consider
one electron initialized in a DQD �1e2d� as in a QD charge
qubit, as well as two electrons �2e2d�, which can form sin-
glet and triplet states �given in Ref. 30�. Henceforth we work
in this basis and to indicate this fact we augment all quanti-

ties with a tilde, thus �̃, etc.
Our principal assumption in setting up the problem is that

the physics specific to the valleys can be considered sepa-
rately for the left and right dots. The starting point of our
approach envisages two dots and one electron primarily lo-
calized on one of the dots. The valley degree of freedom
implies that there are two possible single-particle states for
each dot while the interface potential gives a coupling be-
tween the two valleys on each dot. We diagonalize the
single-particle Hamiltonian separately for the left and right
dots and obtain the valley splitting and valley eigenstates for
each dot. We neglect matrix elements of the interface poten-
tial connecting the left and right dots, which represent terms
of order l�. Under these circumstances �D is not a function
of position, a fact that provides a crucial simplifying assump-
tion in our algebra.

The assumption can be recast into the statement that there
is no interdot tunneling between different valleys, meaning
that the tunneling matrix element only connects states from
the same valley. One can tunnel between �L�� and �R�� but not
�L�� and �R�−�. Tunneling between valley eigenstates is deter-
mined only by the phases of each valley wave function in the
valley eigenstates on each dot, which, in turn, are determined
only by the details of the interface potential in the region of
the dot.

A full treatment of the 1e2d and 2e2d problems would
take as its starting point the four-valley wave functions ��L���
and ��R���. It takes into account all the matrix elements of the
interface potential, including matrix elements of the form
�L��V�R−��. In this case the eigenstates are mixtures of all
four functions ��L��� and ��R���, a far longer and more cum-
bersome approach. Since for a typical DQD l�1 by several
orders of magnitude, terms of order l� are unlikely to play
an important role, and it is reasonable to anticipate that our
simplified approach contains the dominant physics. Given

that �̃ differs from � by terms of order l�, which are ne-

glected here, we can consider �̃��.

A. One-electron Hamiltonian

The most general Hamiltonian for one electron in a DQD

in the basis �L̃+ , L̃− , R̃+ , R̃−� is

H1e2d = �̃L +�
��̃+

L� v+−
L t̃0++ t̃0+−

v+−
L

− ��̃−
L� t̃0−+ t̃0−−

t̃0++ t̃0+− − � + ��̃+
R� v+−

R

t̃0−+ t̃0−− v−+
R

− � − ��̃−
R�
� ,

�17�

where the detuning is defined as �= �̃L− �̃R and

��̃�
D �= ��̃�� ṽ��

D . The tunneling parameter t̃0+− is

defined as t̃0+−= �L̃+�H�R̃−�. We will use the notation

ṽ���
D = �D̃��V�x ,y��D̃��� with corresponding notation for the �

states. Throughout the remainder of this article, we will also
use ṽ to refer �generally� to the magnitude of the off-
diagonal term �ṽ+−

D �, an important parameter in determining
several regimes of qualitatively different physics.

B. Two-electron Hamiltonian

For 2e2d, the interdot tunneling parameter t̃ has a single-
particle part t̃0 and a Coulomb-interaction �enhancement�
part s̃,28,29,73 the total being t̃= t̃0+ s̃ with s̃
= �L�

�1�L�
�2��Vee�L�

�1�R�
�2��= �L�

�1�L�
�2��Vee�L�

�1�R�
�2��.30 The Cou-

lomb exchange term j̃ is much smaller than the other terms
appearing in the Hamiltonian and is not needed at all in this

paper. We also define the critical detuning as �c= �ũ− k̃�,
where ũ represents the on-site Coulomb interaction and k̃ the
direct Coulomb interaction between electrons on the two

dots.29,30 The effective detuning is defined as �̃=�−�c, mea-
sured from this critical detuning. In the basis

�S̃−−
LR , S̃−−

RR , S̃++
LR , S̃++

RR , S̃+−
LR , S̃−+

LR , S̃+−
RR� used in Ref. 30 the most

general singlet Hamiltonian is H̃S= H̃S
�1�+ ṼS, where
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H̃S
�1� = �̃L + �̃R + k̃ +�

− 2��̃� t̃++
	2 0 0 0 0 t̃+−

t̃++
	2 − �̃ − 2��̃� 0 0 0 t̃−+

� 	2 0

0 0 2��̃� t̃++
	2 0 0 t̃−+

0 0 t̃++
	2 − �̃ + 2��̃� t̃+−

� 	2 0 0

0 0 0 t̃+−
	2 0 0 t̃++

0 t̃−+
	2 0 0 0 0 t̃++

t̃+−
� 0 t̃−+

� 0 t̃++ t̃++ − �̃

� . �18�

H̃S
�1� was given in Ref. 30 without the tunneling matrix element t̃+−. ṼS represents the matrix elements of the local roughness

between singlet wave functions, which are discussed in Appendix B. It is given by

