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In order to investigate the metal-insulator transition in high-mobility Si-metal-oxide-semiconductor struc-
tures, we have precised and further developed the dipole trap model as originally proposed by Altshuler and
Maslov �Phys. Rev. Lett. 82, 145 �1999��. Our additional numerical treatment enables us to drop several
approximations and to introduce a limited spatial depth of the trap states inside the oxide as well as to include
a distribution of trap energies. Depending on the type and width of distribution, the metallic state appears more
or less pronounced as observed in experiments on samples with different quality.
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I. INTRODUCTION

The discovery of the metal-insulator transition �MIT� in
two-dimensional �2D� electron systems in 1994 �Refs. 1 and
2� has attracted large attention, as it was in apparent contra-
diction to the scaling theory of localization.3,4 This theory
points out that in the limit of zero temperature, a metallic
state should exist only in three-dimensional �3D� systems
whereas in two-dimensional disorder should always be
strong enough to induce an insulating state. The MIT in high-
mobility n-type silicon inversion layers shows a strong de-
crease in resistivity � toward low temperature T for high
electron densities, manifesting the metallic region, whereas
an exponential increase in � demonstrated the insulting re-
gime at low densities. A similar but weaker behavior was
observed in many other semiconductor systems at low den-
sities and low temperatures �e.g., p-GaAs,5 n-GaAs,6 SiGe,7

and AlAs �Ref. 8��.
Several models were suggested in order to explain the

unexpected finding of metallic behavior in 2D. The most
important ones are �i� temperature-dependent screening,9–14

�ii� quantum corrections in the diffusive regime,15–18 and �iii�
quantum corrections in the ballistic regime.19,20 Numerous
argumentations for the different models are given in
literature21–25 but a clear decision for one of them could not
been drawn yet.

In order to take into account the high density of defect
states in the oxide of Si-metal-oxide-semiconductor �MOS�
structures, Altshuler and Maslov �AM� introduced the dipole
scattering scenario for such structures in which charged trap
states form dipoles together with the image charge of the
screening 2D electrons.26 The interplay between the gate-
voltage-dependent energetic position of the trap states and
the height of the chemical potential may lead as well to a
metal-insulator transition in that system. It should not be
assumed that the dipole scattering is the only effect in action,
as the temperature dependence of screening and quantum
corrections will contribute at low temperatures. But the
charging of defect states and the resulting dipole scattering
might be the generator of the particularly large effect in Si-
MOS structures. The charged defect states in the thermally

grown oxide layer are induced by the misfit at the silicon/
silicon-oxide interface.27–29 Arguments on the importance of
trap states in Si-MOS structures were also given by Klapwijk
and Das Sarma.30

AM could show within their analytical calculations that a
trap level at energy ET which is either filled or empty, de-
pending on its position relative to the chemical potential �,
can lead to a critical behavior in electron scattering if ET and
� are degenerate. This dipole trap model is able to explain
the main properties of the metal-insulator transition in gated
Si-MOS structures.

For the analytical calculations, AM made a number of
assumptions. These are: �a1� the trap states possess a �-like
distribution in energy �i.e., have all the same energy�, �a2�
the spatial trap density distribution in the oxide is homoge-
neous, �a3� the states occupied with electrons behave neutral
and cause no scattering of 2D electrons whereas the unoccu-
pied states are positively charged and lead to scattering �AM
work in the hole-trap picture, we describe occupation in
terms of electrons�, �a4� a charged trap state is screened by
the 2D electrons so that the resulting electrostatic potential
can be described by the trap charge and an apparent mirror
charge with opposite sign on the other side of the interface,
�a5� the scattering efficiency of the 2D electrons is described
by a dipole field of the trap charge and its mirror charge, �a6�
a parabolic saddle-point approximation for the effective po-
tential between the Si/SiO2 interface and the metallic gate
was used in order to perform analytical calculations, �a7� the
energy of the trap state ET is fixed relative to the quantization
energy E0 of the 2D ground state inside the inversion poten-
tial, and �a8� the chemical potential � in the 2D layer has �A�
either the same temperature dependence as in the bulk sub-
strate or �B� as in a 2D electron system with constant elec-
tron density.

In this work, we precise and develop the dipole trap
model further in order to better understand the influence of
charged traps on the metallic state and on the metal-insulator
transition in Si-MOS structures. We present some improve-
ments in the analytical description but perform mainly de-
tailed numerical calculations. In the analytical treatment,
some expressions are rearranged so that the scattering effi-
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ciency is expressed in the same way as the usual Drude for-
mulation. The two main integrals can then be rewritten as
Fermi-Dirac integrals which lead to simple analytical ap-
proximations of the resistivity � at low temperatures.

Due to the numerical treatment, we are able to drop ap-
proximations �a6�, �a7�, and �a8� of the analytic AM model.
In general we find good agreement with the calculations of
AM in a wide parameter range. There are deviations in the
overall behavior of the resistivity at low electron densities
and low temperatures as well as for all densities at high
temperatures. A detailed calculation of the common chemical
potential � for the 2D electron layer, the depletion layer, and
the Si-bulk gives a behavior similar to case �B� of assump-
tion �a8� and does not show a distinct insulating behavior in
that the resistivity increases exponentially for low densities
toward low temperatures. Nevertheless, there is a clear tran-
sition with electron density between a region where the re-
sistivity strongly drops �metallic region� and one in which �
saturates. A true insulating region may occur either due to
further effects which influence the temperature dependence
of � or by the inclusion of, e.g., quantum corrections in the
weak and strong localization regime.

As the main feature of this work, we have further ex-
tended our calculations for the realistic case with energetic
broadening and spatial distribution profile of the defect
states, i.e., dropping approximations �a1� and �a2�, respec-
tively. Depending on the strength of the energetic broaden-
ing, the transition between metallic and insulating state is
more or less smeared out, the limitation of the spatial extent
leads to a lower and thus more realistic resistivity at high
temperatures.

The paper is organized as follows. In Sec. II, we give a
short introduction into the trap model and discuss the im-
provements, which we have performed. Section III shows a
direct comparison between analytical approximation and nu-
merical results under equivalent conditions. Section IV treats
the changes which occur, if the trap state energy if fixed
relative to the conduction-band �CB� edge instead of the
electronic ground state inside the inversion layer. The main
results of this work are presented in Sec. V where a spatial
trap profile is introduced and in Sec. VI for an energetic
broadening of the trap states. These two additional exten-
sions of the trap model bring the calculated temperature and
density dependence of the resistivity into very good agree-
ment with experimental observations. Conclusions are drawn
in Sec. VII. In Appendix A details of the trap model, Appen-
dix B the behavior of the chemical potential, Appendix C a
low-temperature approximation, Appendix D the ground-
state energy of the inversion layer, and Appendix E calcula-
tion parameters for the Si-MOS structures are given. Please
note that we use SI units throughout this work, in contrast to
cgi units in the work of AM.

