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We formulate a time-dependent density-matrix functional theory �TDDMFT� approach for higher-order
correlation effects like biexcitons in optical processes in solids based on a reduced two-particle density-matrix
formalism within the normal orbital representation. A TDDMFT version of the Schrödinger equation for
biexcitons in terms of one- and two-body reduced density matrices is derived, which leads to finite biexcitonic
binding energies already with an adiabatic approximation. Biexcitonic binding energies for several bulk semi-
conductors are calculated using a contact biexciton model.
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I. INTRODUCTION

The theoretical description of ultrafast processes in mod-
ern electronic devices is an important problem of contempo-
rary condensed-matter physics.1,2 The entangled role of the
fluctuation and correlation effects, especially in low dimen-
sions, makes such an examination a challenge. In particular,
it is not easy to reproduce correct excitonic and biexcitonic
features in the optical absorption spectra of materials. Be-
sides fundamental interest such as in four-wave mixing,3,4

excitonic and biexcitonic effects have a variety of practical
applications, such as optoelectronic devices,5 entangled pho-
ton sources,6 and quantum computing.7

The standard approaches, based on the semiconductor
Bloch equations �SBEs� �Ref. 8� and nonequilibrium
Green’s-function techniques,9,10 cannot be easily applied to
study higher-order correlation effects in strongly nonequilib-
rium situation because this requires many-particle correlation
functions that depend on many time arguments.11 Approach-
ing these problems with time-dependent density-functional
theory �TDDFT� �Ref. 12� looks promising due to its formal
simplicity and the fact that it, in principle, includes correla-
tion effects exactly; however, this usually requires going be-
yond the standard local-density and generalized gradient
approximations �LDA-GGA�.13 Excitonic effects have been
studied with TDDFT in several ways, including the time-
dependent optimized effective potential approach14 and the
combination with the Bethe-Salpeter method.1 Unfortunately,
these approaches also become very tedious in the strongly
nonequilibrium case.

Recently, we proposed an alternative approach for ul-
trafast excitonic effects based on the single-particle density
matrix and a TDDFT version of the SBEs.15,16 We showed
that the effective electron-hole attraction is defined by matrix
elements of the exchange-correlation �XC� kernel fXC with
respect to the valence and conduction band Kohn-Sham
single-particle wave functions. An approximate fXC based on
the adiabatic LDA leads to a too weak electron-hole attrac-
tion to produce bound excitons. Instead, experimentally ob-
served lowest exciton binding energies can be reproduced in
a simple way using the local and long-range XC kernels

fXC
local�r,r�� = − A0��r − r�� �1�

and

fXC
LR�r,r�� = −

�

�r − r��
, �2�

where A0 and � can be viewed as adjustable parameters.
The local XC kernel �1� can be interpreted13,17 as playing

a similar role in TDDFT as the contact exciton model devel-
oped in the early seventies.18,19 Models of this kind typically
produce a single bound exciton. Results of similar quality are
obtained with the long-range kernel �2�, despite its different
structure.20,21 Both fXC

local and fXC
LR produce optical spectra of

semiconductors in reasonable agreement with
experiment.13,22

In the case of biexcitons, which are correlated double
electronic excitations, the problem is much more compli-
cated. One reason is that multiple excitations in TDDFT re-
quire nonadiabatic XC functionals, and so far there are no
simple approximations available. Another reason is that at
first sight it is not clear how to represent biexcitonic wave
functions in Kohn-Sham TDDFT. In this paper, we formulate
and test an alternative TDDMFT approach for biexcitons
based on the natural orbital �NO� representation for the sta-
tionary electron eigenfunctions,23–25 where the multiparticle
excited states are naturally related to the higher-order
density-matrix elements.

