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Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields
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We analyze transport through both a double quantum dot and a triple quantum dot with inhomogeneous
Zeeman splittings in the presence of crossed dc and ac magnetic fields. We find that strongly spin-polarized
current can be achieved by tuning the relative energies of the Zeeman-split levels of the dots, by means of
electric gate voltages: depending on the energy-level detuning, the double quantum dot works either as spin-up
or spin-down filter. We show that a triple quantum dot in series under crossed dc and ac magnetic fields can act

not only as spin filter but also as spin inverter.
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I. INTRODUCTION

A key aim in spintronics is the realization of spin-based
quantum information devices, where coherent electron-spin
manipulation is a fundamental issue.> In semiconductor
quantum dots, coherent electron-spin manipulation can be
realized by electron-spin resonance (ESR), where an oscillat-
ing magnetic field is applied to the sample in order to rotate
the electron spin.>® Together with ESR, electron-dipole
spin-resonance techniques—which combine ac electric fields
with spin-orbit interaction’ or with a dc magnetic field
gradient'—have been implemented in order to measure co-
herent rotations of one single-electron spin®° in double quan-
tum dots (DQDs). Coherent spin rotations of one single spin
have also been proposed theoretically in triple quantum dots
(TQDs)" under crossed ac and dc magnetic fields.

In ESR experiments in quantum dot arrays, an important
issue is to individually address the electron spin in each
quantum dot. To this end, it has been proposed to tune the
Zeeman splitting, in order to manipulate the electron spin
independently in each dot.'> The Zeeman splitting in a quan-
tum dot is determined by the intensity of the applied dc
magnetic field and the electron g factor, A,=gupBgy.. Hence
different Zeeman splittings can occur in quantum dot arrays
where the dots have different g factors or as well by applying
different magnetic fields to each quantum dot. Both alterna-
tives have been realized experimentally very recently: verti-
cal DQDs made out of different materials—e.g., GaAs and
InGaAs—show different g factors'? and on the other hand, in
a sample with a spatially homogeneous g factor, an addi-
tional microferromagnet placed nearby creates a different ex-
ternal magnetic field By, in each dot.'”

The next logic step from DQDs to networks of quantum
dots is a TQD, in linear or triangular arrangement. Both ver-
sions have been realized experimentally in the last few
years,'#~16 where tunneling spectroscopy and stability dia-
gram measurements have been performed in order to gain a
deeper insight into the electronic configurations in TQDs,
which is necessary for potential three-spin qubit applications.
On the theoretical side, next to fundamental studies of their
eigenenergy spectrum,'” TQDs have attracted interest mostly
in a triangular arrangement, where the system symmetry
gives rise to fundamental coherence phenomena. In this con-
text, so-called “dark states”!%!° and Aharonov-Bohm
oscillations®? have been studied. TQDs have been used as a
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testing ground for Kondo physics?! and have been proposed
as current rectifiers’>?? and spin entanglers.’*

In the present work, we are interested in single-electron
manipulation and therefore study theoretically transport
through both double and triple quantum dots. We calculate
the current and current spin polarization through a DQD and
a linear TQD array exposed to crossed dc and ac magnetic
fields. We consider an inhomogeneous dc magnetic field that
produces different Zeeman splittings in the dots while the g
factor is the same in both dots. For DQDs, a regime is con-
sidered where the system is occupied either by zero or one
electron. For TQDs, the corresponding features are discussed
for one or two electrons in the system. With the single-
electron-spin levels resolved in each quantum dot, interdot
tunneling is governed by definite spin-selection rules, i.e.,
tunneling from one dot to the other is only possible when
two equal spin levels are aligned. However, when an ac mag-
netic field is applied, it rotates the spin and allows for spin-
flip processes along the tunneling that can lead to new fea-
tures in the current. This effect of an ac magnetic field has
been explored previously in a DQD,? where the authors re-
port single-electron-spin rotations by a combination of an ac
magnetic field and sharp electric pulses.

In our work, as will be discussed in more detail below, we
will focus our attention on the polarizing effect of an ac field,
i.e., we will show that the combination of inhomogeneous dc
and ac magnetic fields in DQDs and TQDs allows for the
creation of spin-polarized currents and thus for the design of
spin filters and spin inverters.