II. DIPOLE TRAP MODEL

In the AM model, it is assumed that a large number of
hole-trap states exists in the oxide at a certain trap energy ET.
If the trap energy lies above the chemical potential �, the
trap is empty �in the electron picture, or has captured a hole

in an equivalent description� and is positively charged
whereas if ET lies below � it is filled with an electron and
thus is neutral, see Fig. 1. Please note that we use the termi-
nology ��T� for the chemical potential and the Fermi energy
EF denotes ��T=0� as in AM.26

An applied gate voltage Vg at the Si-MOS structure
causes a potential gradient in the oxide and a corresponding
decrease in the trap energy,

ET = ETs − eVinsZ/D �1�

inside, with the unscreened trap energy ETs at the oxide-
semiconductor �OS� interface, the voltage drop across the
oxide �insulator� Vins, the distance from the OS interface Z,
and the thickness of the oxide D �AM use the symbol Vg
instead of Vins in the corresponding equation, but with a
somewhat different meaning, see also Appendix A�.

As the charges within the depletion zone �2D charge den-
sity −endepl� of the Si inversion layer also contribute to the
gradient of the potential, we use the equation

Vins = e�ns + ndepl�D/�ins�0 �2�

together with

Vg = Vdepl + Vins �3�

with Vins the potential difference across the oxide layer, �ins
the dielectric constant of the oxide, and �0 the electric field
constant.

As one of the basic concepts behind the dipole trap
model, AM describe the interaction between the charged trap
state at energy ET and the 2D electron gas �2DEG� by an
image force, which corresponds to an efficient screening of
the trap potential inside the semiconductor by the 2DEG. For
the interaction term, we use −e2 /16��ins�0Z �in SI units�
whereas AM have a factor 8 in the denominator �see also, for
instance, Ref. 27 or Ref. 28�. But the size of this factor does
not change the results of the trap model qualitatively, it
mainly shifts the maximum in the effective trap potential
somewhat and so also the corresponding values for ns. With
the interaction term the effective trap energy can be formu-
lated as

ET�Z� = ETs + �e�Z� , �4�

FIG. 1. �Color online� Schematic representation of the trap
states together with the 2D electron system in the Si inversion layer.
For ET���T� the trap state is positively charged and scatters elec-
trons in the 2D layer whereas for ET	��T� the trap is neutral, with
ECs being the CB edge and E0 the electronic ground-state energy at
the oxide-semiconductor interface.

T. HÖRMANN AND G. BRUNTHALER PHYSICAL REVIEW B 82, 205310 �2010�

205310-2



�e�Z� = − eVins
Z

D
− �D

D

Z
, �5�

where the subscript e in �e stands for “electrostatic” and

�D =
e2

16��ins�0D
�6�

is used to abbreviate the image force interaction term. Please
note that we use throughout this work the notation of capital
E for absolute energies and greek � for energy differences.
The shape of effective trap energy ET�Z� is shown in Fig. 2
together with the relevant energies.

The number of positively charged trap states p+�Z� is de-
scribed by a modified Fermi-Dirac statistics into which the
energy difference ET�Z�−� enters, see Appendix A. The
scattering of the 2D electrons is described in the AM trap
model by the dipoles which are formed between the positive
traps and the negative image force. The scattering is de-
scribed by a classical transport cross section 
t for dipoles
�Appendix A�. With that assumption, one gets the resistivity
� from the Drude theory with the Boltzmann equation in the
relaxation-time approximation. AM expressed the result in a
very compact way, with the disadvantage that the connection
to the standard Drude theory is somewhat hidden ��see AM
�Ref. 26��.

We have repeated the calculations �Appendix A� and ex-
press the resistivity � in a form equivalent to the Drude for-
mula

� =
mc

nse
2���

, �7�

and find a term for the scattering rate 1 / ��� in the usual form
that scattering rate is equal to scattering cross section times
density of scattering centers times velocity of scattered par-
ticles, which leads to one of the basic equations used
throughout this work,

� =
mc
t��̄,Z̄�nT

+v��̄�
nse

2 . �8�

Here 
t��̄ , Z̄� is the transport scattering cross section accord-
ing to the dipole scattering for an appropriately averaged

effective electron energy �̄ and an effective distance Z̄ be-
tween the traps and the OS interface, nT

+=�0
DNT

+�Z�dZ is the
2D density of charged traps, v��̄� the electron velocity which
corresponds to �̄=mcv2 /2, and NT

+�Z� denotes the 3D density
of charged traps. For detailed calculations see Appendix A.

An important point to note is that AM have assumed that
the energy ETs is constant relative to the 2D electron ground-
state energy E0, i.e., �TsE0=ETs−E0=const. But E0 depends
on the width of the inversion potential �and thus on the gate
voltage Vg� and there is no reason that the deep trap energy
ETs should follow E0. This assumption was necessary in or-
der to be able to solve the model within an analytical treat-
ment. But due to the numerical treatment in our work, we
can drop this assumption �mentioned as �a7� in Sec. I� and
assume that the trap energy is rather fixed relative to the CB
edge at the interface ECs �the index s denotes energies at the
oxide-semiconductor interface�. We thus use

�TsCs = ETs − ECs = const. �9�

This issue will be further treated in Sec. IV.
For the temperature dependence of the chemical potential

AM described two different scenarios in their work: �A� the
chemical potential of the 2DEG and of the Si substrate co-
incide, �B� the 2DEG is disconnected form the substrate.
Case �A� implies that the temperature behavior in the 2DEG
is the same as in the bulk. However, this does not take into
account that the chemical potential in the 2DEG is measured
against the ground-state energy E0 and in the bulk against the
conduction- or valence-band edge, i.e., it assumes E0 and the
band bending to be fixed. To our opinion, case �A� of AM is
not very precise and has to be improved by the missing po-
tential and temperature dependencies. Case �B� seems to be
even less realistic, as it does not take into account the tem-
perature and density dependence of E0 relative to ECs and the
changes in the inversion layer. Thus we modify also assump-
tion �a8� on temperature dependencies like �A� or �B�.