II. TDDMFT FORMALISM

The standard TDDFT single-particle Hamiltonian is

ĥ�r,t� = −
�2

2
+ V�r,t� + VH�n��r,t� + VXC�n��r,t� . �3�

Here, V�r , t�=Vnucl�r�+Vext�r , t� is the static potential of the
nuclei plus the time-dependent external perturbing potential.
We consider a homogeneous external electric field in dipole
approximation, Vext�r , t�=−rE�t�, which implies that the
characteristic field frequency is much larger than the level
spacing.26 VH�r , t� is the Hartree potential and VXC�r , t� is the
time-dependent XC potential; both are functionals of the
time-dependent single-particle density n�r , t�. The Hartree
potential is not very important for the description of excitons
but the XC potential is crucial, since it accounts for the ef-
fective electron-hole interaction.16
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In general, VXC�n��r , t� has a memory, i.e., it depends on
densities at previous times t�� t. The resulting XC kernel fxc,
defined as

fXC�r,r�,�� =� d�t − t��ei��t−t����VXC�r,t�
�n�r�,t��

�
n0�r�

, �4�

therefore has in general a frequency dependence. An explic-
itly frequency-dependent fXC is required for describing
double excitations with linear-response TDDFT.27,28 How-
ever, to date there are only few nonadiabatic approximations
for fXC available, and none of them is particularly suited for
the biexcitonic properties in solids we have in mind. For this
reason, we choose a different approach.

To describe the properties of doubly excited N-electron
systems, one can consider the one- and two-electron density
matrices, defined as23–25

��x1,x1�,t� = N� dx2� dx3 . . .� dxN

� ��x1,x2, . . . ,xN,t����x1�,x2, . . . ,xN,t� , �5�

	�x1,x2,x1�,x2�,t� = N�N − 1�� dx3� dx4 . . .� dxN

� ��x1,x2, . . . ,xN,t����x1�,x2�, . . . ,xN,t� ,

�6�

where � is the many-body wave function and xi= �ri ,si� de-
notes the space coordinate and spin index. ��x1 ,x1� , t� de-
scribes the single-particle properties of the system, such as
the charge density n�x , t�=��x ,x , t�. Moreover, all ground-
state quantities, including 	0�x1 ,x2 ,x1� ,x2��, can, in principle,
be obtained from �0�x1 ,x1��, since there is one-to-one corre-
spondence between �0�x1 ,x1�� and the ground-state many-
body wave function �0 �the DMFT generalization of the
Hohenberg-Kohn theorem29�.

Let us now restrict the discussion to two-electron systems
and derive equations of motion for the density matrices. We
consider the following effective two-electron Hamiltonian:

Ĥ�r1,r2,t� = ĥad�r1,t� + ĥad�r2,t� + w�n2��r1,r2,t� , �7�

where ĥad is the TDDFT Hamiltonian �3� using an adiabatic
approximation for VXC�n��r , t�, which leads to a frequency-
independent XC kernel fXC

ad �r ,r��. In this way, excitons can
still be described since the frequency dependence of fXC is
not essential for the electron-hole interaction. However, biex-
citons �which are correlated two-particle excitations� cannot
be captured in the adiabatic approximation. To make up for
this, we introduce, in a somewhat ad hoc manner, an effec-
tive two-particle interaction w�n2��r1 ,r2 , t� which we define
as a functional of the two-particle density n2�r1 ,r2 , t�
=���r1 ,r2 , t���r1 ,r2 , t�. In this way, dynamical screening
effects can in principle be accounted for, as done in standard
many-body perturbation theory.

In the following we express the two-electron wave func-
tion in terms of the NOs 
k�r�. In the singlet case one obtains
��r ,r� , t�=�k,lCkl�t�
k�r�
l�r��, where Ckl�t� is a symmetric
matrix, and k , l are the appropriate quantum numbers �band

index, momentum, spin, etc.�. We shall use this matrix in
general nondiagonal form for physical insight on the nature
of the excitations. Since the density matrices ��x1 ,x1� , t� and
	�x1 ,x2 ,x1� ,x2� , t� are defined by the two-electron wave func-
tion, they can be expressed in terms of the matrix elements
Ckl�t�,

��x1,x1�,t� = �
k,l

�kl�t�
k�x1�
l
��x1�� , �8�

	�x1,x2,x1�,x2�,t� = �
klmn

	klmn�t�
k�x1�
l�x2�
m
� �x1��
n

��x2�� ,

�9�

where �kl�t�=2�mCkm�t�Clm
�T�t� and 	klmn�t�=2Ckl�t�Cmn

� �t�.
We will soon see that in the two-band approximation the
excitonic wave function is proportional to �k1k2

cv �t�, and the
biexcitonic one to 	k1k2k3k4

ccvv �t�, where c and v stand for the
conduction and valence bands, and ki is the corresponding
electron and hole momentum. From now on, we shall use
superscripts to denote band indices.