The paper is organized as follows: in Sec. II we introduce
the model and the technique used to calculate transport
through a DQD and TQD. Section III discusses in detail the
results of this paper. In Sec. III A we first briefly review the
main result of a related experimental work that has recently
been reported in the literature and is important for further
understanding. We then proceed in the following paragraphs
(Secs. III B-III D) with a detailed analysis of the main re-
sults of this paper, namely, the spin-polarized currents pro-
duced by a combination of dc and ac magnetic fields at cer-
tain interdot level detunings. The role of the system
parameters involved in the polarization mechanism—
Zeeman splitting difference, ac field amplitude and fre-
quency and interdot tunneling amplitude—is discussed. In
Sec. III E we present the corresponding results obtained for a
TQD. We end with a summary of the main results in Sec. IV.
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FIG. 1. (Color online) Schematic of a DQD (above) and TQD
(below) exposed to crossed dc (By.) and ac (B,.) magnetic fields.
The electron spin is rotated once the ac frequency matches the
Zeeman splitting in one of the dots. In the TQD, one electron is
confined in the left dot (dot 1), such that only an electron with
opposite spin can enter the TQD. The dots are coupled coherently
by tunneling amplitudes #; and incoherently to leads by rates I'y,
and I'g.

II. MODEL AND TECHNIQUE

We consider a quantum dot array as shown schematically
in Fig. 1. The dots are coupled to each other coherently by a
tunneling amplitude 7; and are weakly connected to source
and drain contacts by rates I'; and I'g. The total Hamiltonian
of the system is

H= H%ots+H2j+ H%(I) +HT+HLeads’ (1)

where the individual terms are

1
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The first term, H} ., describes an isolated array of quantum
dots with electrons coupled electrostatically. Here, &, stands
for the single energy spectrum of an electron located in dot i
and U; and V are the intradot and the interdot Coulomb re-
pulsion, respectively. Hg_ describes the coherent tunneling
between the dots, which in the case of a DQD is given by 7,
and in a TQD by ¢, and t,;. The quantum dot array is
coupled to leads which are described by H; .4 and the cou-
pling of the array to the leads is given by . The magnetic
field Hamiltonian consists of two parts, coming from a dc
field By, in z direction, and an ac field B,. applied in xy
direction
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HY(1) = 2 {AS.;+ B, Jcos(wn)S,; +sin(wn)S, ]}, (3)

Lo

and the sum running over index i=1,2 for the DQD and i
=1,2,3 for the TQD. B, has a different intensity in each dot
and thus produces different Zeeman splittings A,»:g,u,Bdci
while we consider the dots with equal g factor. B,, induces
spin rotations when its frequency fulfills the resonance con-
dition w=A,. The time-dependent Hamiltonian can be trans-
formed by means of a unitary transformation>® U(r)=exp
(—ilwtZ;S.;]) into the rotating reference frame. The resulting
time-independent Hamiltonian is then

HO = E [(Az - hw)Szi + Bachi]- (4)

being S,-:%EwréT Oyq1Cigr the spin operator of the ith dot

The dynamics of the system is given by the time evolution of
the reduced density matrix elements p,,,, whose equations of
motion read, within the Born-Markov approximation

Prn(1) = = | [ M + H;) + Hi plln)

+ E (Fnkpkk - rknpnn) 5mn - Amnpmn(1 - 5mn) .
k#n

(5)

The commutator accounts for the coherent dynamics in the
quantum dot array, tunneling to and from the leads is gov-
erned by transition rates I,,, from state |n) to state |m), and
decoherence due to interaction with the reservoir is consid-
ered in the term A,,,= %Ek(Fk,n+Fkn). The transition rates are
calculated using Fermi’s golden rule

an = E Fl{f(Em - En - :u“l) 5Nm,Nn+1
I=L,R

+[1 _f(En_Em_/*l’l)](st,Nn—l}s (6)

where E,,—E,, is the energy difference between states |m) and
[n) of the isolated quantum dot array and T’ g
=27Dy |y x|* are the tunneling rates for each lead. The
density of states Dy g and the tunneling couplings y; g are
assumed to be energy independent. We set I'y =I'g=T".