ṼS =�
ṽ−−

L + ṽ−−
R 0 0 0 ṽ−+

L ṽ−+
R 0

0 2ṽ−−
R 0 0 0 0 	2ṽ−+

R

0 0 ṽ++
L + ṽ++

R 0 ṽ+−
R ṽ+−

L 0

0 0 0 2ṽ++
R 0 0 	2ṽ+−

R

ṽ+−
L 0 ṽ−+

R 0 ṽ++
L + ṽ−−

R 0 0

ṽ+−
R 0 ṽ−+

L 0 0 ṽ−−
L + ṽ++

R 0

0 	2ṽ+−
R 0 	2ṽ−+

R 0 0 ṽ++
R + ṽ−−

R

� . �19�

The most general triplet Hamiltonian in the basis �T̃−−
LR , T̃++

LR , T̃+−
LR , T̃−+

LR , T̃+−
RR� used in Ref. 30 is H̃T= H̃T

�1�+ ṼT, where

H̃T
�1� = �̃L + �̃R + k̃ +�

− 2��̃� 0 0 0 − t̃+−

0 2��̃� 0 0 t̃−+

0 0 0 0 t̃++

0 0 0 0 − t̃++

− t̃+−
� t̃−+

� t̃++ − t̃++ − �̃

� �20�

and

ṼT =�
ṽ−−

L + ṽ−−
R 0 ṽ−+

L ṽ−+
R 0

0 ṽ++
L + ṽ++

R ṽ+−
R ṽ+−

L 0

ṽ+−
L ṽ−+

R ṽ++
L + ṽ−−

R 0 0

ṽ+−
R ṽ−+

L 0 ṽ−−
L + ṽ++

R 0

0 0 0 0 ṽ++
R + ṽ−−

R

� . �21�
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The matrix elements of VT are discussed in Appendix B.
If one assumes that the valley-orbit coupling has the same

form in both quantum dots then both have the same valley
splitting and valley eigenstates. When electrons tunnel be-
tween the dots they tunnel between like valley eigenstates
and interdot intervalley tunneling is strongly suppressed. In
other words t̃+−=0 above. In the absence of any interface
roughness, with t̃+−= ṽ=0, the spectrum of two electrons in a
DQD can be clearly divided into three branches with differ-
ent valley compositions,30 which may be labeled by
++,−−,+−. These branches may be mixed by interface
roughness. As we will discuss in the sections below, two
features of this mixing are noticeable. First, roughness only
mixes certain branches of the spectrum. There is no mixing
between the ++ and −− branches but both ++ and −− are
mixed by roughness with +−. Moreover, there is no mixing
of states within any of the ++ /−− /+− subspaces by the local
roughness. Second, in situations in which t̃+− is nonzero �see
Sec. VI�, t̃+− and ṽ couple different states: no states are
coupled by both ṽ and t̃+− for one or two electrons in a DQD.
Therefore, quite generally, variations in the magnitude of the
potential step and variations in the location of the interface
have qualitatively different effects on interdot electron dy-
namics.

V. SHORT INTERFACE CORRELATIONS

If the roughness varies over a length scale of a few ang-
strom, then the average of e2ik0� over a quantum dot is
equivalent to an average over the xy plane, ���QD= ���,
which, in turn, is equivalent to an average over the realiza-
tions of �, that is, it is the characteristic function of �. If one
assumes � to be described by a Gaussian function, then the
characteristic function of � is given by e−�2��2�, where ��2� is
the variance of �. In this case, since

1
	2���2�

� d�ei��e−�2/2��2� = e−�2��2�/2, �22�

which implies that � is reduced by a factor of e−�2��2�/2. This
is plotted in Fig. 1. The reduction in � is in qualitative agree-
ment with the conclusions of Ref. 45, although the spirit of
Ref. 45 is different from this work and a direct comparison is
not possible. Similarly, a smeared interface potential can
mimic roughness, allowing the position of the interface to be
spread out over a range of spatial locations,44 and resulting in
a decrease in �.

The variance of ��x ,y� can be extracted from experiment,
and its magnitude is critical. For �rms=2 Å, the valley split-

ting �̃ is suppressed by a factor of e−8=310−4. On the
other hand, for roughness on the order of �rms=0.7 Å, the
exponential factor is e−0.98�0.38. The optimal value of

�̃�0.1 meV that we have found above for a sharp flat in-
terface would be reduced to �40 �eV, which should be
visible in a dilution refrigerator. At the same time we recall

that the numerical calculations of Ref. 44 found an optimal �̃
of �0.25 meV, which would be reduced to 0.1 meV when
�rms=0.7 Å is taken into account. We will use this value in
our estimates below.

Thus far the magnitude and phase of �̃ are the same on
each dot, so t̃+−=0 everywhere in this section while
t̃0++= t̃0−−= t̃0 and t̃++= t̃−−= t̃. The term �V�x ,y�e2ik0��QD, in
turn, must be taken as a phenomenological parameter to be
measured experimentally. Noting that ṽzz

D = ṽz̄z̄
D we find

ṽ��
D = ṽzz

D � �1/2��ei�Dṽzz̄
D + e−i�Dṽz̄z

D� ,

ṽ+−
D = �1/2��e−i�Dṽz̄z

D − ei�Dṽzz̄
D� . �23�

If � is approximately imaginary so that ��� /2 these ex-
pressions simplify to

ṽ��
D = ṽzz

D � Im ṽzz̄
D

ṽ+−
D = − �i/2�Re ṽzz̄

D . �24�

It is seen that v��
D , and therefore ṽzz, gives the energy offset

between two dots that otherwise have the same valley split-
ting. Knowledge of �ṽ++�, which can be obtained from experi-
ment, allows this diagonal term, important in inducing tran-
sitions between valley eigenstates, to be estimated. To
summarize, for short interface correlations � gives us the

overall magnitude of �̃ while v gives us the difference in �̃
between dots. Below we consider the case when the local
roughness matrix elements v are much smaller than �.