As we perform numerical calculations, it is possible to
treat a realistic scenario with a common chemical potential �
for 2DEG, inversion layer, and Si-bulk material in thermal
equilibrium. For that purpose, the potential run in the 2DEG
and the inversion layer, the energy of the electronic ground
state E0 and the charge neutrality have to be solved self-
consistently �see Appendices B and D�. The parameters for
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FIG. 2. �Color online� Energy diagram of the oxide-
semiconductor interface with relevant notation. The effective trap
energy ET reaches its maximum at Z=Zm, the unscreened trap en-
ergy ETs at the OS interface. The diagram further shows the elec-
trostatic energy �e, its components −eVinsZ /D and −�DD /Z and the
value �m at the maximum, the chemical potential �, the ground-
state energy of the inversion layer E0 and the corresponding wave
function �, CB edge EC and its value at the interface ECs. For
simplicity we use different coordinate systems for the oxide �Z� and
the semiconductor side �z� so that both, Z and z, are positive on
their sides. At those positions where ET lies above �, the traps are
positively charged �with the usual smearing over kBT� which is
indicated by the bold vertical hatch lines.
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the calculations performed for a �001	 silicon surface plane
are collected in Appendix E. It will be shown that this real-
istic scenario is close to case �A� of AM.

Although we perform mainly numerical calculations in
this work, in Appendix C an analytical approximation for the
resistivity � in the low-temperature limit is given for the
cases where the maximum of the effective trap energy ET is
either above or below the chemical potential � or coincides
with it.

III. COMPARISON OF ANALYTIC AND
NUMERICAL RESULTS

In order to get rid of the restrictions from the saddle-point
approximation, we have performed numerical calculations of


t��̄ , Z̄� and nT
+ as described in Appendix A. At first we com-

pare the numerical calculation without the saddle-point ap-
proximation with the saddle-point approximation of AM for
case �A�.

In Fig. 3, we show how the resistivity � depends on tem-
perature T and 2D electron density ns in the inversion layer
according to the analytic saddle-point approximation of AM
�Ref. 26� �dashed lines�, the analytic approximations for low
temperatures where the Fermi-Dirac integrals are replaced by
corresponding approximations as described in Appendix C
�dotted lines�, and the numerical integration �full lines�. We
chose �TsE0
42.02 meV in order to get nsc=1011 cm−11 and
for the 3D trap density we assumed NT=1018 cm−3. The
value for NT seems to be quite high, but within small dis-
tance from the oxide-semiconductor interface the number of
defects in the oxide is indeed high and only there the traps
will be charged �where the states are above the chemical
potential� and contribute to scattering. A further limitation of

the available trap states to a narrow region besides the inter-
face will follow later on in this work.

The critical behavior of ��T� versus ns for the homoge-
neous trap density NT can be seen most clearly on the double
logarithmic plots in Figs. 3�a� and 3�c� for ns in the vicinity
of nc. In Fig. 3�a�, the spacing of ns is linear whereas in Fig.
3�c�, the deviations ns−nc increase logarithmically. We
added the linear plot Fig. 3�b� as it is in this form directly
comparable to Fig. 1�b� in the work of AM.26

We explain the shape of ��T ,ns� starting from a value
ns�nsc �lower curves in Fig. 3�. Due to the corresponding
large gate voltage, the maximum of the effective trap energy
�T�Z� is shifted downward �see Fig. 2� whereas � is rela-
tively high for the large ns. The effective trap energy is com-
pletely below � and only a small part of the traps is empty
due to thermal excitations �as described by the p+�Z�-peak�,
leading to small scattering rates and small resistivity �metal-
lic regime�. On the contrary for ns	nsc, the effective trap
energy �T�Z� is increased, � has decreased �see Fig. 9 in
Appendix B� and so the resistivity � increases strongly due
to the large number of charged traps.

For increasing temperature T, the chemical potential �
decreases relative to E0, leading to an increased number of
charged trap states nT

+ which cause an increase in resistivity �
due to increased dipole trap scattering rate at all densities.
The broadening of the p+�Z�-peak due to the increased
smearing of the Fermi distribution function by kBT also con-
tributes to an increase in nT

+ and thus of �.
The saddle-point approximation works best for small tem-

peratures T and densities ns�nsc where the p+�Z�-peak is
very narrow and therefore the Taylor approximation of the
trap energy is quite accurate within the peak. For large T
and/or ns	nsc, the deviations of the saddle-point approxima-
tion from the numerical calculations become visible in Fig. 3
�dashed vs full lines�.

As can be seen from Fig. 3, a critical behavior around nsc
is visible in that the behavior of the resistivity is qualitatively
different for ns	nsc and ns�nsc and the curves spread apart
around nc toward lower T. But this does not mean necessar-
ily that � increases toward infinity for low ns and low T.
Whether the separate behavior for ns	nsc leads to an insu-
lating behavior or not depends in the trap model on the T
dependence of the chemical potential �. For case �A� in AM,
the slope d� /dt is negative and does not lead to the insulat-
ing behavior whereas for case �B� d� /dt is positive at low T
and leads to the insulating behavior. In case �A�, the resistiv-
ity approaches in the dipole trap model a constant value for
T→0. But the inclusion of quantum interaction in the weak
and strong localization regime should nevertheless drive the
system into an insulating state �see, e.g., Refs. 3 and 4�.
Furthermore, there might be other effects, which influence
the temperature run of the chemical potential � like in case
�B�—which we do not hold for very realistic—and drive �
into a strongly insulating state. To our opinion, the important
characteristic feature of � within the trap model is the quali-
tative different behavior for ns	nsc and ns�nsc.

Furthermore, it should be noted that according to the cal-
culations, the resistivity � for T→0 drops toward zero in the
metallic regime. This is caused by the fact that electron scat-
tering is taken into account only from the trap states at a

TABLE I. Values used for calculations.

gs=2

gv2D=2

gv3D=6

me=9.1094
10−31 kg

md2D=0.1905me

mz=0.9163me

mde3D=0.322me

mdh3D=0.59me

�sc=11.9

�ins=3.9

→��=7.9

D=200 nm

C=16

→�D=0.4615 meV

NA=2
1015 cm−3

ND=0

�g0Si=1.17 eV

�Si=4.73
10−4 eV K−1

�Si=636 K
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single trap energy. If this trap energy is below the Fermi
energy, with decreasing T the number of charged scattering
centers goes to zero. Only if other scattering effects, such as
residual impurities, surface roughness, acceptor states in the
depletion layer, etc., are included, the low-T resistivity would
be limited. It will be seen later in this work that an energetic
broadening of the trap states will have a similar effect in
limiting the decrease in �, as there remain some charged trap
states.

IV. CONDUCTION BAND AS REFERENCE ENERGY

If the bands in the semiconductor and in the oxide are
bent due to an applied gate voltage all local states shift with
the bands. This holds as well for the trap states ETs, as they
are related to the host material. Their energetic position is
fixed relative to the CB edge and not to the electronic
ground-state energy E0 of the inversion layer as assumed by
AM. The latter assumption �a7� was necessary in order to get
an analytical description of the model.

From Eq. �A1� we see that ET−�=ETs+�e�Z�−� �see
Fig. 8� determines the probability p+ of a trap to be charged.