We consider strong Coulomb repulsion, such that the
DQD can be occupied with at most one extra electron. It is
then described by a basis of five states, namely: |0,0), |1,0),
[1,0),]0,1), and |0, | ). With a bias applied from left to right,
current / flows whenever dot 2 is occupied

Ingp =T (pjo.1y + Ppo,1))- (7)

In the TQD, one electron is confined in the left dot (dot 1,
see Fig. 1, lower panel), and the chemical potential of the left
lead is such that only an electron with the opposite spin can
enter the TQD. Considering here as well strong Coulomb
repulsion, we allow only for one additional electron to
enter the TQD. The full two-electron basis for the TQD
contains 15 two-electron states and one zero- and six
one-electron states. For the scope of this paper, it is sufficient
to look at transport around the triple point
(2,0,0)«(1,1,0)«(1,0,1). The number of relevant basis
states is then reduced to 11, which are (a) one-electron states:
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1,0,0), |1,0,0), (b) two-electron states: |T,71,0), |T,],0),
l’T’())’ l7l70> T’O’T>’ T’O7l>7 J/’O’T>’ l’O"L>’ and
111,0,0).

The current from left to right through the TQD is calcu-
lated summing over all states that include an electron in the
right dot (dot 3)

Irop =T(pp.om+ o+ PlLon + PlLo.)- (®)
The spin-resolved currents hence are

I =T(pyy 0.1+ PpLom)s

I, =T(pp0.)+ PlLo.)- ©)
The spin polarization of the current is defined as
I, -1
=, (10)
Ii+1)

where I,(1)) is the T(]) current.
III. RESULTS

A. Undriven case: B,.=0

Let us now start to describe transport through a DQD (see
Fig. 1, upper panel). In this section we will reproduce within
our theoretical framework the results recently reported by
Huang et al.'> The authors have shown that in transport
through DQDs with different Zeeman splittings a so-called
spin bottleneck situation can occur. When either T or | levels
are aligned, transport is suppressed, whereas the current is
largest in the configuration where the interdot level detuning
€ is set to half the Zeeman energy difference.

Applying a dc magnetic field in z direction produces a
Zeeman splitting A_, which we consider inhomogeneous:
A, # A, and 6=A,—A,. If an electron tunnels onto the T(])
level in dot 1 that is far from resonance from the correspond-
ing spin level in dot 2, a spin-blockade or bottleneck situa-
tion arises. Spin is conserved at tunneling, so the electron
remains in dot 1 without being able to tunnel to dot 2. This
blockade is only relieved by a finite-level broadening and
coupling to the leads. The maximal current occurs then for
the most symmetric level arrangement, that is when neither
T nor | levels are in resonance, but when they are symmetri-
cally placed around each other (see Fig. 2). Increasing the
Zeeman splitting difference 6 maintains the bottleneck situ-
ation, but the central current decreases, since it is a conse-
quence of the level hybridization of the same spin levels due
to tunneling. Hence, the further separated they are, the less
current flows. Notice that the current only depends on the
Zeeman splitting difference 6 and not on the absolute values.

Interdot tunneling conserves spin and the current through
the sample is completely unpolarized. In ac magnetic fields,
however, the electron spin undergoes rotations and the spin-
selection rules thus do not apply any more. For certain de-
tunings, this will lead to spin-polarized currents, as we will
see in the next section.

B. Resonance condition: w=A;

With a circularly polarized ac magnetic field B,. applied
to the DQD, the transformed Hamiltonian H° reads

PHYSICAL REVIEW B 82, 205304 (2010)

0.5 T T T T T

Ir

FIG. 2. (Color online) Current I versus detuning € in an un-
driven DQD with different Zeeman splittings. Here maximal current
flows, when €=0, and this central current decreases for increasing
o, since then parallel spin levels are more separate. Parameters in
meV (e=h=1): 1,=0.005, I'=0.001, A;=0.025 (Bg.=1 T), and
the current / is normalized in units of the hopping I' to the leads.
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(11)

where € is the detuning between dot 1 and dot 2.

