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The band structures and effective masses of III-V semiconductors �InP, InAs, InSb, GaAs, and GaSb� are
calculated using the GW method, the Heyd, Scuseria, and Ernzerhof hybrid functional, and modified Becke-
Johnson combined with the local-density approximation �MBJLDA�—a local potential optimized for the de-
scription of the fundamental band gaps �F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 �2009��. We find
that MBJLDA yields an excellent description of the band gaps at high-symmetry points, on par with the hybrid
functional and GW. However, the effective masses are generally overestimated by 20–30 % using the MB-
JLDA local multiplicative potential. We believe this to be related to incorrect nearest-neighbor hopping ele-
ments, which are little affected by the choice of the local potential. Despite these shortcomings, the MBJLDA
method might be a suitable approach for predicting or interpolating the full band dispersion, if only limited
experimental data are available. Furthermore, the method is applicable to systems containing several thousand
atoms where accurate quasiparticle methods are not applicable.
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I. INTRODUCTION

The zinc-blende III-V semiconductors, e.g., InP, InAs,
InSb, GaAs, and GaSb, have received considerable attention
in the last decades since it has been realized that they have
potential to be employed as base materials for light-emitting
diodes, infrared detectors, quantum dots, and quantum-well
applications.1–3 Consequently, the materials have been thor-
oughly investigated experimentally as well as theoretically,
paying particular attention to their fundamental properties
and band topologies.4–8 The theoretical calculations are often
performed using density-functional theory �DFT� within lo-
cal �or semilocal� approximations. Although structural prop-
erties, such as lattice constants and bulk moduli, are pre-
dicted rather well using DFT, it is well established and
comes as no surprise that the description of electronic prop-
erties, e.g., band gaps and effective masses, is unsatisfactory
using conventional ground-state Kohn-Sham DFT. In con-
ventional DFT calculations, both, the exchange energy �Ex�
as well as the correlation energy �Ec� are treated by a local or
semilocal approximation. Due to self-interaction errors and
the lack of an integer discontinuity of the exchange-
correlation energy and potential upon changing the number
of electrons, the Kohn-Sham one electron band gaps are al-
ways too small compared to experimental quasiparticle �QP�
band gaps.9,10 Moreover, for InAs, InSb, and GaSb, the band
ordering at the � point is incorrect, and, resultantly, the band
topologies and effective masses are crossly wrong.11 Good
band topologies and reasonable effective masses are, never-
theless, a prerequisite for modeling nanostructures and elec-
tronic devices. In nanostructures, e.g., quantum dots, allowed
low-energy states often correspond to slow variations in the
phase factor from one unit cell to the next and they are hence
mostly determined by the effective masses. Likewise, the
behavior of electronic devices is largely determined by the

band gap and the curvature of the bands close to the
conduction-band minimum �CBM� and valence-band maxi-
mum �VBM�.

In order to obtain a reasonable description of these prop-
erties �QP band gaps and effective masses�, the self-energy
operator � and the corresponding quasiparticle equation need
to be determined, for instance, in the widely adopted GW
approximation.12,13 Unfortunately, for solids, even the most
sophisticated methods presently available—state-of-the-art
self-consistent GW calculations—fail to predict accurate
band gaps and effective masses without empirically adjusting
the self-energy operator.14,15 This seems to be related to the
neglect of ladder diagrams that have been proven to be re-
quired in the context of self-consistent GW calculations in
order to obtain accurate screening properties and band
gaps.16,17 Moreover, for unit cells with more than 100 va-
lence electrons, such self-consistent GW calculations includ-
ing ladder diagrams are currently impossible. More efficient,
albeit fundamentally less well-founded solutions to the band-
gap problem are therefore needed, and recently hybrid func-
tionals have emerged as a possible and convenient option.
The first to suggest this approach was Muscat et al., who
realized that band gaps are predicted in reasonable agreement
with experiment using the B3LYP �Becke-3-Lee-Yang-Parr�
hybrid functional.18 For semiconductors, even better results
can be obtained using the hybrid functional proposed by
Heyd, Scuseria, and Ernzerhof �HSE� �Ref. 19� as amply
demonstrated in the work of Scuseria.20,21 This was also con-
firmed by other independent studies,22,23 including very chal-
lenging materials such as lead chalcogenides,24 ternary and
quaternary compounds important for next-generation solar
cells,25 as well as InP, InAs, and InSb.26

Even though, hybrid functionals can be applied to reason-
ably large systems containing several thousand valence elec-
trons, the calculations are still rather expensive, since a
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double summation over k points is required to evaluate the
Hartree-Fock �HF� exchange.19 The modeling of large nano-
structures with several thousand atoms is therefore certainly
out of reach, and even more efficient methods are needed.
Ideally these should retain the efficiency of DFT calculations
�or even improve upon them�. The first such approach goes
back to Christensen and Cardona et al.27,28 who suggested to
introduce an attractive potential at the atomic cores to shift
the valence-band states to lower energies. This allows to in-
crease the band gap resulting in improved effective masses
that are crucial for the modeling of nanostructures. Similar
ideas were applied by Zunger et al.29–33 The disadvantage of
these methods is that they require an extensive fitting to ex-
perimental data, which are often scarce and possibly inaccu-
rate. A very elegant approach solving this dilemma has been
recently suggested by Tran and Blaha.34,35 In their MBJLDA
method �modified Becke-Johnson combined with the local-
density approximation for the correlation�, the density func-
tional is modified in such a way that accurate band gaps are
predicted.35–37 In principle, this method is entirely parameter
free, however, in the present work a single parameter is ad-
justed such that the experimental band gap is recovered. The
incentive for doing so is that �i� all available methods �in-
cluding sophisticated GW and hybrid functionals� result in
band gap errors on the order of 10–20 % for small gap semi-
conductors, �ii� the band gap has a strong influence on the
effective masses, and �iii� fundamental band gaps are usually
very accurately known from experiment. If the effective
masses and the band topologies are the main target quanti-
ties, it seems sensible to adjust the potentials to describe the
known experimental values, e.g., the band gap, correctly.