So if we measure ETs against the CB edge at the interface ECs
we also need to know �Cs=�−ECs. We find

�Cs = � − E0 + E0 − ECs = �E0
+ �0Cs, �10�

where �0Cs=E0−ECs is the electronic ground-state energy in
the potential of the inversion layer relative to the CB edge at
the OS interface.

The chemical potential �E0
follows from Eq. �B1�

whereas an accurate calculation of �0Cs is rather complex.
For simplicity we follow the calculation method of Ando,
Fowler, and Stern �AFS�,28 neglect the exchange interaction
and correlation effects, and use the Ritz variational principle.
�In the mentioned article also more sophisticated methods for
the calculation of �0Cs are given.�

With the Fang-Howard envelope wave function approxi-
mation according to AFS,31 we find an energy eigenvalue
�0Cs between 20 and 60 eV for ns increasing from 0 to
1012 cm−2, respectively, in a nearly linear manner. The in-
crease in �0Cs with ns comes mainly from the steeper poten-
tial of the inversion layer due to a correspondingly large
applied gate voltage. See Appendix D with Fig. 10 for de-
tails.
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FIG. 3. �Color online� Behavior of the resistivity � depending on temperature T and 2D electron density ns in the inversion layer.
Full black �blueonline� numerical integration, dashed gray �red online� saddle-point approximation, doted black lines: analytic low-
temperature approximations. In �a�–�c� ns and in �d� T is constant for the individual curves, all for a critical density of
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Now we hold the difference between trap energy and CB
edge at the interface �TsCs=ETs−ECs=ETs−�+�E0

+�0Cs

constant �instead of �TsE0 as before�. When ns is decreased
not only �E0

decreases but also �0Cs does so due to the flatter
potential, thus � drops off faster against ETs and the transi-
tion is more abrupt. This can be seen in Fig. 4�a� where
results for the case that the trap states shift with the CB edge
��TsCs=const, full lines� or with the electronic ground state
��TsE0=const, dashed lines� are compared and where the dif-
ferences between curves are larger for the former case. In
both cases the resistivity was calculated numerically accord-
ing to the integrals � j as defined in Appendix A. The critical
curves ns=nsc coincide at T→0 because the values �TsE0

42.0 meV and �TsCs
68.4 meV were chosen in order to
get the same nsc and for higher temperatures because �0Cs�T�
is nearly constant over a wide temperature range �Fig. 4�c��.
For the 3D trap density, we assumed again NT=1018 cm−3.

It has to be emphasized that we still use Vins�ns like AM.
But the 2D density of positive charges in the depletion layer
ndepl is a by-product of the calculation of �0Cs and it is no
longer a problem to use Vins�ns+ndepl instead, i.e., to include

the charge in the depletion layer as well. We will do so
henceforward. Due to the additional charge ndepl, the slope of
the line ETs−eVinsZ /D in Fig. 2 is increased, the maximum
of ET�Z� falls off against � and the p+�Z�-peak gets smaller
and narrower. But it is still possible to let coincide the criti-
cal curves ��ns=nsc� by increasing the trap density NT in
order to compensate the narrower p+�Z�-peak and by increas-
ing �TsCs in order to get the same critical value nsc. Here it is
also important that the 2D charge carrier density of the
depletion layer ndepl�T� has almost no ns dependence for low
temperatures as can be seen in Fig. 4�d�. The resistivity
��T ,ns�, with NT=2.98
1018 cm−3 and �TsCs
95.7 meV,
for which we get the same nsc as before, is shown in Fig.
4�b�. The before used depletion density ndepl was calculated
under the assumption of a background doping density of
NA=2
1015 cm−3, which is a typical value for high-
mobility Si-MOS samples.32 The values for NT and �TsCs
were chosen in order to get the requested nsc for the given
NA. In reality the value �TsCs is determined by the chemical
nature of the defect and thus the critical density may change
from sample to sample if the background doping density NA
is different.
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FIG. 4. �Color online� �a� Resistivity ��T ,ns� for the potential across the oxide layer Vins�ns with NT=1018 cm−3 and �TsCs


68.4 meV and �b� for Vins�ns+ndepl with NT=2.98
1018 cm−3 and �TsCs
95.7 meV. The parameters are chosen to give a critical
density of nsc=1011 cm−2 for both cases. For �a� and �b�, the full black �blue online� represent the realistic case where the trap states are
pinned relative to the CB-edge ��TsCs=const� whereas the dashed gray �red online� show trap energies fixed relative to the electronic ground
state E0 in the inversion potential ��TsE0=const�. Individual curves have different ns with logarithmic spacing away from nsc with ns

= �0.70,0.90,0.97,0.99,0.997,0.999,1.00,1.001,1.003,1.01,1.03,1.1,1.3�
nsc in top-down order. In �c� the ground-state energy of the
inversion layer �0Cs�T ,ns� is shown for same ns values as before but now bottom-up ordering. In �d� the depletion density ndepl�T ,ns� is
shown but the ns dependence vanishes more or less within the linewidth �it is different for low and high T as indicated by arrows and
vanishes near 11 K�.
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If now the slope of the energy ETs−eVinsZ /D is higher
due to the inclusion of ndepl, the variable max�ET�Z�−��
which is crucial for the resistivity is less sensitive on Vins and
ns, and therefore all together the transition is less abrupt as
compared to the assumption of AM with �TsE0=const and
neglection of the depletion layer charge, as can be seen in
Fig. 4�d� in the comparison of solid and dashed lines.

V. SPATIAL TRAP PROFILE

At higher temperatures, the large value of kBT leads also
to charged trap states in regions where the trap energy ET is
even below the chemical potential �i.e., the p+�Z�-peak
broadens� and therefore the resistivity increases to quite high
values �see curves at higher temperature in Fig. 4�, which are
not observed in experiments. But the very high density of
trap states should exist only within a narrow strained region
of the oxide,27 and the broadening of the peak beyond the
width of this region leads to an unrealistic description. We
can resolve this problem by introducing a spatially limited
trap density profile NT�Z�.

If now the trap density NT is a function of Z it has to be
inside the integral � j �compare Eq. �A8��,

� j � �
0

D

NT
+�Z�ZjdZ = �

0

D

NT�Z�p+�Z�ZjdZ . �11�

For simplicity we use here a rectangular spatial trap pro-
file from the OS interface to an arbitrary depth Zmax,

NT�Z� = 
 nT

Zmax
for 0 � Z � Zmax

0 for Z � Zmax,
� �12�

where nT is introduced as a 2D trap density. Figure 5�a�
shows ��T ,ns� for Zmax=4 nm, the CB edge ECs was used as
reference energy for the trap states with �TsCs
95.7 meV in
order to get a critical density of nsc=1011 cm−2. Where the
3D trap density NT does not vanish its value is assumed to be
2.98
1018 cm−3 as before �like for Fig. 4�b��, resulting in
nT=NT ·Zmax=1.19
1012 cm−3 of which again only a part is
charged.