A. One-electron transitions

We study first the case of one electron on two dots. The
physics depends on the relative magnitude of ṽ and t̃0. For
t̃0� ṽ, we diagonalize the Hamiltonian H1e2d with all the
roughness terms set to zero and denote the eigenenergies by

�̃�
	, �̃�


. In this scenario, the lowest energy state, which has

energy �̃−
	, which is the state most easily initialized, does not

cross any other state. Its closest approach to another state is
on the order of �t̃0. Since t̃0� ṽ by assumption, valley ma-
nipulation by means of interface roughness is not feasible in
this setup.

0 0.5 1 1.5 2

ζ rms (Angstrom)

0

0.02

0.04
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|
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e
V
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FIG. 1. Valley spliting ��� as a function of the rms fluctuations
in the location of the interface �rms�	��2�. It is assumed that � is
described by a Gaussian correlation function that varies on spatial
scales considerably smaller than the extent of the quantum dot. An
optimal value of � of 0.1 meV has been assumed, as determined in
Sec. II B for a sharp flat interface.
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For ṽ� t̃0, the bare Hamiltonian is now H1e2d with the
local roughness terms but without interdot tunneling, in other
words t̃0 initially set to zero. The eigenstates of the bare
Hamiltonian are localized on the left or the right dot. The

eigenenergies are denoted �̃	
D , �̃


D . Since t̃0 is set to zero in
the bare Hamiltonian, it is trivial to show that the eigenstates
of H1e2d in this case do not depend on �. It is assumed that

one initializes the state with energy �̃	
R and sweeps the de-

tuning until one reaches the point where this level crosses the

state with energy �̃	
L . At this point the tunneling matrix ele-

ment between these two levels is

t̃�
LR =

t̃0�ṽL
�ṽR + �̃	

L �̃	
R �

	�̃	
L2 + �ṽL�2	�̃	

R2 + �ṽR�2
. �25�

The critical crossing occurs at the point where �	
R , which

depends linearly on the detuning, equals �	
L , which does not

depend on the detuning. This condition yields a value of the
detuning of

� =
�̃+

L + �̃−
L − �̃+

R − �̃−
R + 	��̃+

L + �̃−
L�2 + 4�ṽ+−

L �2

2

−
	��̃+

R + �̃−
R�2 + 4�ṽ+−

R �2

2
. �26�

The detuning is kept at this value for an amount of time
�� / t̃�

LR. The state of the electron after this time can be
probed by sweeping the detuning back to ��0, then doing
charge sensing using a quantum point contact. This will re-
veal whether the electron has tunneled onto the left dot or
remained on the right dot.

For weak local roughness the situation described here is
simply ordinary single-particle tunneling including a rough-
ness correction to the energy eigenvalues. The eigenstates
depend on ṽ, which is not known a priori. Yet the time scale
governing the state mixing is given by the single-particle
tunneling matrix element t̃0, which is generally small. The
size of this matrix element can be further reduced by the
barrier gate, thus enabling experiment to increase the time
scale for operations to a value which can be reliably handled
in the laboratory.

The above demonstrates that, although intervalley transi-
tions are extremely slow on one dot, they can be induced by
interface roughness in a coherent manner. Nevertheless, op-
erations using the single-electron two-dot spectrum suffer
from the ambiguous initialization problems that hamper at-

tempts to manipulate one-electron states. Initialization of D̃−

is ambiguous since �̃D may not be known. Moreover, one
disadvantage of t̃0 being small is that it is difficult to know
the relative magnitude of t̃0 and ṽ a priori.

B. Two-electron transitions

For strong tunneling we first diagonalize the
Hamiltonian with all the roughness parameters set to zero,
ṽ��= ṽ��= t̃��=0. We obtain in this way the basis of eigen-

states for the strong tunneling case, which coincides with the
singlet and triplet states used in Ref. 30. We work in this
basis and add the roughness terms ṽ�� and ṽ�� perturba-
tively. Since interface roughness does not mix singlets with
triplets, we will study the singlets and the triplets separately.
Since the valley-orbit coupling is the same on both dots, we
still have t̃��=0. All relevant quantities are defined in
Appendix C.

For strong roughness one would have to diagonalize the
Hamiltonian with all tunneling parameters set to zero, ob-
taining the basis of strong roughness eigenstates. One would
then add the intravalley tunneling terms t̃�� as a perturba-
tion. Theoretically, the possibility also exists that on one dot
ṽ� t̃ while on the other ṽ� t̃. Yet we have noted that the
tunneling matrix element t̃ contains a contribution due to the
Coulomb interaction, denoted by s̃, which greatly enhances
its magnitude with respect to t̃0. One can obtain insight from
recent noise measurements on Si QDs,74 in which dangling
bonds give rise to fluctuations in the confinement and barrier
potentials. Such noise measurements give an indication of
the magnitude of the potential fluctuations one can expect
from dangling bonds, as well as random impurities, which
both contribute to ṽ. The size of the fluctuations has been
measured to be �0.45 �eV �Ref. 74� whereas we expect t̃ to
be on the order of tens of microelectron volts.30 The case
ṽ� t̃ is therefore much less likely in this setup and we do not
consider it in what follows.