The equation of motion for �kl�t� and 	klmn�t� can be ob-
tained via the equation for Ckl�t�. From the time-dependent
two-electron Schrödinger equation one finds

i
�Ckl�t�

�t
= �

r

�hkr�t�Crl�t� + Ckr�t�hlr�t�� + �
rs

wklrs�t�Crs�t�

�10�

with the initial condition Ckl�t=0�=�klck and the matrix ele-
ments

hkr�t� =� dr
k
��r�ĥad�r,t�
r�r� , �11�

wklmn�t� =� dr1� dr2
k
��r1�
l

��r2�w�n2��r1,r2,t�

� 
m�r1�
n�r2� . �12�

Here and in the following, it is implied that each spatial
integration is divided by the unit cell volume. Equation �10�
is nonlinear, since the matrix elements, which depend on the
electron density, are functions of Ckl�t�. From the definitions
of �kl�t� and 	klmn�t� one then obtains the following equa-
tions for the one- and two-particle matrix elements:

i
��kl

�t
= �

r

�hkr�rl − �krhrl� + �
r,s,m

�	lrsm
� wmsrk

� − 	krsmwmsrl� ,

�13�

i
�	klmn

�t
= �

r

�hkr	rlmn + hrl	krmn − hrm	klrn − hrn	klmr�

+ �
r,s

�wklrs	rsmn − wmnrs
� 	klrs� . �14�

An important feature of Eqs. �13� and �14� is the fact that
they are closed, i.e., one does not need to truncate an infinite
hierarchy of equations for higher-order density-matrix ele-
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ments. However, keep in mind that this property is only valid
for two-level �two-band� systems. In the single-electron
�w=0� linearized diagonal approximation for two bands, one
obtains the TDDFT-Wannier equation for the exciton
eigenenergies and eigenfunctions from Eq. �7�,16

Enq
v �nk,q

cv = �
k�

���k�+q
c − �k�

v ��kk� + Fkk���nk�,q
cv , �15�

where k is the electron momentum, q is the sum of the
electron and hole momenta �the exciton momentum� and

Fkk� = 2� dr� dr�
ck
� �r�
vk�r�fxc�r,r��
vk�

� �r��
ck��r��

�16�

are the matrix elements for the effective electron-hole attrac-
tion.

III. TWO-LEVEL MODEL FOR BIEXCITONS

The possibility to obtain a biexcitonic state with the TD-
DMFT formalism can be already shown for a two-level
model with the energy levels E1 and E2�E1 and the highest
occupied molecular orbital-lowest unoccupied molecular or-
bital gap Eg=E2−E1. From Eqs. �13� and �14� in the lowest-
�second-� order approximation �by keeping only those matrix
elements which contain no more than two indices “2”�, one
obtains the following system of equations after carrying out a
Fourier transformation into the frequency domain,

�� − Eg − F1��21 − G1	2211 = 0,

�� − 2Eg − G2�	2211 − F2�21 = 0, �17�

where F1=w2121−w1111+w2112+h21
� +w2111

� , F2=2h21+w2212
+w2221+w2211

� , G1=h12+w2122−w1112+w2111
	 , G2=w2222

−w1111+w2211
	 , and

hab
� =� d1d2
a

��1�
b�1�
�VXC�1�

�n�2�

2�2�
1

��2� , �18�

wabcd
� =� d1d2d3
a

��1�
b
��2�

�w�1,2�
�n�3�

� 
c�1�
d�2�
2�3�
1
��3� , �19�

wabcd
	 =� d1d2d3d4
a

��1�
b
��2�

�w�1,2�
�n�3,4�

� 
c�1�
d�2�
2�3�
2�4�
1
��3�
1

��4� . �20�

All matrix elements are evaluated at the initial �nonper-
turbed� densities, and we use the shorthand notation 1 for r1,
2 for r2, etc. The solutions of the system of Eq. �17� can be
easily found