As can be seen in Fig. 5�a�, the behavior for low tempera-
tures has hardly changed but for high temperatures ��T ,ns�
now saturates as a broadening of the p+�Z�-peak beyond Zmax
does not lead to a further increase in the number of charged
scattering centers. This is due to the limited availability of
trap states.

Figure 5�b� shows the averaged �effective� trap distance Z̄
�see Eq. �A6�� which enters into 
t and strongly influences �.

Except for the lowest density, Z̄ coincides for the 4 nm lim-
ited �full lines� and unlimited �dashed� trap profile at low T.
Only at high T, the curves deviate strongly, as in the unlim-
ited trap density also trap states deep inside the oxide get
thermally ionized with increasing kBT whereas this is not
possible for the limited trap profile. In addition the trap states
close to the oxide-semiconductor interface, which lie at low
effective energies due to the strong Coulomb interaction, be-
come also ionized at high T, which turns the effective dis-

tance Z̄ to lower values, especially for the latter case where
no additional charged traps exist further than Zmax. For high
T a value of 2 nm is approached finally, which is just the
center of the limited trap profile.

This saturation of ��T ,ns� at high temperatures due to the
spatially limited availability of trap states is in fairly good
agreement with experiments, where � is limited as well.

VI. BROADENING OF THE TRAP ENERGY

As the trap states in the distorted oxide layer will not all
be identical and in the stochastic position distribution they
will influence each other, their energetic position will be
broadened.

We describe the broadening �ET with the help of a nor-

malized distribution function g�ẼTs ,ETs ,�ET� for the trap en-
ergy ETs which characterizes the trap. Now ETs has the mean-
ing of a mean value. �Mean value should not be understood
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FIG. 5. �Color online� �a� Resistivity ��T ,ns� and �b� effective

trap distance Z̄ for rectangular spatial trap profile with Zmax

=4 nm �solid blue/dark lines� and unlimited trap depth �dashed
red/gray lines� with curves of constant ns. The critical density is
nsc=1011 cm−2 which means that �TsCs has to be 95.7 meV. Densi-
ties for individual lines are ns= �0.70,0.90,0.97,0.99,0.997,
0.999,1.00,1.001,1.003,1.01,1.03,1.1,1.3�
nsc with logarithmic
spacing of ns away from nsc in top-down order and trap density of

NT=nT /Zmax=2.98
1018 cm−3. In �b� the Z̄ values for high density
and low T are not shown, as the numerical integration procedure
could not find the very small and narrow occupation peak of p+�Z�.
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in a strict mathematical sense, e.g., for the Lorentz distribu-
tion the mean value does not exist but in this case it is ob-
vious to take the energy ETs where the symmetric distribution

has its maximum.� Furthermore ẼTs should be the value for a

particular trap. The probability of ẼTs to lie within the inter-
val �E ,E+dE� is given by g�E ,ETs ,�ET�dE. Therefore, we
replace the probability p+ of a trap to be charged �see Ap-
pendix A� by

P+�Z� = �
−�

� g�ẼTs,ETs,�ET�

1

2
exp�−

ẼTs − eVins
Z

D
− �D

D

Z
− �

kBT
� + 1

dẼTs.

�13�

The denominator is that of p+, only ETs is replaced by ẼTs.
By introducing the dimensionless parameters

� =
�ET

kBT
, �14�

� =

ETs − eVins
Z

D
− �D

D

Z
− �

kBT
�15�

and a dimensionless distribution function h��� defined by

� =
ẼTs − ETs

�ET
, �16�

g�ẼTs,ETs,�ET� =
1

�ET
h��� , �17�

the probability P+ can be written as

P+��,�� = �
−�

� h���
1

2
exp�− �� − �� + 1

d� . �18�

As a rule this integral cannot be calculated analytically. An
exception from this rule is the uniform distribution. If we
define the width of the “rectangle” as 2�ET, we get

h��� = 
1

2
for − 1 	 � 	 1

0 elsewhere
� �19�

and

P+��,�� =
1

2�
ln

1 + 2 exp�� + ��
1 + 2 exp�� − ��

. �20�

We also use the normal distribution

h��� =
1

�2�
exp�−

�2

2
� �21�

with the standard deviation as �ET and the Lorentz distribu-
tion �natural line broadening�

h��� =
1

�

1

�2 + 1
�22�

with the half full width at half maximum as �ET.
The numerical results are presented in Fig. 6 for the three

different distribution functions and for different width �ET
=0.03, 0.3 and 3 meV. Again we took the CB edge at the
interface ECs as reference energy for the trap states, assumed
that traps exist only in the oxide within 4 nm from the OS
interface �with constant trap density in this region as in Sec.
V�, and used Vins�ns+ndepl instead of Vins�ns. We chose
�TsCs
95.7 meV in order to get nsc=1011 cm−2 and for the
3D trap density NT=nT /Zmax=1018 cm−3.

With increasing �ET �in each column of Fig. 6 from top to
bottom� the transition becomes smeared out partly or com-
pletely, depending on the broadening width and on the dis-
tribution function. In the metallic regime, the mean trap en-
ergy is below the chemical potential. As the normal and the
Lorentz distribution have tails, there always remain some
charged traps from the upper tail when otherwise all traps
would be filled and thus be neutral. On a logarithmic resis-
tivity scale the ��T� behavior is changed drastically by the
small amount of additional charged traps and especially for
the Lorentz distribution the transition between the two resis-
tivity regions gradually vanishes. This is in agreement with
samples of different quality, possessing different distribution
width, where the transition is more or less pronounced.

In the insulating regime, the mean trap energy is above
the chemical potential. Here a large part of the traps is al-
ways charged and in contrast the few uncharged traps due to
the lower tail of the energy distribution do not change the
behavior substantially.

By means of further analytical considerations, we got also
an estimate for the temperature Tb below which the resistiv-
ity becomes almost constant. In general the resistivity � var-
ies by some orders of magnitude, so as a criterion for being
almost constant we took that region where � changes finally
by only a factor 2 down to zero temperature. The markers in
Fig. 6 represent these temperatures Tb.

According to this definition, for the insulating behavior
ns	nsc for all three distributions we get

Tb =
max ET�Z� − EF

�4 − ln 2�kB
�23�

and for the metallic behavior ns�nsc

Tb = 

�ET

2

�4 + ln 2�kB�EF − max ET�Z��
normal distribution

EF − max ET�Z�
2�4 + ln 2�kB

Lorentz distribution.�
�24�

The uniform distribution has no tails so in the metallic re-
gime there is no temperature range where � is almost con-
stant.