For the ease of its analysis, Hamiltonian (11) can be seen
as a pair of two-level systems coupled by #,. In a two-level
system, the important physical quantities are the energy dif-
ference (“detuning”) of the two levels and the coupling be-
tween them. In the present case, note that #;, couples only
levels with the same spin, which are detuned by *48/2+¢,
where 6=A,—A,. Moreover, within each dot the different
spin levels are coupled by B,./2 and “detuned” by w—A,,
[see diagonal elements in Eq. (11)]. Therefore, depending on
the ac frequency w, the energy levels in either left or right
dot are renormalized to the same energy. In the other dot,
however, since there w=A,, the renormalized splitting be-
tween the spin levels becomes smaller when w<<A; or bigger
for @>A;. We will focus first on the resonance condition
w=A, as it is the most relevant here.

In order to understand the effect of B,. on the system, let
us look at the eigenstates of the isolated dots 1 and 2. In dot
1, since w=A,, the eigenstates are |¢;)*==(|7)=|[,)) and
their eigenenergies differ by B,.. In dot 2, however, since it is
out of resonance, the eigenstates depend both on 6 and B,

1 ( S+ \BL+ &

|¢2>i=]F B |T2>+|l2>>- (12)

ac

Here N*=1\2/B, (VB2 +& = 8\B%+&) are the normaliza-
tion factors. The eigenenergies associated to these states are
separated by v’B§C+ &. It is straightforward to show that for
B,.< 6, the eigenstates in dot 2 are almost pure () states,
i.e., the spin mixing is weak. Regarding the detuning €, we
distinguish three different level arrangements, see Fig. 3, up-
per panel. In case I, the T and | levels in dot 1 are aligned
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FIG. 3. (Color online) Upper panel: energy-level distribution for
different detunings €=~ * §/2 in a DQD driven by B,.. When o
=A,, the levels in dot 1 renormalize to the same energy (their
eigenenergies are split by B,., see text), and the levels in dot 2 get
closer or farther apart than in the undriven case. Middle panel:
spin-resolved currents /; and /| vs detuning e. At e~ * /2, the
current is strongly (| ) polarized, compared to the undriven current
Iy. Lower panel: polarization P versus the detuning e. Note the
strong polarization (P= * 1) around e~ * §/2. Parameters in meV
(e=h=1): I'=0.001, #,,=0.005, B,,=0.005 (=0.2 T), A;=0.025
(B,;=1 T), and A,=0.1.

with the T level in dot 2, case II is the symmetric situation,
and in case III the levels in dot 1 are in resonance with the |
level in dot 2.

In Fig. 3, lower panels, we plot the current / through the
driven DQD and the polarization P as a function of the level
detuning e. It shows two peaks at e= = §/2. At these lateral
peaks, corresponding to cases I and III, the current is
strongly spin polarized: an electron in dot 1 is rotated by the
ac field which breaks the spin bottleneck and the electron can
thus tunnel to dot 2, where the spin levels are almost pure,
or—speaking in terms of the rotating field—the ac frequency
in dot 2 is far off resonance and cannot rotate the electron
there. We thus arrive at one of the main result of this paper:
under the condition w=A,, dot 2 acts as a spin filter, and it
depends on €, whether it filters T or | electrons. Notice that
the current / only depends on & and not on the absolute
values A ;.

For the purpose of a spin filter, one has to answer the
question as to how reliable the mechanism is, and how it
depends on the different system parameters. Both strong po-
larization and measurable currents are desirable. Here, we
discuss the sensibility of the spin-filtering mechanism toward
the interplay between tunneling ?,, ac field intensity B,., and
Zeeman splitting difference 6.

In order to get more insight into the problem, we obtain
the current / analytically for certain limits. At symmetric
detuning €=0 (case II), the current is unpolarized and reads

Iy 415, (4BX + T2 + &)
I 4B+ 106,) + (T + &) T2+ 106, + &)

(13)

I, decreases for large 6 and increases with growing B,.. In
the limit of very large #,, the total current / saturates to
I/T'(t},—°)=2/5. For the limiting cases of B,, we get
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FIG. 4. (Color online) Polarization P versus 75, B,., and & in
ac-driven DQD at detuning e= * §/2 for w=A,. Left and middle
panels: for both small ¢, and B,, spin-polarized current flows. |P|
becomes smaller as B,. and #;, grow. Right panel: P is zero at &

=0 and increases with 6. Parameters see Fig. 3.