Since roughness is spin independent and does not mix
singlets with triplets, we discuss the singlet and triplet states
separately. The bare singlet and triplet energy levels in the
absence of roughness have been calculated in Ref. 29. For
convenience we have replotted them in this paper, showing
the singlet and triplet levels separately in Figs. 2 and 3. To
determine which levels can be mixed by roughness we need
to identify pairs of levels that cross and find out whether a
nonzero matrix element of interface roughness can couple
them. The singlet energy levels for t̃� ṽ are plotted in Fig. 2.
Here it is more convenient to use the dimensionless detuning
as � / �2d�̃0�, where d=X0 /a is the dimensionless half-
interdot distance. As Fig. 2 shows, the lowest energy singlet

levels do not cross. Even in the case of large �̃, when the

FIG. 2. Singlet levels in a double quantum dot with a valley
splitting of 0.1 meV in the absence of interface roughness, as de-
termined in Ref. 29.
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lowest singlet state is easily initialized, there is no conve-
nient point in the singlet energy-level spectrum at which one
can controllably induce mixing between valley eigenstates
with different valley composition. The singlet states for
t̃� ṽ are not suitable for valley manipulation by means of
interface roughness.

We investigate next the triplet states for t̃� ṽ. It is easiest

to access the polarized triplets T̃+ by starting out on one dot
�for example R� and applying a large magnetic field to lower

the energy of the T̃+ states. This results in unambiguous ini-
tialization, regardless of the magnitude of the valley splitting
and is easily accomplished experimentally since g=2 in Si.
Under these circumstances one needs to consider only the

manifold of T̃+ states, which comprises five wave functions.
The triplet energies are plotted Fig. 3. Far away from the

anticrossing �at large detuning �̃�0� the eigenstates are still

�T̃−−
LR , T̃++

LR , T̃+−
LR , T̃−+

LR , T̃+−
RR�. As the detuning is swept toward

�̃�0, the eigenstates evolve into combinations of these wave
functions, which are given in Appendix C. Out of the five

levels of interest to us, T̃+−
RR evolves into T̃+−

	 , while T̃+−
LR re-

mains unchanged. These two energy levels, T̃+−
	 and T̃−−

LR

cross at a given value of the detuning. The critical crossing

occurs at the point when the energy of T̃+−
	 , which depends

on �̃, matches that of T̃−−
LR, which does not depend on �̃.

Using the energies given in Appendix C we obtain for the

detuning at this crossing point �̃= �2�̃2− t̃2� / �̃. The matrix
element mixing the two states is

�T̃−−
LR�V�T̃+−

	 � =
t̃

	�0
	2 + 2t̃2

�ṽ−+
L − ṽ−+

R � . �27�

Therefore, if one initializes T̃+−
RR and drives the system to this

crossing point, the two levels can be mixed by interface

roughness. The triplet T̃+−
RR is mixed by a small amount with

T̃+−
LR and T̃−+

LR but this amount is negligible, since it is deter-

mined by the ratio �t̃ / �̃��1. Therefore at the point where the
two lowest triplet energy levels cross these levels are to a

very good approximation T̃+−
RR and T̃−−

LR. The resulting con-

figuration can be probed by charge sensing, since T̃+−
+ goes

back to �0,2� whereas T̃−−
+ remains in the �1,1� configuration.

This process represents a coherent rotation of valley eigen-
states.

We note that for rapid adiabatic passage �i.e., fast com-

pared to � / �T̃−−
LR�V�T̃+−

	 �� the effect of roughness is analogous
to a renormalization of the spectrum, which remains qualita-
tively the same, and valley eigenstates are not mixed. How-
ever, for slow adiabatic passage valley eigenstates can be
mixed. In effect one can use interface roughness to manipu-
late valleys in the same way the inhomogeneous nuclear field
was used to manipulate spin singlet and triplet states.10

VI. LONG INTERFACE CORRELATIONS

This case of long interface correlations comprises varia-
tions in � on spatial scales comparable to that of the quantum
dot. Recent experiments have indicated that this may be
possible.62,63 In order to understand the implications of this
possibility some preliminary considerations must be brought
forth. Primarily among these, it is necessary to recall that, if
both dots have the same valley-orbit coupling, they have the
same valley splitting and the same valley eigenstates. Under
such circumstances when electrons tunnel between the dots
they tunnel between like valley eigenstates. Since this
valley-orbit coupling can vary due to interface roughness, we
should, in principle, expect both the amplitude and the
phase of the valley-orbit coupling to be different between
the two dots. Since the tunneling matrix element t̃0