Our aim is to determine how well these optimized local
potentials perform in describing the foresaid band topologies
and effective masses. If they perform well, the optimized
local potential method of Tran and Blaha would be ideally
suited to model the electronic properties of large nanostruc-
tures that are currently out of reach for GW or hybrid func-
tional calculations. This would open an important field of
applications presently only covered by more semiempirical
methods, such as tight-binding approximations or semi-
empirical pseudopotential methods. To evaluate the perfor-
mance of the method, we calculate the band structures of
selected III-V semiconductors using GW, hybrid functionals
and MBJLDA, and compare to experimental values.

II. COMPUTATIONAL DETAILS

A. PAW calculations

Most results of this study were obtained using the Vienna
ab initio simulation package �VASP�.38 The projector-
augmented-wave �PAW� method39 as implemented in the
VASP code40 was utilized to describe the interaction between
the ionic cores and the valence electrons. The generalized
gradient approximation �GGA� as parameterized by Perdew,
Burke, and Ernzerhof �PBE� �Ref. 41� was employed to de-
scribe the exchange-correlation potential in the standard DFT
calculations. We have chosen this specific functional because
PBE yields slightly larger band gaps than standard LDA �im-
proving agreement with experiment� and because the applied

hybrid functional is based on the PBE functional. In practice,
however, results for PBE and LDA are very similar. For
Tran’s MBJLDA method the MBJ exchange potential is
combined with LDA �Ref. 42� for the correlation potential.

The present calculations use scalar-relativistic PAW po-
tentials, where both the core as well as the valence orbitals
are treated using a scalar relativistic Hamiltonian. Spin-orbit
coupling �SOC� effects are included self-consistently up to
second order �LS coupling�.43 Since the SOC term is large
only close to the core, the corresponding contributions to the
Hamiltonian are only evaluated inside the PAW spheres us-
ing all-electron partial waves.

The hybrid functionals used in the present work follow
the HSE scheme,19 which employs a screened short-range
�SR� HF exchange instead of the full exact HF exchange.
The exchange-correlation energy is defined as

Exc
HSE = Ex

PBE −
1

4
Ex

PBE,SR��� +
1

4
Ex

HF,SR��� + Ec
PBE, �1�

where the screening parameter � defines the range separation
and is usually set to 0.2 Å−1 �HSE06 scheme� for both, the
HF and the PBE part.44 Ex

PBE,SR is a density functional for the
SR part of the exchange energy whereas Ex

HF,SR��� is the
exact nonlocal exchange evaluated with a screened Coulomb
kernel. The interaction range of the SR nonlocal exchange
�� /��15 Å� is over several nearest neighbors and thus
considerably longer than the interaction range in conven-
tional semilocal functionals. To allow a fair comparison with
the optimized local potentials, which are adjusted to fit the
experimental band gap, we also decided to adjust � such that
the experimental band gap is fitted. Results for these calcu-
lations will be reported alongside conventional HSE06 cal-
culations and will be referred to as HSEbgfit calculations.

Two “local” band-gap correction schemes were used in
the present work. Christensen’s approach is a simple proce-
dure that simultaneously corrects the gaps and the band dis-
persion by introducing “false Darwin shifts,” This is done by
adding an external local potential to the effective Kohn-
Sham potentials.27 The local potential is of the form

V��r� = V0
r0

r
exp�− �r/r0�2� �2�

at the atomic sites, where r denotes the distance from the
nucleus. The range parameters, r0, are chosen sufficiently
small �0.015 a.u.� to affect mainly s-like spherical states.
Usually the r0 values are kept fixed and the V0 parameters
are varied until the gaps are fitted to the experimental values.

Second, Tran’s MBJLDA method is applied. The method
is a modification of the original Becke and Johnson �BJ�
�Ref. 45� method, which was designed to reproduce the
shape of the exact exchange optimized effective potentials of
atoms. It is used in combination with LDA correlation. The
modified BJ exchange potential is

Vx,�
MBJ�r� = cVx,�

BR�r� + �3c − 2�
1

�
� 5

12
�2���r�

	��r�
, �3�

where 	� is the electron density, �� is the kinetic-energy
density, and
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Vx,�
BR�r� = −

1

b��r��1 − e−x��r� −
1

2
x��r�e−x��r�� �4�

is the Becke and Roussel �BR� potential,46 which was intro-
duced to mimic the Coulomb potential created by the ex-
change hole. The function b� is calculated via b�

= �x�
3e−x� / �8�	���1/3 and x� is determined from the nonlinear

one-dimensional equation

x�e−2x�/3

x� − 2
=

2

3
�2/3	�

5/3

Q�

, �5�

where

Q� =
1

6
��2	� − 2
D�� �6�

and

D� = 2�� −
1

4

��	��2

	�

. �7�

A Newton-Raphson algorithm47 is used to determine x�. The
BR and BJ potentials are local and completely determined by
	�, �	�, �2	�, and ��.