I 28
lim Lk = 12 , 14
B0 I T2+ 106, +4€+ 8 (14)

I 21
lim L= — "2 15
B I T2+ 1063, + 46 (15)

For B,.—0, i.e., in the undriven case, the current is un-
polarized and maximal at e=0 and decreases for growing &,
see Eq. (14). Notice that in the opposite limit, i.e., for large
B, [Eq. (15)], the current is the same as in the undriven case
for 6=0. In this case, the difference of the eigenenergies in
each isolated dot becomes B, in both dots and the spins are
mixed almost equally strongly. The polarized side peaks
therefore disappear in favor of the unpolarized central cur-
rent peak, see also Eq. (13).

Numerical analysis for intermediate field and tunneling
amplitude yields that when ¢;, and B,. become of the order
of 4, the current is practically unpolarized. We find that at
B, /t;;=1.5, the polarization is strongest, when /1, is at
least one order of magnitude bigger than B,./f,. It can be
shown numerically that for #,,,B,.<< § the position € of the
side peaks is e~ = §/2. The larger &, the further separated
the peaks corresponding to /; and /|. As a consequence, also
the polarization is stronger for large &, since the overlap of
the spin-resolved currents tends to zero.

In order to illustrate the effect of tunneling #,, ac field
intensity B,., and Zeeman splitting difference & on the polar-
ization P, we calculate P at e= * §/2 (Fig. 4). In the left and
middle panels, one can appreciate that for both small #;, and
B,., P= %1, and it becomes smaller as t;, and B, increase
(for constant 8). The right panel in Fig. 4 shows the polar-
ization for increasing J: the larger &, the stronger P.

C. Resonance condition: w=A4A,

When the ac field instead fulfills the resonance condition
w=A,, the energy renormalization due to  is reversed in the
two dots as compared to w=A;, and now the energy levels in
dot 2 become degenerate. The analytical limits described for
w=A, hold here as well. For large t,, and B, the current
becomes unpolarized, and at €=0, it follows Eq. (13). How-
ever, out of these limits, transport behavior here is very dif-
ferent from the case w=A,. At detunings e~ * §/2, spin
bottleneck occurs similar as was shown in the undriven case.
Since dot 1 is out of resonance, the ac field cannot rotate the
electron there, hence tunneling to dot 2 is strongly sup-
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FIG. 5. (Color online) Density plots of the current / versus
detuning € and Zeeman splitting difference . Left side: w=A,: for
growing & and €, the current I splits off in two branches (light-
colored regions), which are spin polarized in opposite direction (cf.
previous section). Right side: w=A,: current flows only around &
=e=0 (light-colored region); P=0. Parameters see Fig. 3.

pressed. The maximal (unpolarized) current then flows for
€=0 and no side peaks appear.

In summary, at w=A;, dot 2 can always act as a spin
filter. The mixing of | and | states due to the ac field is
always stronger in dot 1 than in dot 2, no matter if A} =A,.
The ac field mixes T and | states in dot 1 such that at €
~ * §/2, the electron tunnels onto the almost pure T or |
levels in dot 2, which thus filters the spin and gives rise to
spin-polarized currents. This is opposed to the case w=A,.
Here, due to spin bottleneck, tunneling to dot 2 is only pos-
sible around €=0, where the current is totally unpolarized.
This behavior is shown in Fig. 5 in two density plots of the
current / versus detuning € and §=A,—A, for the two cases
w=A; (left) and w=A, (right). In the left plot, one can
clearly see the formation of the two spin-polarized current
branches, which move far apart as ¢ and € grow. In contrast
to that, the right plot shows that current only flows for both
€=0 and 6=0, and no spin-polarized side peaks arise.