� =
3Eg + F1 + G2

2



1

2
	�Eg − F1 + G2�2 + 4G1F2. �21�

From the general solution, one can discuss several limit-
ing cases. In particular, for no correlations �F1=F2=G1

=G2=0� one gets a trivial solution with one and two free
excited electrons: �1=Eg, �2=2Eg. In the absence of a
density-dependent two-electron potential �w�n2��r1 ,r2�=G2

=0�, one finds an excitonic state with energy �1=Eg−F1


Eg−Eexc�Eg �at large gap�. However, the second root �2
cannot be lower than 2Eg−2Eexc, i.e., the linear adiabatic
approximation does not produce a biexciton, as expected. On
the other hand, for nonzero w�n2��r1 ,r2�, when G2�0 and
�F1�� �G2�, one can obtain a biexcitonic level with binding
energy 
G2−2F1.

Therefore, in order to obtain a biexcitonic state in pure
TDDFT �with no w�n2��r1 ,r2�� in the adiabatic approxima-
tion, one needs to go to the nonlinear regime and consider
the next order terms �
�	� in the equations. To show the
possibility of a biexcitonic solution, assume that the initial
state includes a long-living exciton, �	→ �̄	, where �̄ is the
averaged “excitonic function” �see also Ref. 30, where a pos-
sibility to obtain double excitations in the adiabatic TDDFT
was considered�. Then, the second �biexcitonic� Eq. �17� ac-
quires an additional term �at G2=0�, which results in the
eigenenergy 2Eg+2�h22

� −h11
� ��̄ that corresponds to the biex-

citonic solution in the case �h22
� −h11

� ��̄�0 and 2Eg+2��h22
�

−h11
� ��̄��2�F1�=2Eexc. Possible excitations in the two-level

case are illustrated in Fig. 1.

IV. TWO-BAND CASE

The generalization to the many-electron case is straight-
forward. The equation for the biexciton energies �with zero
center-of-mass momentum� in the two-band approximation
has the following form:

0 = �i
�

�t
− �k+q

c − �k�
c + �k

v + �k�+q
v �	k+q,k�,k,k�+q

ccvv

− �
k�

Gk+q,k�;k̄+q̄,k̄�,k̄,k̄�+q̄	
k̄+q̄,k̄�,k̄,k̄�+q̄

ccvv
, �22�

where

|exc>

|biexc>
|exc>, |exc>

1E

2E

22E

excE

biexcE
excE2

FIG. 1. �Color online� Excitonic bound states in a two-level
system with single-particle energies E1 and E2. Eexc and Ebiexc are
the binding energies of excitons and biexcitons, respectively. A
biexcitonic state can be thought of as arising from a two-step pro-
cess: First, two excitons are created, which then combine to form a
biexciton whose energy is less than the energy of the two individual
excitons.
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Gk+q,k�;k̄+q̄,k̄�,k̄,k̄�+q̄ = Ck+q,k�
cv �A