is defined as t̃0= �L̃�H0�R̃�, writing �̃D= ��̃D�e−i�̃D gives

t̃0��= t̃0
1+ei��̃L−�̃R�� and t̃0+−= t̃0
1−ei��̃L−�̃R��. Since �̃D

does not depend explicitly on position, for 2e2d, using t̃
defined in Sec. IV B, one has that t̃��= t̃
1+ei��̃L−�̃R�� and
t̃+−= t̃
1−ei��̃L−�̃R��. The matrix elements of the local rough-
ness are unaltered by the relative location of the two dots. In
all situations discussed in this paper, in the case ṽ� t̃,
whether the tunneling is intervalley or intravalley is a sec-
ondary consideration, since tunneling is still a perturbation
compared to ṽ. The key physics is provided by the matrix
elements of ṽ, which are the same regardless of whether the
tunneling is intervalley or intravalley. Therefore the peculiar
physics of the case in which interdot intervalley tunneling is
comparable to interdot intravalley tunneling is manifest
when t̃� ṽ, and we focus on this regime for the remainder of
this section. We will concentrate on the more enlightening
2e2d problem, in which the most striking consequences of
interdot intervalley tunneling can be observed. In this sec-
tion, since t̃+−�0, in the condition t̃� ṽ it is understood that
t̃ represents the greater of t̃−− and t̃+−.

There are three qualitatively different situations to con-
sider. In the easiest case, correlations stretch beyond the size
of the entire DQD. The situation is almost identical to that of

short interface correlations, except the value of �̃ is not re-
duced from its ideal value. If correlations occur on a spatial
scale approximately equal to that of one dot, the magnitude

of �̃ is essentially the same on the two dots but its phase is

FIG. 3. Triplet levels in a double quantum dot with a valley
splitting of 0.1 meV in the absence of interface roughness, as de-
termined in Ref. 29.
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different: �̃L� �̃R, therefore ��̃L− �̃R��0. From the general
definitions of t̃�� and t̃+− given above, it follows that in
general both t̃−− and t̃+− are nonzero and their ratio will de-
pend on the relative positions of the two dots. Since the
spatial scale set by 2k0 is approximately 0.5 Å, this ratio can
vary drastically from one sample to another, and in any one
sample it is in effect a random number, which only experi-
ment can determine reliably. This case cannot be treated per-
turbatively under any circumstances. We single out two im-
portant possibilities: �a� t̃−−=0 and �b� t̃−−= t̃+−. In case �a� all
the interdot tunneling is intervalley tunneling. The situation
is qualitatively completely different from the case when all
the tunneling is intravalley, as Figs. 4 and 5 illustrate. None
of the singlet levels cross other singlets and none of the
triplet levels cross other triplets. One cannot accomplish val-
ley manipulation with either the singlets or the triplets. Case
�b� is similar to �a� for the purposes of our paper. As long as
the intervalley tunneling parameter is appreciable, the bot-
tom two triplets are split. In this intermediate case the mag-
nitude of t̃−− and t̃+− is the same, meaning that the splitting of
the bottom two states with different valley compositions is
the same as the splitting at the usual anticrossing given by t̃−−
�i.e., the anticrossing in Figs. 2 and 3�.

The analysis presented underscores the importance of de-
termining the relative value of t̃−− and t̃+−. This can be ac-
complished by setting up the DQD for a resonant tunneling
experiment, as in Fig. 6. It is necessary first to do a transport
experiment through each individual dot in order to

identify the single-dot energy levels. In an ideal situation
kBT��̃��̃D and the levels on each dot have the form shown
schematically in Fig. 6. Subsequently, one can do a resonant
tunneling experiment through the double quantum dot. The
first peak in the resonant tunneling current will be between
the lowest two levels and will give t̃−−. The levels of the left
dot are subsequently held fixed while the levels of the right
dot are scanned. The next peak in the resonant tunneling
current should then give t̃+−. In addition to providing values
for the tunneling parameters, such an experiment should also
give a good indication of the length scale characterizing in-
terface roughness correlations. If t̃+− is close to zero it indi-
cates that the correlation length of interface roughness is ei-
ther much smaller than the size of a quantum dot or much
larger than it. On the other hand, if t̃+− is measurable and of
comparable magnitude to t̃−− it indicates that the phase of �̃
is different on the two dots and, from our discussion, rough-
ness correlations occur on a scale comparable to that of a
quantum dot. For this experiment, as for the valley manipu-
lation scheme proposed in this paper, it is necessary to know
the value of the valley splitting so that valley-split levels can
be unambiguously identified. Two potential risks are associ-
ated with such a resonant tunneling experiment. First, if the
valley splitting is smaller than the typical broadening of the
current peaks, then the signals due to t̃−− and t̃+− may merge
into one peak. In this case, the current peaks can be expected
to have the same magnitude between any pair of levels on
the left and right dots. Second, it may happen that one
sample will have �t̃−−�= �t̃+−� within experimental error. Aside
from the fact that such a risk is small, it can be overcome by
performing the experiment on several samples. Furthermore,

since 2�̃ is expected to be smaller than the confinement en-
ergy, the two tunneling parameters can be unambiguously
identified.

VII. DISCUSSION

A. Overview of length-scale considerations

Our analysis makes evident the fact that the length scale
characterizing interface roughness correlations plays an im-

FIG. 4. Singlet states when �̃=0.1 meV, t̃−−=0, and all the
interdot tunneling is intervalley. On the far right side of the graph
we recover the one-dot singlets, as in Fig. 2.

FIG. 5. Triplet states when �̃=0.1 meV, t̃−−=0, and all the
interdot tunneling is intervalley. On the far right side of the graph
we recover the one-dot triplets, as in Fig. 3.