As we will see later, the c value in Eq. �3� can be deter-
mined self-consistently from the average of �	

	 in the unit
cell. In the present work, however, the parameter c was ad-
justed such that the experimental band gaps are reproduced.
We note that if an exact reproduction of the experimental
band gap is required, a fit of c is necessary.

The parameters of the PAW potentials employed in this
work, i.e., the core radii �Rcore�, the energy cutoffs �Ecut�, and
the states treated as valence states, are summarized in Table
I. The specific orbitals indicated in the column “Local” in
Table I were chosen as local potential for the PAW potential
generation. In the present study, the semicore Ga 3d and
In 4d states were always treated as valence states.

The parameters of the optimized local potential methods
that we employed in this paper are tabulated in Table II. For
Christensen’s approach, the parameters were obtained by fit-
ting the experimental conduction band minima at �, X, and L
and the spin-orbit splitting ��SO� using a simplex algorithm.
For the MBJLDA method �MBJLDAbgfit�, on the other hand,
only the fundamental band gap at the � point was fitted to
the experiments. Modest variations in the c value between
1.17 and 1.23 were found to be necessary in order to fit the
band gaps. For comparison, we also tried to fit the effective

electron mass to the experiments using the c value �referred
to as MBJLDAefmfit� for InSb and GaAs.

All band structure calculations were performed at the ex-
perimental equilibrium lattice constants a0 at 300 K,48 i.e.,
5.869 Å, 6.058 Å, 6.479 Å, 5.648 Å, and 6.096 Å for InP,
InAs, InSb, GaAs, and GaSb, respectively, even though the
effective masses, which we compare to in this study, have
been measured at low temperature �roughly 4–30 K� by cy-
clotron resonance and Shubnikov-de Haas experiments. This
approximation for the lattice constants seems to be reason-
able, since the linear thermal expansion coefficients are neg-
ligible �smaller than 5�10−5 K−1� for the considered mate-
rials.

The Brillouin-zone �BZ� integrations were carried out on
�-centered k-point meshes using the Gaussian smearing
method with a width of 0.05 eV. For the band structure and
effective mass calculations, �6�6�6� k points were used,
corresponding to a total of 16 irreducible k points in the first
BZ.49 In order to get accurate results for the band structures
including SOC, no symmetry operations were employed, and
the full mesh of k points corresponding to 216 k points was
used. This is necessary because the magnetization density
has generally lower symmetry than the crystal.

The band structures E�k� were computed on a discrete k
mesh along high-symmetry directions, i.e., from the BZ cen-

TABLE I. Potential parameters of the projector-augmented-
wave method. See text for details.

Element Valence
Rcore

�a.u.�
Ecut

�eV� Local

Ga 3d104s24p1 2.3 283 3f

In 4d105s25p1 2.5 240 4f

P 3s23p3 1.9 255 3d

As 4s24p3 2.1 209 4f

Sb 5s25p3 2.3 173 5f

TABLE II. Semiempirical parameters for the band-gap correc-
tion methods used in this work. HSEbgfit lists the screening param-
eter � that fits the band gap for hybrid functionals. The parameter
V0

ion�r0
ion� is in units of electron volt �a.u.�. Self-consistently ob-

tained c values are listed in the MBJLDA column. The column
MBJLDAbgfit lists the optimized c to fit the band gap. The param-
eters for MBJLDAefmfit fitting the effective masses are given in
parentheses.

Material HSEbgfit Christensen MBJLDA MBJLDAbgfit

InP 0.22 V0
In=−2200 1.219 1.170

V0
P=13264

r0
In=0.015

r0
P=0.015

InAs 0.20 V0
In=1907 1.229 1.190

V0
As=6500

r0
In=0.015

r0
As=0.015

InSb 0.23 V0
In=10700 1.209 1.200

V0
Sb=−145 �1.160�

r0
In=0.015

r0
Sb=0.015

GaAs 0.12 V0
Ga=−2813 1.231 1.233

V0
As=11738 �1.120�

r0
Ga=0.015

r0
As=0.015

GaSb 0.15 V0
Ga=14106 1.207 1.224

V0
Sb=−300

r0
Ga=0.015

r0
Sb=0.015
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ter � with the coordinates �0,0,0� to the X point �1.0,0.0,0.0�,
L point �0.5,0.5,0.5�, K point �0.75,0.75,0.00�, and W point
�1.0,0.5,0.0� in units of �2� /a, 2� /a, 2� /a�. The effective
carrier masses me

�, mhh
� , mlh

� , and mso
� were evaluated by fitting

the conduction and valence bands to a parabola according to
E= 
2k2

2mem
� , where me denotes the electron rest mass. A k-point

spacing smaller than 0.02 Å−1 was found to be required in
order to avoid nonparabolic effects.

In the case of our GW calculations, the BZ integrations
were performed using �6�6�6� k-point grids for InP, InAs,
and InSb and using �8�8�8� for GaAs and GaSb, using
more than 140 bands for calculating the quasiparticle ener-
gies.

B. FP-APW+lo calculations

For comparison, the self-consistent MBJLDA calculations
were also performed using the WIEN2K code50 which is based
on the full-potential �linearized� augmented plane-wave and
local orbitals �FP-APW+LO� method. In order to guarantee
equivalence between the MBJLDAPAW and
MBJLDAFP-APW+LO calculations, the same k meshes for the
BZ integration were used. The specific input parameters RMT
and RMTKmax determining the quality of the basis sets are
listed in Table III together with the valence electrons and
local orbitals. Similar as described above for the PAW
method, SOC is included by solving the radial Dirac equa-
tion for the In and Ga core electrons and is evaluated by the
second-variation method51 using scalar relativistic eigenvec-
tors for the valence states.