k�;k̄+q̄,k̄�,k̄,k̄�+q̄

1

+ A
k+q,k�;k̄+q̄,k̄�,k̄,k̄�+q̄

2 �

+ A
k+q,k�;k̄+q̄,k̄�,k̄,k̄�+q̄

3
+ �k + q ↔ k�� ,

�23�

Ak;k1,k2,k3,k4

1 =� d1d2d3
ck
� �1�
vk

� �1�

�g1�1,2,3�
ck1
�2�
ck2

�3�
vk3

� �2�
vk4

� �3� ,

�24�

Ak,k�;k1,k2,k3,k4

2 =� d1d2d3d4
ck
� �1�
ck�

� �2�
ck�1�
vk��2�

�g2�1,2,3,4�
ck1
�3�
ck2

�4�
vk3

� �3�
vk4

� �4� ,

�25�

Ak,k�;k1,k2,k3,k4

3 =
1

2
Ak,k�;k1,k2,k3,k4

2 �
ck�r1� → 
vk�r2�� ,

�26�

and g1�r ,r1 ,r2�=
�Vxc�r�

�n�r1,r2� and g2�r1 ,r2 ,r3 ,r4�=
�w�r1,r2�
�n�r3,r4� are

two-particle density kernels. Similar to the excitonic case,
Eq. �22� is the momentum representation version of the
Schrödinger equation for two electrons and two holes,31

where the matrix elements Gk+q,k�;k̄+q̄,k̄�,k̄,k̄�+q̄ correspond to
an integral interparticle �in general, four-body� interaction.

To solve Eq. �22�, we expand the biexcitonic function in
terms of the complete set of the excitonic functions �n,k,q

cv

with eigenenergies En,q �n is the number of the bound state�,
which can be found from the solution of Eq. �15�, and anti-
symmetrize it with respect to interchange of holes and elec-
trons, in order to satisfy the Pauli principle. Then the biex-
citonic functions can be expressed in the following form:

	̃k+q,k�,k,k�+q
cc�vv�
 = �

n,m
��n,k+q,q

v �m,k�+q,−q
v� bnm,q




� �n,k�,k�−k
v �m,k+q,k−k�

v� bnm,k�−k

 � , �27�

where 
 correspond to two possible states of biexcitons,
singlet �−� and triplet �+�, with respect to two-electron
spins.26 In this equation and below we omit the conduction
index superscript in the excitonic wave functions since we
consider the case of one spin-degenerate conduction band
and the excitonic wave function can be completely defined
by the hole �valence� index. Thus the problem is reduced to
finding the matrix elements that enter into Eq. �22�. Using
the orthogonality of the excitonic eigenfunctions, one finds
the equation for the biexcitonic eigenvectors and the corre-
sponding eigenenergies, similar to Eq. �15�,

�
n�,m�,q�

��� − Enq − Emq��nn��mm��qq� − Hnm,n�m�,qq�

 �bn�m�,q�




= 0, �28�

Hnm,n�m�,qq�

 = ��1 � Ŝ�−1Ŵ
�nm,n�m�,qq�


 , �29�

Ŝnm,n�m�,qq� = �
k

�n,k+q,q
v �m,k+q�,−q

v� �n�,k+q�,q�
v �m�,k+q,−q�

v� ,

�30�

and

Ŵ
 = − �mm��qq��
k,k�

�n,k+q,q
v Fk,k��n�,k+q�,q�

v

− �nn��qq��
k,k�

�m,k,−q
v� Fk,k��m�,k�,−q

v�


 �
k,k�

Fk,k�
� ��n,k�+q,q

v� �m,k+q�,−q
v�� �n�,k+q�,q�

v �m�,k+q�,−q
v�

+ �m,k�,−q
v� �n,k−q�+q,q

v�� �n�,k,q�
v �m�,k−q�+q,−q�

v� �

− �
k,k�,k̄,k̄�

�n,k+q,q
v� �m,k�,−q

v�� �Gk+q,k�;k̄+q�,k̄�,k̄,k̄�+q̄�

� Gk+q,k�;k̄�,k̄+q�,k̄,k̄�+q̄���n�,k̄+q�,q�

v
�

m�,k̄�,−q�

v� . �31�

Equation �28� formally resembles Eq. �15� for excitons, with
the exciton eigenenergies used instead of the bare single-
electron energies. The effective exciton-exciton attraction
Hnm,n�m�,qq�


 is defined by the matrix elements of the kernels
g1�r1 ,r2 ,r3� and g2�r1 ,r2 ,r3 ,r4�.