FIG. 6. �Color online� Resonant tunneling in valley split quan-
tum dots. The matrix elements for tunneling between like valley
eigenstates and between opposite valley eigenstates are expected to
be very different in magnitude. Resonant tunneling can detect these
tunneling rates and give an accurate indication of their relative
strength, allowing one to infer the length scale of interface rough-
ness correlations.
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portant role in determining the effect of roughness on the
valley-orbit coupling and intervalley dynamics of double
quantum dots. The two possible scenarios, interface correla-
tions on the order of the lattice constant and greatly exceed-
ing the lattice constant, produce vastly different physics on a
qualitative level, as well as quantitatively different results.

When the length scale of interface roughness correlations
is on the order of a few lattice constants the magnitude of the
valley-orbit coupling differs slightly on the two dots due to
the local roughness, yet its phase is the same. All the interdot
tunneling occurs between like valley eigenstates, that is, + to
+ and − to −, while interdot intervalley tunneling is sup-
pressed. We distinguish between two limiting physical situa-
tions depending on the strength of the local roughness rela-
tive to the interdot tunneling matrix element. Weak local
roughness is characterized by t̃0� ṽ for 1e2d and t̃� ṽ for
2e2d. In the 1e2d setup the lowest energy levels do not
cross, they come to within a distance �t̃0 of each other.
Since t̃0� ṽ, the local roughness cannot mix these levels.

A feasible valley manipulation scheme using the singlet
states cannot be devised either. First, the singlets are only
separated clearly from other levels in the �0,2� configuration.
Second, there is no crossing of singlet levels that could be
exploited. At the points at which singlets cross other triplet
states are also close by. Even though roughness does not mix
singlets and triplets, other mechanisms, such as the hyperfine
coupling to the nuclei, could. On the other hand, the lowest
2e2d triplets do cross, providing a scheme that is experimen-
tally accessible. By applying a magnetic field experiment can

unambiguously access the T̃+ triplet corresponding to the
setup in which both electrons are on one dot. Once this state
is initialized the detuning between the dots is ramped up
until this state crosses the next-lowest energy state. At this
point the local roughness can mediate transitions between
these two levels and sets the time scale for this mixing,
which will be estimated below.

For strong local roughness, ṽ� t̃, it is obvious that the
lowest energy levels cross in all setups. There is a tunneling
matrix element between the two lowest energy levels, which
in all three setups have different valley compositions. The
time scale for this level mixing is set by the interdot tunnel-
ing, in contrast to the weak local roughness case, in which it
was set by the local roughness parameter ṽ. On the one hand
tunneling can be adjusted by means of the gate that controls
the interdot barrier, allowing some experimental control.

When the length scale of interface roughness correlations
is on the order of the size of a quantum dot, the magnitude of
the valley-orbit coupling will again be slightly different be-
tween the two dots, yet its phase can, in principle, also be
different. The relative phase of the valley-orbit coupling is
determined by the value of the function e2ik0� on each dot
and, where 2k0 sets a length scale of �0.5 Å. The relative
phase of the valley-orbit coupling determines the relative
magnitude of interdot tunneling between like valley eigen-
states and interdot tunneling between opposite valley eigen-
states. Given the random nature of �, the extremely short
length scale set by 2k0 and the impossibility of achieving
control over such short distances in the foreseeable future,
the relative strengths of tunneling between like and opposite

valley eigenstates under these circumstances is in effect a
random number, expected to vary greatly from one sample to
another.

B. Strong intervalley coupling limit

The extreme cases considered, t̃+−= t̃−− and t̃−−=0 are
rather similar qualitatively. Once again one must consider
how the strength of the local roughness compares to the in-
terdot tunneling. For t̃� ṽ the lowest energy levels do not
cross in any of the three possible setups. If ṽ� t̃ the bare
Hamiltonian is the same as when the tunneling is predomi-
nantly intravalley. We have established that the lowest en-
ergy levels do cross in all setups, yet the tunneling between
them is determined by the relative strength of t̃−− and t̃+−.
Since this is a random number any valley manipulation
scheme under these circumstances must be regarded as
overly ambitious. If interface roughness correlations occur
on the scale of a quantum dot the valleys are mixed ran-
domly and any attempt at coherent manipulation of valley
eigenstates would be futile.

One important result of our study is the fact that varia-
tions in the position of the interface �given by ��2�� and
variations in the local roughness �given by ṽ� influence the
valley-orbit coupling and interdot dynamics in vastly differ-
ent ways. The length scale of the interface misalignment
across a double quantum dot gives rise to two qualitative
scenarios: short correlations of interface roughness, over the
scale of a few lattice constants, and long correlations of in-
terface roughness, over the scale of a quantum dot. For short
correlations the valley-orbit coupling is suppressed by a fac-
tor e−�2��2�/2 with � determined by the locations of the valleys
in reciprocal space, and ��2� the variance of the fluctuations
in the interface location. In the absence of local roughness,
the valley-orbit coupling in a double quantum dot is the same
on each dot. For long correlations the phase of the valley-
orbit coupling can also be different between the two dots,
such that interdot tunneling between opposite valley eigen-
states is enabled. In this case the relative phase of the valley-
orbit coupling cannot be controlled and the relative magni-
tude of interdot tunneling between like and opposite valley
eigenstates is essentially a random variable. These findings
are general and applicable to all systems where valley phys-
ics is important.