D. Nonresonant driving

If the ac frequency does not match any of the Zeeman
splittings A, ,, the effective finite Zeeman splittings are
Al,=Aj,—o. It is easy to prove that for w=(A;+A,)/2
=w,, there is a “symmetric” situation, namely, Aj=(A,
-A,)/2, and A5=-A7. In this case, the mixing of the spin
states within each dot is equal in both dots, or in other words,
both dots are equally far from resonance with the ac field.
Regarding interdot tunneling, the levels are resonant at =0,
giving rise to one unpolarized current peak. At all other de-
tunings €, spin bottleneck avoids the formation of polarized
side peaks. In Fig. 6 we show the total current I (upper left)
and spin-resolved currents /; (upper middle), I, (upper right)
vs detuning € and frequency w, for A;<A,. In order to ap-
preciate the different current intensities, we plot in the lower
panel the total current versus the detuning € for the three
relevant frequencies w=A,,A,, w,. Note the regimes for w,
as discussed in the previous sections. For w=A,, spin bottle-
neck only allows for a very weak and unpolarized current to
flow around €=0. When the frequency matches the symmet-
ric value w,, at e=0 one sharp and unpolarized current peak
arises, as predicted. Further decreasing of the frequency
splits the current into two branches, which are enhanced and
broadened as w=A;. The sidearms correspond to either |
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FIG. 6. (Color online) Upper panel: density plots of the total
current (left) and spin-resolved currents /; (middle) and /| (right) vs
detuning € and ac frequency w for A;<A,. The lighter the color,
the higher the current. Note that only very low current flows in the
frequency range > w, around €=0. At w=w, and €=0, one sharp
unpolarized peak arises. Lowering w further, the current splits into
two arms and successively grows, until around w=A, current is
strongly enhanced and polarized, since the sidearms stem from ei-
ther T or | electron, see middle and right upper panels. Lower
panel: current versus € for the three different situations w=A;, w
=A,, and w=w,. One can appreciate the big difference in the cur-
rent intensities: only for w=A;, polarized sidepeaks arise. For
=A,, current flows weakly around €=0 and for w,, only at e=0 a
sharp current peak appears. Parameters see Fig. 3.

(middle panel) or | (right panel) electrons. For any off-
resonant frequency, the current depends not only on ¢ as in
the resonant case but also on the absolute values A ,. Hence
the position of the side peaks is not e~ = 6/2, but follows a
different behavior. This explains the kink in Fig. 6 (upper
panel) around w=A,.

We want to stress that, in the ac-driven DQD, spin-
polarized currents can be achieved both for A;>A, or A,
<A,, since by varying the frequency w one can always tune
one Zeeman splitting to be smaller than the other, as sche-
matically indicated by the renormalization of the energy lev-
els due to w (see Fig. 3, upper panel). In contrast to that, a
static magnetic field setup—for example, considering dc
magnetic fields in x direction”—would only produce polar-
ized currents for A} <A,.

E. A triple quantum dot as spin inverter

Now we want to implement the spintronic functionality of
the spin-filter device toward a spin inverter and to this end
we consider a TQD. Our goal is to produce spin-polarized
incoming current /;;, and oppositely spin-polarized outgoing
current /.

We consider the TQD in a regime where only two elec-
trons can be in the TQD at a time and one electron is con-
fined electrostatically in the left dot (dot 1, cf. Fig. 1, lower
panel). This confinement is necessary to introduce spin cor-
relations in the dot, such that only an electron with opposite
spin can enter the TQD. The incoming current is then either
T or | polarized, depending on the position of the energy
levels in the adjacent dot. The ac field frequency w is in
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FIG. 7. (Color online) Total current / and spin-resolved currents
I; and I} vs gate voltages V,, and V3 applied to the central dot (dot
2) and the right dot (dot 3) in a TQD exposed to crossed By, and
B,.. Here w=A, and A;=A;>A,. Four relevant level configura-
tions can occur due to adjustment of V,; and V,3: in cases I and 1I,
current through the TQD is polarized in one spin direction, and in
cases III and IV, the electron spin is inverted. In order not to over-
load the figure, we indicate only the spins of the incoming and
outgoing electrons, but note that always one electron is confined in
an off-resonant state in the left dot (dot 1, cf. Fig. 1). Parameters in
meV (€=h=1)1 F=001, [12,2320.01, BaC=0'01 (z04 T), A1=A3
=7A,, A,=0.025 (Bge=1 T), U=1.0, and &,=0.1.

resonance with the central dot (dot 2), w=A,, in order for the
right dot (dot 3) to act as the filter dot. The TQD is here
operated at the triple point (2,0,0)« (1,1,0)«(1,0,1). We
restrict the discussion for simplicity to the case where the
Zeeman splittings are A;=A;>A,, although this condition is
not necessary, as long as A; 3# A,.