In the parameter-free MBJLDA calculation, the c value is
chosen to be the square root of the average of 	�		

	 ,

c = � + �� 1

Vcell



cell

	�	�r��	
	�r��

d3r��1/2

, �8�

where � and � are two free parameters and Vcell is the vol-
ume of the unit cell. The two free parameters were optimized
to reproduce the band gap of more than 20 solids �see more
details in Ref. 35�. Since the VASP code currently dose not
allow to calculate the c parameter self-consistently, the c
values in MBJLDA were obtained by the WIEN2K code, the
corresponding values are listed in Table II.

III. RESULTS

A. Band gaps

The fundamental band gaps of III-V semiconductors at
the �, X, and L points are listed in Table IV. In order to
characterize the overall quality of the band dispersion with
respect to the experiment, the mean error �ME�, mean abso-
lute error �MAE�, mean relative error �MRE�, and mean ab-
solute relative error �MARE� are listed at the bottom of Table
IV. As can be seen the PBE functional yields an underesti-
mation of the band gaps for all materials that we employed in
this study. Our results clearly illustrate the problems one is
faced with when using a semilocal functional. Whereas for
InP and GaAs, PBE predicts a one-electron band gap, the
band order is inverted for InAs, InSb, and GaSb at the �
point, i.e., the anion-p bands are located above the cation-s
band. In the present calculations, the error of the available
density functionals is usually attributed to shallow cation-d
electrons pushing up the anion-p bands �p-d repulsion�. The
problem can be reduced by treating the d electrons as core
electrons, but even then “negative” band gaps are predicted
using the PBE functional.

On the other hand, more sophisticated methods than PBE
such as GW and HSE06 repair the deficiency and restore the
correct band order for InAs, InSb, and GaSb at the � point. A
simple single-shot G0W0 calculation starting from HSE06
wave functions and eigenvalues yields too large band gaps
�not shown here, see Ref. 26�, since the HSE06 functional
predicts too small dielectric constants in the random phase
approximation that is usually applied in the GW method.57,58

The overestimation can be removed by including the electro-
static interaction between electrons and holes in the calcula-
tion of the screening properties � �ladder diagram�, which
enter W=�−1v, where v is the bare Coulomb kernel. The
corresponding results, GW test-charge-test-charge calcula-
tions, are reported in the column G0W0

TC-TC. These single-
shot G0W0

TC-TC calculations were again performed on top of
the HSE06 calculations. Since our GW code currently does
not allow for a consistent inclusion of SOC, SOC was not
included in the calculation of G or �, but the spin-orbit split-
ting was added a posteriori using the spin-orbit corrections
obtained for the HSE06 functional. Except for InSb and
GaSb, the band gaps of the GW calculations are in quite
reasonable agreement with experiment �see Table IV�. We
believe that the error for InSb and GaSb is mainly related to
the neglect of SOC in the determination of �: SOC lowers the
split-off band, and raises the heavy-hole and light-hole
bands, on average conserving the center of mass. As long as
the spin-orbit splitting is small compared to the band gap, it
is reasonable to approximate the eigenvalues by the center of
mass �i.e., neglecting SOC�. But when the spin-orbit splitting
approaches the value of the band gap, the influence of SOC
on the screening properties cannot be neglected and should
be taken into account. A similar observation was already
made for PbTe GW calculations.24 To obtain good agreement
with experiment, therefore, SOC should be included in the
evaluation of the screening properties, in particular, for the
heavier anions, since the hybridization between cation-s and
anion-p states increases significantly for heavier atoms,11,59

TABLE III. WIEN2K input parameters. The atomic sphere radii
RMT and the product of the atomic sphere radii RMT and the plane-
wave cut-off parameter Kmax, as well as the orbitals for which local
orbitals �LOs� have been included in the basis set are listed. Note
that Kmax

2 corresponds to the energy cutoff in the PAW calculations.

Element Valence
RMT

�a.u.� RMTKmax LOs

Ga 3d104s24p1 2.0 9.0 3d4s

In 4d105s25p1 2.3 9.0 4d5s

P 3s23p3 2.0 9.0 3s

As 3d104s24p3 2.0 9.0 3d4s

Sb 4d105s25p3 2.3 9.0 4d5s
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and because spin-orbit splitting within the anion-p shell also
increases with increasing anion mass.

For the HSE06 functional with SOC �see Table IV�, the
band gaps of InAs are practically identical with experiment,
whereas those of InP and InSb are overestimated �1.48 eV
compared to 1.42 eV; 4% error and 0.28 eV compared to
0.24 eV; 17% error, respectively� and those of GaAs and
GaSb are underestimated �1.33 eV compared to 1.52 eV;
13% error and 0.72 eV compared to 0.81 eV; 11% error,
respectively�. We note that this kind of agreement is typical
for the HSE06 functional; with the exception of wide gap
insulators, HSE06 predicts very reasonable band gaps fairly

systematically across the periodic table20–24,26,44 including
ternary and quaternary compounds.25 Fitting the band gap by
adjusting the range separation parameter � is straightfor-
ward, and generally improves the position of the CBM and
VBM at �, X, and L �see the � values in Table II column
HSEbgfit�. Consequently, the ME and the MAE for the VBM
and CBM are reduced to −0.05 and 0.11, respectively. Chris-
tensen’s local potential correction method also yields im-
proved agreement with experiment compared to the PBE
functional. But in our case, some problems prevail. Particu-
larly, the band gaps at the X and L points are too small. The
reason for this is that the CBM state at � is localized to some

TABLE IV. Energy of the conduction-band minima at the �, X, and L points and energy of the valence band maxima at the X and L
points evaluated with respect to the valence maximum at the � point in units of electron volt. Relativistic effects, e.g., spin-orbit coupling
�SOC�, are taken into account for all methods. Mean error �ME�, mean absolute error �MAE�, mean relative error �MRE�, and mean absolute
relative error �MARE�, in the PBE, G0W0

TC-TC, HSE06, HSEbgfit, Christensen, MBJLDA, and MBJLDAbgfit band gaps with respect to
experiments are also specified. The experimental results are from Ref. 52 �except when noted�.