To test the formalism, we consider the simple case of a
single biexciton in one-exciton level approximation, n=m
=1 �see also Fig. 1�. We have obtained the solution of this
equation using simple model kernels: the local kernel �1� to
generate the excitonic states, and the following local two-
particle kernels for biexcitons:

g1
local�r,r1,r2� = − C0A1��r − r1���r − r2� �32�

�which includes the averaged element C0 of the one-electron
excited density-matrix component Ccv, see Eqs. �22�–�26��
and

g2
local�r,r�,r1,r2� = − A2��r − r����r − r1���r − r2� .

�33�

The kernels �32� and �33� can be viewed as constituting a
“contact biexciton” model, in analogy with the contact exci-
ton model defined by the XC kernel �1�.

Results for the electron eigenenergies and eigenfunctions
of several semiconductors were obtained by using the VASP

4.6 code32 with GGA-projector augmented wave potentials
and a 350 eV energy cutoff. We approximated the NO func-
tions by the corresponding Kohn-Sham single-particle wave
functions, which can be considered as a good approximation
when the correlations are not too strong. We find that with
the effective local kernels fXC

local, g1
local, and g2

local one can re-
produce the experimental biexcitonic binding energies with a
suitable choice of the parameters A0, A1, and A2 �see Table I�.

Let us now come back to the question how biexcitons can,
in principle, be described within TDDFT. A closely related
problem was studied by Maitra et al. for the case of finite
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systems,27 and they came up with a simple way �called
“dressed” TDDFT� to construct a nonadiabatic fXC��� to
generate those excitation that are missing if a frequency-
independent XC kernel is used. The idea is to consider a
minimal subspace consisting of excited-state Kohn-Sham
wave functions associated with quasidegenerate single and
double excitations, and then diagonalize the full Hamiltonian
in this subspace. This allows one to construct an explicitly
frequency-dependent expression of fXC��� which is then
used to recalculate the excitation energies. Applications to
trans-polyenes demonstrated the potential of the method.28

To adapt this approach for the description of biexcitons in
TDDFT, one would need to recast the approach of Maitra et
al.27 into momentum space, starting from Eqs. �15� and �16�.
A possible way to proceed would be to try to construct ex-
plicitly frequency-dependent matrix elements Fkk���� of the
nonadiabatic XC kernel in terms of the adiabatic potential
w�n��r1 ,r2� �or, rather, the two-particle kernels g1 and g2�
which produces biexcitonic states. In this way, the exciton
Eq. �15� would produce additional solutions, corresponding
to biexcitonic binding energies, and would also result in �pre-
sumably small� shifts of the original excitonic energies due
to the exciton-biexciton coupling that is now taken into ac-
count. Whether or not such a TDDFT procedure will be prac-
tical remains a question for future investigation.

V. CONCLUSION

In this paper we have formulated a TDDMFT approach to
study biexcitonic effects. We have derived the TDDMFT ver-
sion of the Schrödinger equation for biexcitons in terms of
the two-particle density-matrix elements in the two-band ap-
proximation. We have solved this equation in the case of
several semiconductors by using phenomenological two-
electron interaction kernels, thereby defining a contact biex-

citon model. With this model one can reproduce the lowest
biexcitonic binding energies by using proper kernel param-
eters. To obtain biexcitonic states within the single-particle
TDDFT approach, one would either need to use a frequency-
dependent XC kernel or consider the nonlinear regime. Gen-
eralization for the case of bound states with larger number of
particles is, in principle, straightforward.

There are several advantages of this simplified formalism
for biexcitons comparing to other approaches: �1� it can be
adapted for use in the real-time domain in a straightforward
manner; �2� physical transparency of the method, in particu-
lar, the effective TDDFT electron-hole and exciton-exciton
interactions are directly related to the interaction kernels,
which may allow one to make simple estimations of the pos-
sibility to produce bound states with given TDDFT kernels;
�3� it may allow one to construct the nonadiabatic Kohn-
Sham XC kernel from the phenomenological adiabatic two-
particle density kernel, which may shed some light on the
general requirements on the nonadiabatic fXC��� necessary
to produce biexcitons and other higher-order coupled states
with TDDFT.

Examination of ultrafast processes and higher-order cor-
relation effects, including the excitonic and biexcitonic trans-
port, in semiconductor nanostructures and organic molecules
is underway.
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