C. Ideal scenario

The analysis presented in this work suggests that the ideal
scenario for inducing transitions between valley eigenstates

is to use the polarized triplet T̃↑↑ states in a DQD in which
t̃� ṽ. To determine the time scale for these transitions we
need to estimate the magnitude of ṽ or more precisely its
variation across a DQD �which may be due to dangling
bonds or impurities.� In the absence of experimental data, it

is necessary to estimate the variation in �̃D between the two

dots. We assume �̃D=0.1 meV and, to cover a wider range

of experimental possibilities, we consider variations in �̃D of
1–10 %. As shown above, knowledge of the difference in
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�̃D enables one to determine the difference in ṽzz between
the dots �we assume ṽzz

D � Im ṽzz̄
D in Eq. �24� so that the dif-

ference in �̃D is given by the difference in ṽzz only�. More-

over, we can use the evaluations of �̃D and �̃D to infer a
series of facts about the matrix elements of V�x ,y�. The ma-

trix elements ṽzz and ṽzz̄ follow the same pattern as �̃D and

�̃D, respectively, except that instead of U0 we have the av-
erage of V�x ,y� over a quantum dot. Therefore, based on the

ratio of �̃D and �̃D, we conclude that the ratio of the off-
diagonal matrix element ṽzz̄ to the diagonal matrix element
ṽzz can range between �0.1–0.3 depending on whether SiGe
is used or SiO2. We estimate in addition the real part of ṽzz̄ to
be one order of magnitude smaller than the imaginary part.
The roughness average reduces this by another order of mag-
nitude with a further reduction by an order of magnitude

arising from the multiplicative factor t̃ / �̃D. One ultimately
expects ṽ in the range �0.1–1 neV, giving a time scale of
approximately 1–10 �s. This figure represents the time
scale for transitions from one valley eigenstate to another.
Gating on such a time scale is easily accomplished
experimentally.10

D. Important regions of the energy spectrum

In all scenarios discussed in this work there are three rel-
evant regions of the energy-level spectrum as a function of

interdot detuning �̃. These are the two extreme cases �̃�0,

�̃�0, as well as a third value �̃ at which the lowest two
energy levels cross, in the cases when such a crossing does
occur. For 1e2d in the strong tunneling regime the two low-
est energy levels as a function of detuning go through an
avoided crossing where their minimum separation is of order
t̃. The matrix element mixing these levels is of order ṽ, and
since ṽ� t̃ the possibility of mixing these levels by means of
interface roughness is remote. For 2e2d in the strong tunnel-
ing regime, the lowest singlet states also anticross and cannot
be mixed, yet two triplet states with different valley compo-
sitions cross each other and can be mixed by roughness. In
fact transitions between triplet states offer the best prospect
of experimental manipulation of the valley degree of free-
dom using interface roughness. For strong roughness all the
above scenarios �1e2d, 2e2d singlet and triplet states� are
very similar. Without interdot tunneling many energy levels
cross and in the neighborhood of the crossing point the low-
est two energy levels can be mixed by t̃. Given that the
tunneling parameter can be adjusted by means of the gate
that controls the barrier between the dots, it can, in principle,
be reduced to a time scale slow enough that a coherent valley
experiment is possible with currently achievable gating
times.

VIII. SUMMARY

Interface roughness has two principal effects on quantum
dots made in materials with multivalley energy spectra. First,
it leads to a suppression of the valley-orbit coupling by a

factor e−2k0
2��2�, where ��2� is the variance of the fluctuations

in the position of the interface. Second, in a double quantum
dot it enables transitions between valley eigenstates. Such
transitions occur in the dynamics of one and two electrons in
a DQD. In the majority of processes discussed, one electron
initialized into a particular valley eigenstate on one dot tun-
nels into the opposite valley eigenstate on the adjacent dot
when the detuning between the dots is swept to a certain
point of the energy spectrum and appropriate mixing time is
allowed. The position of the mixing point and the value of
the mixing time must be determined individually for each
configuration—1e1d, 2e2d singlets and 2e2d triplets, and
depends also on the relative magnitude of the local interface
roughness and the relevant interdot tunneling matrix ele-
ment. Based on our study of all possible configurations we
conclude that the likeliest system to observe this phenom-
enon is provided by the triplet states in the 2e2d configura-
tion, which may be reliably initialized and are estimated to
mix on a time scale of 1–10 �s. It must be pointed out that,
although the possibility of inducing transitions between val-
ley eigenstates by means of interface roughness discussed in
this paper is one way of manipulating valleys, the scheme we
have presented is not tunable. Instead it must be regarded as
a first step in the attempt to achieve coherent control of val-
ley eigenstates.
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APPENDIX A: VALLEY-ORBIT COUPLING

The main contribution to �D comes from the interface
potential. For a perfectly smooth and perfectly sharp inter-
face this is

�D = ��z�V��z̄�

= U0�
−�

� �
−�

�

dxdy���x,y��2�
−�

�

dz��− z�

���z��2e−2ikzzuz
��r�uz̄�r�

= U0N2z0
2�

KQ
cK

z�cK+Q
z̄ �

−�

� �
−�

�

dxdy���x,y��2

eiQ�·r�
−�

0

dzeqzz, �A1�

where q�=kb+ iQz−2ik�. We can approximate the x and y
integrals by � functions of Qx, Qy, yielding