Material Eg PBE G0W0
TC-TC HSE06 HSEbgfit Christensen MBJLDAa MBJLDAb MBJLDAbgfit

b Expt.

InP �6
c 0.68 1.32 1.48 1.41 1.43 1.60 1.60 1.42 1.42

X6
c 1.73 2.23 2.35 2.31 2.06 2.40 2.47 2.34 2.38

X7
� −2.31 −2.45 −2.52 −2.51 −2.25 −2.15 −2.14 −2.17 −2.20c

L6
c 1.47 2.15 2.25 2.18 1.80 2.20 2.26 2.11 2.01

L4,5
� −0.97 −1.02 −1.03 −1.03 −0.92 −0.88 −0.88 −0.89 −1.00d

InAs �6
c −0.30 0.41 0.42 0.42 0.43 0.61 0.58 0.43 0.42

X6
c 1.44 1.75 1.98 1.98 1.65 2.07 2.09 2.01 1.90e

X7
� −2.42 −2.58 −2.64 −2.64 −2.39 −2.27 −2.25 −2.27 −2.70c

L6
c 0.85 1.45 1.53 1.53 1.24 1.54 1.54 1.43

L4,5
� −0.97 −1.05 −1.06 −1.06 −0.96 −0.91 −0.90 −0.91 −0.90d

InSb �6
c −0.38 0.35 0.28 0.24 0.24 0.26 0.28 0.25 0.24

X6
c 1.10 1.38 1.53 1.48 1.05 1.54 1.54 1.52 1.80e

X7
� −2.43 −2.58 −2.66 −2.64 −2.46 −2.29 −2.29 −2.29 −2.24d

L6
c 0.32 0.87 0.85 0.81 0.72 0.83 0.84 0.82 0.93

L4,5
� −1.03 −1.10 −1.12 −1.11 −1.05 −0.97 −0.96 −0.96 −1.05d

GaAs �6
c 0.43 1.51 1.33 1.52 1.54 1.56 1.51 1.52 1.52

X6
c 1.34 1.87 1.96 2.15 1.57 1.99 2.00 2.00 2.18f

X7
� −2.76 −2.89 −2.99 −3.03 −2.69 −2.61 −2.60 −2.60 −2.80f

L6
c 0.89 1.74 1.67 1.86 1.40 1.71 1.71 1.72 1.85f

L4,5
� −1.16 −1.22 −1.25 −1.26 −1.12 −1.09 −1.08 −1.08 −1.30f

GaSb �6
c −0.11 0.85 0.72 0.82 0.88 0.73 0.75 0.82 0.81

X6
c 0.67 1.11 1.26 1.36 0.95 1.16 1.17 1.21 1.14

X7
� −2.73 −2.85 −2.95 −2.97 −2.75 −2.60 −2.60 −2.59 −2.72d

L6
c 0.20 0.84 0.87 0.97 0.78 0.82 0.83 0.87 0.88

L4,5
� −1.21 −1.27 −1.29 −1.31 −1.23 −1.15 −1.14 −1.14 −1.32d

ME �eV� −0.41 −0.07 −0.07 −0.05 −0.11 0.06 0.07 0.04

MAE �eV� 0.46 0.12 0.13 0.11 0.18 0.13 0.13 0.10

MRE �%� −43.45 −2.44 −3.15 −2.13 −6.13 4.70 5.35 2.30

MARE �%� 31.70 6.00 5.81 4.40 7.65 4.92 5.12 4.33

aMBJLDA performed using the WIEN2K code.
bMBJLDA performed using the VASP code.
cReference 53.
dReference 54.
eReference 55.
fReference 56.
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extent inside the atomic spheres whereas the CBM state at X
possesses almost no charge density on the atomic sites, and
the L state represents an intermediate case in the zincblende
structure.27,60 This implies that, in order to correct the con-
duction bands at the X and L points, one needs to add an
external potential not only at the atomic site but also in the
interstitial region. Christensen overcame this issue by intro-
ducing “empty spheres” in the linear-muffin-tin-orbital
method. Since empty spheres are not available in our code,
which is based on a plane-wave basis set, we lack the cor-
rection from the interstitial region required for an accurate
description of the X and L points. For GaAs our best fit
therefore yields modest results: for �6

c, X6
c, and L6

c, our values
are 1.54 eV, 1.57 eV, and 1.40 eV whereas Christensen was
able to obtain a very good fit to the experiment �1.46 eV,
1.95 eV, and 1.82 eV, respectively27�. It is obvious that Chris-
tensen’s approach without empty spheres is not sufficiently
accurate. Therefore, we did not consider this method any
further.