From the previous sections we already know that depend-
ing on the detuning, the dot connected to the drain can act as
T or | filter. In a TQD, there is one more degree of freedom
compared to the DQD regarding the detuning between the
dot levels. Without loss of generality, we can fix the energy
level of dot 1 and move the energy levels of dot 2 and 3
(which is experimentally realized by applying gate voltages
to the corresponding dots). Under these conditions, there are
then four relevant energy level configurations, which are
shown in Fig. 7, lower panel. In two of the configurations (I
and II), the TQD acts as a spin polarizer, and in the other
two (III and IV) the electron spin is inverted. We hereby
arrive at another important result of our work. A TQD can be
tuned as both spin polarizer and spin inverter, by confining
one electron in the left dot and adjusting the gate voltages at
two of the three dots. Then electrons coming from the left
lead can only enter with a distinct spin polarization, which
depends on the level position of the central dot. As the mag-
netic field B, is turned on with frequency w=A,, the elec-
tron spin coming from dot 1 is rotated in dot 2 whereas dot 1
and dot 3 due to their different Zeeman splittings are far off
resonance from the ac field. Dot 3 then acts as spin filter and,
depending on the relative position of its energy levels with
respect to dot 2, a T or | polarized current is produced,
similar as in the DQD described in the previous sections.

We plot the total Iy, and spin-resolved currents /; and /;
versus the two gate voltages applied to dot 2 and dot 3 in
Fig. 7, together with sketches of the corresponding energy-
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level distribution. In situations I and IV, dot 2 is energetically
in resonance with the 7 level in dot 1. Therefore, only T
electrons coming from the left lead will be able to tunnel to
dot 2. Here they are inverted due to w=A,, where the renor-
malized energy levels have been depicted schematically as
we did for the DQD. It depends then on the level position of
dot 3, if the outgoing current is spin-up (case I) or spin-down
(case IV) polarized. An analog situation occurs for cases II
and III: the energy level of dot 2 is such that only | electrons
can tunnel from dot 1 to dot 2. Again, after rotation due to
the ac field in dot 2, in dot 3 the spin is filtered without
inversion (case II) or inverted (case III).

IV. CONCLUSIONS

In summary, we have analyzed spin current polarization in
the transport through a DQD with one extra electron, and
through a TQD with two extra electrons in the system. The
quantum dot arrays are subjected to two different external
magnetic fields: an inhomogeneous dc field, which produces
different Zeeman splittings in the dot, and a time-dependent
ac field, that rotates the electron spin in one dot, when the
resonance condition w=A, is fulfilled. For the DQD, we
have analyzed both off-resonance and resonance conditions
of the ac field with either one of the Zeeman splittings. Our
results show that ac magnetic fields produce strongly spin-
polarized current through a DQD depending on the detuning
of the energy levels in the dots and on the resonance condi-
tions.

Finally, we have proposed a TQD in series as both spin
polarizer and spin inverter. As in a DQD, in a TQD different
Zeeman splittings in the sample combined with a resonant ac
frequency give way to spin-polarized currents. In addition,
spin-polarized incoming current can be achieved, and thus
the spin-polarizing mechanism can be extended to a spin-
inversion mechanism. Our results show that dc and ac mag-
netic fields combined with gate voltages allow one to ma-
nipulate the current spin polarization through DQDs and
TQDs which are then able to work as a spin filter and spin
inverter.

In spintronic devices at the nanometer scale an environ-
ment of nuclei introduces additional spin-flip processes that
can lower the efficiency of the desired mechanism. In our
setup, we do not expect spin-flip processes due to hyperfine
interaction to influence drastically on the results because hy-
perfine spin-flip times are usually much longer than typical
tunneling times in quantum-dot arrays, especially in finite
magnetic fields, where the hyperfine interaction is an inelas-
tic process.

Therefore, the systems presented in this work are promis-
ing candidates for spintronic devices.
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