Figure 6 shows that the sharpness of the transition from
the strongly metallic to the insulating regime depends
strongly on the size and type of trap energy broadening. But
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a wide distribution of trap energies does not mean that the
disorder in the electronic system is larger. It just means that
the charging of the trap states, which leads to scattering, is
distributed over a wider gate voltage and temperature range.
When finally all traps states are charged, the scattering po-
tential at the electron position in the inversion layer is the
same as if the trap energies would not be distributed over
some energy range. The broadening should have no direct
influence on additional quantum corrections which lead to
Anderson localization at low temperatures.

VII. CONCLUSIONS

In this work, we have performed numerical calculations
within the dipole trap model for Si-MOS structures. Origi-
nally this model was proposed by Altshuler and Maslov with
several approximations, in order to get analytical solutions.
Due to our numerical treatment, we could eliminate several
approximations. We describe the potential inside the insula-
tor by its detailed spatial dependence instead of the parabolic
saddle-point approximation, we fix the trap state energy rela-
tive to the conduction-band edge instead to the electronic
ground state inside the 2D layer and we have taken into
account the detailed change in the chemical potential in the
two-dimensional electron layer with respect to the bulk ma-

terial, which seems to be more realistic than the two cases in
the original treatment.

According to our calculations, the metallic regime at high
electron densities ns where the resistivity is decreasing to-
ward lower temperature, is strongly developed. Also a criti-
cal density nsc can be identified with a characteristic tem-
perature dependence in between the two different regimes.
For electron densities ns	nsc, the resistivity curves saturate
toward low temperatures and approach a constant value. No
insulting behavior occurs in the sense that � increases
strongly toward low temperature for the taken temperature
dependence of the chemical potential. Such an increase could
be caused by a different temperature dependence of the
chemical potential � caused by additional influences.33 Also
the quantum corrections in the weak and strong localization
regime—which are neglected here—would increase the re-
sistance � at low electron densities and low temperatures.
The most important fact is that also in our treatment we get
clearly two distinctly different regimes.

In addition, we have generalized the dipole trap model by
dropping the assumptions that the trap states are homoge-
neously distributed inside the oxide layer and that the energy
distribution is �-like. A narrow spatial distribution of the trap
states near the oxide-semiconductor interface limits the num-
ber of charged states at high temperatures and thus gives an
upper limit for the increase in the resistivity � as well. This
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FIG. 6. Resistivity ��T ,ns� for different types of trap energy broadening functions and different width �ET. The first picture column
shows uniform distribution with energy width of �ET=0.03,0.3,3 meV top-down, the second column a normal distribution, and the third
a Lorentz distribution for same energy widths. For individual curves ns is constant. The critical density nsc=1011 cm−2 for �TsCs


95.7 meV is indicated by the dashed line in each figure. The lines above nsc show ns=0.10,0.30,0.70,0.90,0.97,0.99,0.997,0.999

nsc, the lines below represent ns=1.001,1.003,1.01,1.03,1.1,1.3,2.0,4.0,10
nsc top-down, for a 3D trap density of NT=nT /Zmax

=1018 cm−3.
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leads to a good agreement with experimental observations at
higher temperatures. The energetic broadening of the trap
states on the other hand leads to a finite amount of unoccu-
pied and thus charged states in cases where otherwise all
states would lie below the chemical potential � and the num-
ber of charged trap states would go to zero if kBT approaches
zero. Thus for high electron densities with metallic behavior
the resistivity will not infinitely decrease toward lower tem-
perature, but saturate at a finite value, in agreement with
experiments on Si-MOS structures. Depending on the size
and on the form of the energetic broadening, the transition
between the two regimes will be more or less smeared out,
explaining the difference between samples with different
quality.

As shown by Althuler and Maslov, the effect of a mag-
netic field could be taken into account by the Zeeman split-
ting of the trap states with spin �1 /2 which turns the metal-
lic behavior into an insulating one. We did not include
magnetic field effects in our calculations but an according
energetic shift of the trap states has to lead to very similar
effects in our refined model as well.

We also like to mention that for low electron densities
care has to be taken for the dipole scattering model. It is
assumed that the electrons in the two-dimensional layer
shield the potential of the charged trap states and thus form a
dipole field which is responsible for the scattering. At very
low electron densities, this screening becomes weaker and
the scattering will finally increase so that the resistivity
should be higher in this regime. These effects have not been
taken into account in the frame of the current work, as we
like to present the main effects due to charging of trap states.

Altogether, our detailed numerical calculations within the
dipole trap model show that a pronounced metallic state can
be caused by trap states at an appropriate energy level inside
the oxide of Si-MOS structures. At low electron densities, a
different regime is observed, for which the resistivity satu-
rates at low temperatures if the temperature slope of the
chemical potential is negative or strongly increases for a
positive slope. For the realistic assumptions of energetic
broadening and narrow spatial distribution near the oxide-
semiconductor interface, the behavior is in close agreement
with experimental observations.
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APPENDIX A: TRAP MODEL DETAILS

We give here some details of the AM trap model together
with our improvements of the calculations. In the absence of
an external magnetic field, the number of positively charged
trap states can be calculated with a modified Fermi-Dirac
occupation function by

p+�Z� =
1

1

2
exp�−

ET�Z� − �

kBT
� + 1

, �A1�

where the minus sign in the exponent comes from the fact
that we count empty �positively charged� states and the fac-
tor 1/2 from the two possible spin orientation if the trap is
empty. p+ is determined by ET�Z�−� �as indicated by the
vertical lines in Fig. 2� and the temperature.

AM assume that a positive charged trap is screened by the
electrons in the 2DEG and the trap forms together with that
image charge a dipole. For the transport scattering cross sec-
tion 
t of this dipole they found classically


t��,Z� = c
�−1/3Z2/3, �A2�

where c
=2.74�e2 /8����0�1/3 and Z is the distance between
the trap and the oxide semiconductor interface, � is the �ki-
netic� energy of the scattered electron relative to the ground-
state energy of the inversion layer E0,

� = E − E0, �A3�

and �� is an effective dielectric constant ��= ��ins+�sc� /2 with
�sc the dielectric constant of the semiconductor.

The Drude formula together with the Boltzmann equation
in relaxation-time approximation yields the resistivity d��Z�
caused by the charged traps within the layer �Z ,Z+dZ�. By
integrating these contributions over the whole oxide �0,D�
one is able to express � in terms of an effective electron
energy �̄ as used by AM �see Ref. 26�. Furthermore �FE0
=EF−E0 is the Fermi energy, �E0

=�−E0 is the chemical
potential, each relative to the ground state energy of the in-
version layer, and NT is the 3D density of traps.