In order to compare the band-gap errors for the parameter-
free hybrid functional �HSE06� and the self-consistent
�parameter-free� MBJLDA,35 MBJLDA calculations were
performed using VASP and WIEN2K, where the c values were
determined from the average of �	

	 in the unit cell. The cor-
responding values are listed in Table IV �column MBJLDA�.
The band gaps are on average underestimated by HSE06 and
overestimated by MBJLDA, but the MAE for both HSE06
and MBJLDA is similar. From the MBJLDAPAW and
MBJLDAFP-APW+LO results, we can confirm the equivalency
of the MBJLDA implementation in the VASP and WIEN2K

codes.
The MBJLDAbgfit results are short of astonishing. Overall

the agreement for the CBM and VBM at �, X, and L is even
slightly better than for the HSEbgfit case, and the ME and
MAE drop to 0.04 eV and 0.10 eV. We will return to a more
considerate discussion at a later point �Sec. III B�.

Even though the HSEbgfit functional and the MBJLDAbgfit
method lack the fundamental justification of the GW method,
it is fairly clear that HSEbgfit and MBJLDAbgfit are generally
yielding the best description, or rather, best fit of the band
gaps. These calculations are also much less demanding than
the sophisticated many-electron calculations �which in the
present case would even require vertex corrections in W�. We
have, therefore, limited the following calculations to the
HSEbgfit and the MBJLDAbgfit method.

Before continuing, we note that for InSb, the experimental
CBM at the X point is about 0.25 eV above all theoretical
calculations. We believe that the error is mainly in the ex-
perimental data for this specific case.55 Whereas the VBM
was accurately determined by angle-resolved photoemission
spectroscopy, the CBM at the X and L points are difficult to
determine using inverse photoemission spectroscopy. Espe-
cially for narrow band gap semiconductors, resonance phe-
nomena may modulate the inverse photoemission intensity in
the low-energy range.55

B. Band structure

The band structures of the III-V semiconductors were cal-
culated using the HSEbgfit functional and the MBJLDAbgfit

method, again including SOC. In Fig. 1, the band structures
are shown in an energy range from −4 to 3 eV along the
important high symmetry lines. As already discussed, the
predicted fundamental band gaps are fitted to experiment at
the � point, and data at the X and L point were not taken into
account. The important difference between the hybrid func-
tional and the MBJLDA calculation is that the hybrid func-
tional generally yields a stronger dispersion when moving
from � to X or L. This is most likely related to a stronger
coupling element between the valence anion-p band and the
conduction band cation-s state. HSE predicts excellent val-
ues for the VBM at the L point whereas MBJLDA places the
VBM at the L point at somewhat too high energies. On the
other hand, at the X point the HSE VBM is generally some-
what too low in energy, and now the MBJLDA results are in
better agreement with experiment. On average, both func-
tionals seem to perform roughly equally for the valence band
dispersion, but as we will see in the next section, the com-
parison of the effective masses clearly favors the HSE func-
tional, possibly indicating that the experimental values at the
X point need careful revision.

For the conduction band, the accuracy of the experimental
results is most likely more questionable. HSE yields excel-
lent results for GaAs, which has been extensively measured
experimentally. For the other materials, the MBJLDA results
look visually somewhat better, but we emphasize again that
the experimental determination of the valence band positions
at X and L is by no means straightforward.

C. Effective charge-carrier masses

In Table V, the results for the effective electron and hole
masses are summarized for the HSEbgfit functional and the
MBJLDAbgfit method along the direction �100� �� to X�. For
comparison, the experimentally obtained effective masses
from Ref. 52 are listed, and the PBE results for InP and
GaAs are included as well. The masses were evaluated nu-
merically by fitting the calculated dispersion curves around
the � point along the directions �100�, �110�, and �111�. For
symmetry reasons, the split-off mass and the electron mass
are identical along these directions. The light-hole and
heavy-hole effective masses differ along the three direction,
but they can be uniquely determined by the three Luttinger
parameters 
i

52,61,62

�mhh
�

me
��100�

=
1


1 − 2
2
,

�mhh
�

me
��110�

=
2

2
1 − 
2 − 3
3
,
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�

me
��111�

=
1


1 − 2
3
,
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�

me
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1 + 2
2
,
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�
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�mlh
�

me
��111�

=
1


1 + 2
3
. �9�

The Luttinger parameters were obtained by a least square fit
of the effective hole masses along the three directions and
are presented in Table VI. For the HSEbgfit functional
�MBJLDAbgfit method�, the MAE of the Luttinger parameters
�dimensionless� were 0.09�0.39�, 2.28�4.78�, 3.58�8.26�,
0.28�0.75�, and 0.56�2.15� for InP, InAs, InSb, GaAs, and
GaSb, respectively. In the effective mass fitted MBJLDA
�MBJLDAefmfit�, the MAE was 1.03 and 0.32 as for InSb and
GaAs. Recalculating the effective masses from the Luttinger
parameters gave results within 0.05 of those reported in
Table V. This shows that the present results are numerically
accurate, although systematic errors introduced by the func-
tional are another matter.

The electron and light-hole effective masses of PBE show
an underestimation of 30–60 % for InP and GaAs, whereas
MBJLDAbgfit overestimates the effective electron masses by
about 30–50 % with respect to experiment. For HSEbgfit, the
agreement with experiments is best, typically better than
10–20 %.

IV. DISCUSSION

Overall, the present study suggests that HSE yields a very
good description of the band topology of III-V semiconduc-

tors, whereas MBJLDA has troubles reproducing effective
masses. Nevertheless, for the effective mass and band-gap
results some details remain puzzling, and we feel that only a
careful reexamination of the experimental results, beyond the
scope of this work, can resolve all issues.