��z�V��z̄� � U0N2z0
2 �

K,Qz

cK
z�cK+Qzz

−z

qz
. �A2�

The matrix element between the same valley eigenstates is
given by
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�D = ����V���� = U0�
−�

� �
−�

�

dxdy���x,y��2�
−�

�

dz��− z����z��2�u��r��2

= U0N2z0
2�

KQ
cK

��cK+Q
� �

−�

� �
−�

�

dxdy���x,y��2eiQ�·r�
−�

0

dze�kb+iQz�z. �A3�

In the presence of an interface ��z�→��z−��. In the presence of interface roughness

�D = �
−�

� �
−�

�

dxdy
U0 + V�x,y�����x,y��2�
−�

�

dz�
− �z − ������z − ���2e−2ikzzuz
��r�uz̄�r�

= �
KQ

cK
z�cK+Q

z̄ �
−�

� �
−�

�

dxdy
U0 + V�x,y�����x,y��2eiQ�·r�
−�

�

dz�
− �z − ������z − ���2ei�Qz−2kz�z. �A4�

The z integral is performed by first changing the variable of
integration to z�=z−� �let also ��=Qz−2k��

�
−�

�

dz�
− �z − ������z − ���2ei��z

= �
−�

�

dz���− z�����z���2ei���z�+��

= ei����
−�

0

dz����z���2ei��z�. �A5�

We always have z��0 and ��z��=Nz0e�oxz�/2, so the integral
is trivial

ei����
−�

0

dz����z���2ei��z� =
N2z0

2ei���

q�

. �A6�

APPENDIX B: MATRIX ELEMENTS OF ROUGHNESS
IN THE SINGLET AND TRIPLET MANIFOLDS

We will first give the matrix elements of the roughness
potential between the bare singlet and triplet states. These

are in fact the same, so �S̃�V�S̃�= �T̃�V�T̃� for all the cases
below. There are no matrix elements of the roughness poten-
tial connecting singlet and triplet states. The random poten-
tial is written as V�r1�+V�r2�. The intrabranch matrix ele-
ments are

�S̃++
RR�V�S̃++

RR� = 2ṽ++
R ,

�S̃+−
RR�V�S̃+−

RR� = ṽ++
R + ṽ−−

R ,

�S̃++
LR�V�S̃++

LR� = ṽ++
L + ṽ++

R ,

�S̃+−
LR�V�S̃+−

LR� = ṽ++
L + ṽ−−

R ,

�S̃−+
LR�V�S̃−+

LR� = ṽ−−
L + ṽ++

R ,

�S̃+−
LR�V�S̃−+

LR� = 0. �B1�

The interbranch matrix elements are

�S̃+−
RR�V�S̃++

RR� = 	2ṽ−+
R ,

�S̃+−
RR�V�S̃−−

RR� = 	2ṽ+−
R ,

�S̃+−
LR�V�S̃++

LR� = ṽ−+
R ,

�S̃+−
LR�V�S̃−−

LR� = ṽ+−
L ,

�S̃−+
LR�V�S̃++

LR� = ṽ−+
L ,

�S̃−+
LR�V�S̃−−

LR� = ṽ+−
R . �B2�

All other matrix elements are assumed to be negligible.

APPENDIX C: SINGLET AND TRIPLET EIGENSTATES
OF 2e2d FOR t̃š ṽ

We will use the following notation for the energy eigen-
states:

�̃�

 =

− �̃ + 	�̃2 + 8t̃2

2
� 2�̃0,

�̃�
	 =

− �̃ − 	�̃2 + 8t̃2

2
� 2�̃0,

�̃0

 =

− �̃ + 	�̃2 + 8t̃2

2
,

�̃0
	 =

− �̃ − 	�̃2 + 8t̃2

2
. �C1�

The singlet eigenstates are
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S̃��

 =

�̃�



	�̃�

2 + 2t̃2

� t̃	2

�̃�

 S̃��

LR + S̃��
RR  ,

S̃��
	 =

�̃�
	

	�̃�
	2 + 2t̃2

� t̃	2

�̃�
	 S̃��

LR + S̃��
RR  ,

S̃+−

 =

�̃0



	�̃0

2 + 2t̃2

� t̃

�̃0

 S̃+−

LR +
t̃

�̃0

 S̃−+

LR + S̃+−
RR ,

S̃+−
	 =

�̃0
	

	�̃0
	2 + 2t̃2

� t̃

�̃0
	 S̃+−

LR +
t̃

�̃0
	 S̃−+

LR + S̃+−
RR ,

S̃+−
anti =

1
	2

�S̃+−
LR − S̃−+

LR� . �C2�

Two triplet eigenstates are T̃��
LR . The other three are

T̃+−

 =

�̃0



	�̃0

2 + 2t̃2

� t̃

�̃0

 T̃+−

LR −
t̃

�̃0

 T̃−+

LR + T̃+−
RR ,

T̃+−
	 =

�̃0
	

	�̃0
	2 + 2t̃2

� t̃

�̃0
	 T̃+−

LR −
t̃

�̃0
	 T̃−+

LR + T̃+−
RR ,

T̃+−
sym =

1
	2

�T̃+−
LR + T̃−+

LR� . �C3�
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