The 3D density of charged traps NT
+�Z� it is given by

NT
+�Z� = NT�Z�p+�Z� . �A4�

The dipole cross section 
t can be expressed with the help
of an effective averaged energy,26

�̄ = �FE0��
0

� 1

4kBT
� �

�FE0
�5/6

cosh−2�� − �E0

2kBT
�d��−6

,

�A5�

and the effective distance Z̄ defined by

Z̄2/3 =

�
0

D

NT
+�Z�Z2/3dZ

�
0

D

NT
+�Z�dZ

=

�
0

D

NT
+�Z�Z2/3dZ

nT
+ �A6�

as


t��̄,Z̄� = c
�̄−1/3Z̄2/3. �A7�

Here nT
+ is the 2D density of charged traps.
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The integral in the numerator and that in the denominator

of Z̄2/3 can be treated in quite the same way, so we define

� j � �
0

D

NT
+�Z�ZjdZ = NT�

0

D ZjdZ

1

2
exp�−

ET�Z� − �

kBT
� + 1

.

�A8�

In the last step, we followed AM and assumed that the trap
density is constant within the oxide, respectively, in the re-
gion where p+�Z� does not vanish. Now we can write

nT
+ = �0, �A9�


t��̄,Z̄� = c
�̄−1/3Z̄2/3 = c
�̄−1/3�2/3

�0
. �A10�

In order to calculate the resistivity

� = mc
t��̄,Z̄�nT
+v��̄�/nse

2 �A11�

�as in Eq. �8�� the knowledge of nT
+ is not necessary, as nT

+

cancels out with the denominator of Z̄2/3 within 
t��̄ , Z̄� and

indeed without defining the integrals � j explicitly, AM used
an equation corresponding to

� =
�2mcc
�̄1/6�2/3

nse
2 , �A12�

where mc is the conductivity mass of the free electrons
within the inversion layer.

Our main interest holds for the dependence of the metal-
insulator transition on the electron density ns, i.e., the tem-
perature behavior of � as a function of ns. In this context nT

+

is very useful in order to see that it contributes the main

variations to the resistivity ��ns ,T� whereas 
t��̄ , Z̄� and v��̄�
show only weak dependence on ns and T, as illustrated in
Fig. 7. The benefit of Eq. �A11� in comparison to the form of
Eq. �A12� used by AM is, that the physical meaning of the
terms becomes immediately clear.

It might appear strange that on the one hand side nT
+ pro-

vides the main contribution to �, on the other hand it cancels
out in another representation of �. This is resolved as the

power of the effective mean distance Z̄2/3 is expressed by the
ratio �2/3 /�0 and is a factor inside 
t showing only small
variation with ns. But nT

+=�0 can be canceled in the product
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FIG. 7. �a� Temperature dependence of the resistivity ��
t��̄ , Z̄�nT
+v��̄� and the corresponding contributions of �b� 2D density of charged

traps nT
+, �c� effective scattering cross section 
t��̄ , Z̄�, and �d� effective electron velocity v��̄� for electron densities with logarithmic spacing

of ns away from nsc with ns= �0.70,0.90,0.97,0.99,0.997,0.999,1.00,1.001,1.003,1.01,1.03,1.1,1.3�
nsc in top-down order for curves
�a�, �b�, and �c� and bottom-up for �d�. All subfigures plotted over same number of magnitudes to illustrate relative importance in contribution
to �.
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t ·nT
+=�2/3 /�0 ·�0=�2/3 and what remains is just �2/3. So

the calculation of nT
+ is then not necessary but the strong ns

dependence remains within the term �2/3, whose meaning
does not correspond to the usual contributions to and inter-
pretations of ��ns ,T�.

In order to get an analytical solution for the integrals
which corresponds to �2/3, AM expanded the electrostatic
energy �T�Z� into a Taylor series about the point Zm where it
reaches its maximum �m. This procedure is called saddle-
point approximation.

We were able to bring the integrals into the form34

� j = NTZm
j+3/2� kBT

�DD
� ��

��1
2�

F−1/2�ln 2 +
�TsE0 + �m − �E0

kBT
� ,

�A13�

which are now expressed by Fermi-Dirac integrals35

Fk��� =
1

��k + 1��0

� ZkdZ
exp�Z − �� + 1

, �A14�

where � is the gamma function.
On the right-hand side of Eq. �A13�, j appears only in the

exponent of Zm so within the saddle-point approximation Eq.
�A6� simplifies to

Z̄2/3 =
�2/3

�0

 Zm

2/3. �A15�

APPENDIX B: CHEMICAL POTENTIAL

AM described two scenarios for the temperature behavior
of the chemical potential: �A� the chemical potential of the
2DEG and of the Si substrate coincide. �B� The 2DEG is
disconnected form the substrate. For the case �A� they as-
sumed that the temperature behavior in the 2DEG is the
same as in the bulk. However, they did not take into account
that the chemical potential in the 2DEG is measured against
the ground-state energy E0 and in the bulk against the
conduction- or valence-band edge, i.e., they assumed E0 and
the band bending to be fixed.

For �B� AM used an equation analogous to

�E0
= kBT ln�exp��FE0

kBT
� − 1� . �B1�

If only one subband of the inversion layer is occupied �quan-
tum limit�, the Fermi energy relative to its ground-state en-
ergy is given by28

�FE0 =
2��2ns

gsgv2Dmd2D
, �B2�

where gs, gv2D, and md2D are the spin degeneracy, the valley
degeneracy �for the 2DEG�, and the density-of-states mass
�2D�, respectively. The two equations above can be derived
from

ns =
gsgv2Dmd2D

2��2

2D density of states

�
E0

� 1

exp�E − �

kBT
� + 1

Fermi-Dirac distribution

dE .

�B3�

Our assumptions are shown schematically in Fig. 8 �semi-
conductor side of the OS interface� and are as follows. In
thermal equilibrium, there is a single chemical potential �
throughout the structure. For a certain temperature T, � is
determined in the bulk by the �residual� doping density �giv-
ing �Cb=�−ECb, details are shown elsewhere�.34 In the in-
version layer the position of � relative to E0 �i.e., ��0Cs

�
follows directly from the 2D density ns.

The band bending ECb−ECs adjusts so that

ECb − ECs = �0Cs + �E0
− �Cb. �B4�

If the band bending increases, the quantum well gets nar-
rower and the ground state energy E0 increases relative to the
CB edge. Thus �0Cs=E0−ECs itself is a function of the band
bending, and is determined here by a self-consistent calcula-
tion �fix point iteration�.

At low temperatures, the 2D electron system could indeed
be decoupled from the bulk substrate without a common
chemical potential for thermal equilibrium. For the case that
ns is then determined only by the applied gate voltage, which
reflects case �B� of AM. But in nonthermal equilibrium,
charges might also be stored in other parts of the system and
a detailed description is difficult. We do not consider such a
situation further but if ns is determined solely by the gate
voltage, the behavior should be very similar to the outcome
of our calculations as the coupling with the depletion layer
and the substrate causes just relative small changes in ns.