A. Effective masses

Let us start with the effective masses. Among the methods
we have employed for calculating the effective masses, the
hybrid functional clearly shows the best performance. Com-
parison is most easily done for the Luttinger parameters
�Table VI� and the effective electron mass melectron

� �Table V�.
We find excellent agreement for the materials with a larger
gap but admittedly agreement becomes worse with increas-
ing mass and decreasing band gap. For InSb, errors are larg-
est, on the order of 20%.

The local potential correction method, on the other hand,
consistently underestimates the Luttinger parameters and
overestimates the effective electron mass �melectron

� �. Com-
pared to experiment the errors are fairly large amounting to
about 20% for the light elements and 40% for InSb and
GaSb. This is certainly unsatisfactory. To understand this is-
sue, we have included the effective masses and the Luttinger
parameters for PBE for InP and GaAs. The band dispersion
around the � point is mainly driven by the interaction be-
tween the anion-p �VBM� and cation-s band �CBM�, which
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FIG. 1. �Color online� The band structures of �a� InP, �b� InAs, �c� InSb, �d� GaAs, and �e� GaSb along �-X-W-L-�-K obtained from
HSEbgfit �solid line� and MBJLDAbgfit �dashed line� calculations �including SOC�. The arrows indicate the experimental value.
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is symmetry forbidden at � �see Sec. IV B�. If the interac-
tions were identical for PBE and MBJLDA, one would ex-
pect the masses to be proportional to the band gap. This is
indeed observed for the electron mass of InP and GaAs. The
value me

��PBE�
Eg�MBJLDA�

Eg�PBE� yields a good approximation of the
electron masses for the MBJLDAbgfit functional �0.112 for
InP and 0.106 for GaAs�. Furthermore the MBJLDAbgfit Lut-
tinger parameters are well approximated by the equation


�MBJLDA� = 
�PBE�
Eg�PBE�

Eg�MBJLDA�
. �10�

Hence, the overestimation of the effective masses using MB-
JLDA is most likely related to an incorrect description of the
coupling element between anion-p and cation-s states. This
interaction is mainly determined by the hopping probability
from the anion-p states to neighboring cation-s states, i.e., a
two center term. In hindsight, it is not astonishing that MB-
JLDA fails to modify this interaction, since MBJLDA is a
purely local correction, which will mainly influence the one-
center terms responsible for the energy separation between
anion-p and cation-s states. The hybrid functionals are more
successful in this aspect. Inclusion of the nonlocal exchange
interaction significantly modifies the two center integrals,
i.e., the hopping probability between sites. We believe that
this is the main reason why the effective masses are better
described using hybrid functionals.

Since the masses scale inverse proportional to the band
gap, it is also possible to fit the effective masses instead of
the band gap. The rows marked with MBJLDAefmfit show the
corresponding results for InSb and GaAs. In this case, we
only fitted the conduction band mass melectron

� but the Lut-
tinger parameters are also found to agree well with experi-
ment. Unfortunately fitting the effective masses yields too
small band gaps of 0.11 eV and 1.07 eV for InSb and GaAs.
It is therefore impossible to fit the effective mass and the
band gap simultaneously. But from a practical point of view,
the proper description of effective masses might be often
more relevant than the description of the band gap since
effective masses determine which bands are allowed in nano-
structures with confinement effects.

B. Valence-band maxima (VBM)

The second important issue is the position of the VBM at
the X and L point. Inspection of Fig. 1 and Table IV suggests
that MBJLDAbgfit does a decent job for this, in fact, on par
with HSEbgfit. Specifically, the mean errors for the VBM are
−0.13 and 0.13 for HSEbgfit and MBJLDAbgfit, respectively.
As we have already discussed, the VBM lies at lower ener-
gies for HSE than for MBJLDA, and HSE deviates from
experiment dominantly at the X point. Two issues, however,
shed doubt on this observation: the GW VBM results are
very close to the HSEbgfit results, and the effective masses
were better described using HSE. Since the band dispersion
along �-X is again mostly determined by the two center
anion-p cation-s hopping integrals, it seems difficult to rec-

TABLE V. Effective hole and electron masses at the � point in units of the electron rest mass me

calculated along the �X �100� direction using the HSEbgfit functional and MBJLDAbgfit taking into account
spin-orbit coupling. For comparison, the effective masses for the PBE functional are also listed for InP and
GaAs. The experimental values were calculated from the Luttinger parameters tabulated in Ref. 52.

Element Method 	msplit-off
� /me	 	mlight-hole

� /me	 	mheavy-hole
� /me	 	melectron

� /me	

InP PBE 0.139 0.073 0.435 0.054

MBJLDAbgfit 0.230 0.143 0.493 0.108

HSEbgfit 0.212 0.117 0.479 0.085

Expt. 0.210 0.121 0.531 0.080

InAs MBJLDAbgfit 0.133 0.044 0.407 0.036

HSEbgfit 0.112 0.033 0.343 0.027

Expt. 0.140 0.027 0.333 0.026

InSb MBJLDAbgfit 0.150 0.024 0.292 0.022

MBJLDAefmfit 0.135 0.015 0.287 0.014

HSEbgfit 0.129 0.018 0.245 0.017

Expt. 0.110 0.015 0.263 0.014

GaAs PBE 0.108 0.036 0.320 0.030

MBJLDAbgfit 0.210 0.112 0.372 0.090

MBJLDAefmfit 0.173 0.083 0.355 0.066

HSEbgfit 0.166 0.085 0.314 0.067

Expt. 0.172 0.090 0.350 0.067

GaSb MBJLDAbgfit 0.175 0.060 0.267 0.054

HSEbgfit 0.143 0.047 0.235 0.042

Expt. 0.120 0.044 0.250 0.039
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oncile the experimental effective masses with the experimen-
tal positions for the VBM at the X point �see also Fig. 1�.
Either the experiments are in error at the X point, or hybrid
functionals and GW underestimate the non parabolicity of
the bands along �-X.

C. Conduction-band minima (CBM)

For the CBM the situation is more concise. HSEbgfit and
MBJLDAbgfit yield a similarly good description, most likely
both within the experimental error bars. The only disconcert-
ing observation is that our GW calculations predict a too
small value for X6

c �typical error 200 meV�, and a slightly too
small value for L6

c �typical error 100 meV�. For InAs and
GaAs, recent self-consistent GW calculations by Kotani and
Schilfgaarde show a similar problem,63 as long as the self-
energy operator was not empirically adjusted: in their work
the dispersion along �-X was 0.31 eV for GaAs and 1.42 eV
for InAs, close to our values of 0.36 eV and 1.34 eV. The
experimental values are clearly larger and very well de-
scribed by HSEbgfit and MBJLDAbgfit. This demonstrates that
the GW results, despite the fundamental justification of the
method, need to be considered with care and on their own do
not constitute a sufficient and valid benchmark.

V. CONCLUSIONS

In this paper, the band gaps and effective masses of zinc-
blende III-V semiconductors were calculated using the
screened hybrid functional �HSEbgfit� and the optimized local

potential method �MBJLDAbgfit�. Before discussing the re-
sults in detail, we want to emphasize a few points regarding
the MBJLDA functional. �i� The functional uses a purely
local multiplicative potential, similar to the Kohn-Sham po-
tential. �ii� However, the MBJLDA potential is not an “im-
proved” approximation to the true Kohn-Sham potential. It
has been established that the true Kohn-Sham potential is
quite close to the LDA or GGA potential for solids; for in-
stance, the Sham-Schlüter potential calculated within the
random-phase approximation yields similar one-electron
band gaps as the LDA/GGA.64–66 �iii� Hence, MBJLDA must
be regarded as an empirical approach yielding one-electron
band gaps in reasonable agreement with the measured QP
energies. Not more, but also not less. If the approach predicts
good band topologies, it would be ideally suited to calculate
the electronic properties of large nanostructures, where con-
finement effects and band folding effects are often the crucial
issues.

Using MBJLDAbgfit we found that the energies of the
CBM and VBM at the �, X, and L points are very well
described, certainly on par with the much more expensive
hybrid functional HSEbgfit, despite the fact that we have fitted
the experimental band gap by adjusting the screening param-
eter in the HSEbgfit functional. In this respect, the
MBJLDAbgfit results are indeed very impressive.

Nevertheless, problematic issues remain. The
MBJLDAbgfit electron mass for the conduction band is con-
sistently 20% too large. Hybrid functionals perform much
better, yielding values within a few percent of experiment
�with the exception of InSb�. The topology of the valence
bands, described by the three Luttinger parameters, is also
best accounted for by the hybrid functional, with errors being
again largest for InSb. Since the Luttinger parameters are
inverse proportional to the effective conduction-band
masses, the MBJLDA functional underestimates the Lut-
tinger parameters, with the errors typically amounting to
20–30 % �InSb being again an exception�. Unfortunately the
effective masses are among the most important properties,
for the proper description of QP energies in nanostructures.
As we have already emphasized in Sec. I, low-energy states
correspond to slow variations in the phase factor from one
unit cell to the next and they are mostly determined by the
effective mass �particle in a box picture�. Hence, accurate
predictions of the electronic properties of nanostructures will
be difficult using the MBJLDA functional. A possible solu-
tion to this problem is to fit the masses instead of the band
gaps, which we have demonstrated to be possible.

In hindsight, the present results are certainly not astonish-
ing. The MBJLDA functional is a purely local correction to
the Kohn-Sham potential. It essentially modifies the one-
center terms but should affect the two center terms very
little. Two center terms are obviously important for the de-
scription of effective masses. However, one has to keep in
mind that it achieves remarkably good overall band topolo-
gies, despite the fact that only a single parameter was ad-
justed. In this respect, the MBJLDA functional clearly super-
sedes all semiempirical approaches used in the past.
Nevertheless, to obtain correct effective masses, corrections
beyond a purely local potential will be ultimately required.

TABLE VI. Luttinger parameters of III-V semiconductors. The
values were determined by a least-squares fit to the effective masses
along the �X �100�, �L �111�, and �K �110� directions. The experi-
mental Luttinger parameters are from Ref. 52.

Element Method 
1 
2 
3

InP PBE 8.01 2.91 3.49

MBJLDAbgfit 4.53 1.28 1.80

HSEbgfit 5.27 1.63 2.14

Expt. 5.08 1.60 2.10

InAs MBJLDAbgfit 12.53 5.10 5.73

HSEbgfit 16.50 6.77 7.64

Expt. 20.00 8.50 9.20

InSb MBJLDAbgfit 22.26 9.47 10.31

MBJLDAefmfit 36.13 16.49 17.27

HSEbgfit 29.44 12.79 13.85

Expt. 34.80 15.50 16.50

GaAs PBE 15.29 6.16 6.96

MBJLDAbgfit 5.79 1.60 2.32

MBJLDAefmfit 7.45 2.37 3.12

HSEbgfit 7.51 2.22 3.07

Expt. 6.98 2.06 2.93

GaSb MBJLDAbgfit 10.13 3.27 4.26

HSEbgfit 12.69 4.31 5.43

Expt. 13.40 4.70 6.00
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