For our calculations we assumed a �001	 silicon surface
plane. The parameters, which were used throughout this
work are given in Appendix E. The detailed behavior of the
chemical potential ��T ,ns� is displayed in Figs. 9�a� and 9�b�
and is important for the understanding of the behavior of

FIG. 8. Band bending and notation on semiconductor side of the
OS interface for thermal equilibrium between 2D layer and bulk.
The electronic ground-state energy of the inversion layer E0, the CB
edge EC, its values at the interface ECs and in the bulk ECb, the
valence-band edge EV, and the chemical potential � are shown
schematically, also the ground-state energy relative to the CB edge
�0Cs, the chemical potential relative to CB edge in the bulk �Cb and
relative to the ground-state energy �E0

are noted.
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��T ,ns�. For constant ns � decreases with increasing T, and
obviously increases with increasing ns for constant T.

APPENDIX C: APPROXIMATION FOR LOW
TEMPERATURES

For given values T and ns, we calculate here the resistivity
� with help of the Eqs. �A12� and �A13�. Beside the explicit
temperature dependence also the chemical potential �E0

and
the effective electron energy �̄ are functions of T.

The integral in Eq. �A5� can be replaced by a Fermi-Dirac
integral in that the cosh term is replaced by the first deriva-
tive of the Fermi distribution and then an integration by parts
is performed. This results in

�̄ = �FE0��FE0

kBT
�5���11

6
�F−1/6��E0

kBT
��−6

. �C1�

For low temperatures, we can take advantage of the be-
havior of �E0

�T� and �̄�T� for T→0. It can easily be shown
that for constant ns and therefore constant �FE0 all derivatives
vanish at this point. So �E0

�T� and �̄�T� are very flat func-
tions at T→0, for kBT��FE0 they can be approximated by
�E0

�T�
�FE0 and �̄�T�
�FE0. Further the Fermi-Dirac inte-
gral F j��� can be approximated35 either by an expression
with � j+1 or by exp � for ��0 or ��0, respectively.

For T→0 the argument of the Fermi-Dirac integral in Eq.
�A13� increases beyond any border. Which approximation
for the Fermi-Dirac integral is applicable depends on the sign
of �TsE0+�m−�FE0. �Here �E0

is replaced by �FE0 as by defi-
nition �E0

→�FE0 for T→0.� This is conform with AMs defi-
nition of the transition point, ��TsE0+�m−�FE0� /kBT=0. Ac-
cordingly we define

�mF = �TsE0 + �m − �FE0,

�mF � 0 → insulating,

�mF 	 0 → metallic,

�mF = 0 → transition point

and a critical density

nsc = ns��mF=0. �C2�

Applying the appropriate approximations results in

� j ��
2NTZm

j+3/2�kBT ln 2

�DD
+

�mF

�DD
for �mF � 0

2NTZm
j+3/2�kBT�

�DD
exp��mF

kBT
� for �mF � 0

F−1/2�ln 2�
�0.891

NTZm
j+3/2�kBT�

�DD
for �mF = 0.

�
�C3�

Please note an interesting behavior. When setting �mF=0 in
the first two equations for T�0 they converge neither into
each other nor into the third one. This apparent discrepancy
can be understood, as ��mF� gets smaller and smaller the
maximum temperature where the approximations for the
Fermi-Dirac integral are just applicable also gets smaller and
smaller and finally vanishes for �mF=0. Indeed for �mF=0
and T→0 the three cases yield the same result, i.e., � j =0.

APPENDIX D: GROUND-STATE ENERGY OF THE
INVERSION LAYER

The ground-state energy of the inversion layer is calcu-
lated with help of the Ritz variational principle. For conve-
nience we introduce a new coordinate system z=−Z, i.e., the
z axis is perpendicular to the OS interface, positive z values
correspond with the semiconductor side. For the electrons in
the inversion layer, the bent CB of the semiconductor to-
gether with the step at the interface builds the quantum well.
Figure 10 shows the ground-state energy �0Cs versus the
electron density ns, where �0Cs decreases with decreasing ns.

0 50 100 150 200 250 300
−100

−80

−60

−40

−20

0

20

n
s

T (K)

µ E
0

(m
eV

)

0 5 10 15 20
−100

−80

−60

−40

−20

0

20

T

0 K

300 K

n
s

(1011cm−2)

µ E
0

(m
eV

)

FIG. 9. Chemical potential � relative to the ground-state energy
E0. �a� Curves with constant ns, bottom up: ns=1,2 ,5 ,10,20

1011 cm−2. �b� Curves for constant T, top down: T
=0,50,100,150,200,250,300 K.
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FIG. 10. Ground-state energy of the inversion layer �0Cs versus
the density of electrons in the inversion layer ns for three tempera-
tures, top-down: T=0,200,300 K.

DIPOLE TRAP MODEL FOR THE METAL-INSULATOR… PHYSICAL REVIEW B 82, 205310 �2010�

205310-13



The details of the calculation are given in the following.
We use the Fang-Howard envelope wave function accord-

ing to AFS,31

��z,b� = 
�b3

2
z exp�−

bz

2
� for z � 0

0 for z 	 0
� �D1�

with a confining potential U�z� approximated by contribu-
tions from the charged acceptors within the depletion layer,
the interaction with all other electrons in the inversion layer,
and the interaction with the image charges. For more details,
see AFS �Ref. 28� and Ref. 34. The resulting ground-state
energy is measured against the CB edge at the interface ECs
as requested. With the Ritz variational method, an expression
for b can be obtained. AFS neglect terms proportional to
exp�−bzd�, �, and ��b�b−3. We find a solution, where we
neglected only ��b�b−3, which leads to a slightly improved
value for the ground-state energy.34

The density ndepl is also needed and can be calculated
from the total band bending e�0=ECb−ECs �b=bulk, s
=surface�. To obtain a solution one has to assume that in the
depletion layer all acceptors are charged and that in the bulk
there is charge neutrality. The boundary between the deple-
tion layer and the bulk is not sharp, this is described by a
term −kBT in the band bending.36 In order to get the potential
one has to solve the Poisson equation with the charge density
which corresponds with the test wave function � �for details
see Ref. 34�. The values used for the calculation are given in
Appendix E.

The ground-state energy �0Cs itself is a �small� part of the
total band bending, this problem is solved by a fix point
iteration using �0Cs=0 as start value.

APPENDIX E: PARAMETERS FOR Si-MOS STRUCTURE

The parameters given in Table I were used for the numeri-
cal calculations of the Si-MOS structure at a �001	 silicon
surface plane throughout the paper.
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