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A rectangular potential barrier for a Bloch particle in a tight-binding lattice is shown to become fully
transparent by the application of a strong ac field with appropriate amplitude and frequency. Such a curious
phenomenon bears some connection with the field-induced barrier transparency effect known for freely moving
particles scattered by an ac-driven rectangular barrier; however, for a Bloch particle transparency is not related
to a resonant tunneling process across the cycle-averaged oscillating potential barrier, as for the freely moving
quantum particle. The phenomenon of field-induced transparency is specifically discussed here for photonic
transport in waveguide arrays and demonstrated by full numerical simulations of the paraxial �Schrödinger�
wave equation beyond the tight-binding approximation.
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I. INTRODUCTION

Coherent control of electronic, photonic, or matter wave
transport in driven semiconductor superlattices, quantum
dots, waveguide arrays, and optical lattices has received a
great and continuous interest over the past two decades,1–4

stimulating a wide number of experimental and theoretical
investigations in different physical systems.5–10 Examples of
coherent control by the application of ac fields include,
among others, the coherent destruction of tunneling between
two wells in a bistable potential6 and the suppression of
quantum diffusion and dynamic localization in tight-binding
lattices.5 Such phenomena have been demonstrated in a se-
ries of recent experiments,8–10 mainly based on transport of
light waves or cold atoms in waveguide arrays or optical
lattices, where dephasing and many-body effects can be ne-
glected. Other interesting phenomena occur in the tunneling
and scattering processes of ac-driven free particles across
potential wells or barriers.11–14 In particular, a freely moving
quantum particle can be resonantly transmitted across a pe-
riodically driven rectangular potential barrier, in spite the
probability of tunneling through the static potential barrier is
almost zero.11,12 This phenomenon, originally predicted for
quantum tunneling and referred to as field-induced barrier
transparency,11,12 is rather generic and can be similarly ob-
served for optical tunneling at modulated dielectric
interfaces.15 In the accelerated �Kramers-Henneberger� refer-
ence frame, the ac-driven barrier behaves like a periodically
shaken potential barrier.11,14 At high oscillation frequencies,
the oscillating rectangular barrier can be replaced at leading
order by its cycle-averaged �static� barrier, whose profile
shows a characteristic double-hump shape that sustains meta-
stable states. Thus resonant transmission of the incident par-
ticles across the ac-driven barrier observed at certain below-
barrier energies can be simply explained as a resonant
tunneling process, similar to, e.g., the Ramsauer-Townsend
effect, the resonant electronic tunneling across a double-
barrier structure, or the resonant light transmission of light in
a Fabry-Perot optical cavity. In this work we consider the
coherent motion of a Bloch particle in a tight-binding lattice
with a strong impenetrable rectangular potential barrier, and
demonstrate that the application of an ac field with appropri-

ate amplitude and frequency can make the potential barrier
fully transparent. This phenomenon, which can be again re-
ferred to as field-induced barrier transparency for Bloch par-
ticles in analogy to its counterpart for free particles, has how-
ever a very different origin. In particular, barrier
transparency is observed for incident Bloch waves at any
allowed energy in the band, i.e., it is not related to resonant
tunneling of the cycled-averaged potential as in the free-
particle case. Here we investigate the phenomenon of field-
induced barrier transparency of Bloch waves by considering
photonic transport in periodically curved waveguide
lattices,4,9 however the present analysis is rather generic to
coherent transport in driven tight-binding lattices and could
be therefore of interest to other physical setups, such as to
cold atoms or Bose-Einstein condensates in accelerated op-
tical lattices.10

The paper is organized as follows. In Sec. II, the basic
model is described with specific reference to light transport
in photonic lattices, and a theoretical analysis of field-
induced barrier transparency in ac-driven tight-binding lat-
tices is presented. In Sec. III the theoretical predictions ob-
tained in the high-frequency regime are confirmed by direct
numerical simulations, based on both the time-periodic
coupled-mode equations of the driven tight-binding lattice
and the Schrödinger wave equation with a one-dimensional
potential. Deviations from the predictions based on the aver-
aged lattice model in the high-frequency modulation limit,
such as a shift of the resonant curves, are briefly discussed.
Finally, in Sec. IV the main conclusions are outlined.

II. FIELD-INDUCED BARRIER TRANSPARENCY IN
ac-DRIVEN TIGHT-BINDING LATTICES:

THEORETICAL ANALYSIS

The starting point of our analysis is provided by a stan-
dard model of light transport in a one-dimensional array of
tunneling-coupled optical waveguides with a periodically
curved optical axis.4,9 In the waveguide reference frame,
light transport is described by the following Schrödinger-
type wave equation for the electric field envelope ��x ,z�
�see, for instance, Refs. 4 and 16�,
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where �=� / �2�� is the reduced wavelength of light
waves, ns the substrate refractive index, x and z are the trans-
verse and the longitudinal spatial coordinates, respectively,
and V�x� is the optical potential, which is related to the re-
fractive index profile of the straight array by the simple re-
lation V�x��ns−n�x�. The last term on the right-hand side of
Eq. �1� is a fictitious refractive index gradient arising from
axis bending and with a z-varying slope given by F�z�=
−nsẍ0�z�, where x0�z� is the axis bending profile and the dot
indicates the derivatives with respect to z.4 In its present
form, the paraxial wave Eq. �1� is formally equivalent to the
Schrödinger equation describing the dynamics of a quantum
particle of mass ns in the potential V�x� driven by a time-
dependent external force F�z�, provided that the spatial z
variable in the optical system is replaced by the temporal
variable in the quantum problem, and the photon wavelength
� is replaced by the Planck’s constant. The potential V is
given by the superposition of the periodic and barrier poten-
tials, i.e., V�x�=Vp�x�+Vb�x�, where Vp�x+a�=Vp�x� is the
periodic potential describing a homogeneous array of equally
spaced wells, and Vb�x� is the barrier potential, which is as-
sumed to describe a rectangular barrier of height V0 and
width L�a �see Fig. 1�a��. The role of the barrier potential is
to introduce a step, of height V0, into a finite number of wells
in the lattice, say from the waveguide n=0 to the waveguide
n=N, as shown in Fig. 1�a�. The potential height V0 is typi-
cally assumed to be much larger than the width of the lowest
energy band of the array, yet smaller than the gap between
the first and second lattice bands, as shown as an example in
Fig. 1�c�. In this way, in the absence of the ac driving force
any Bloch wave packet, belonging to the lowest band of the
lattice and traveling along the lattice, is reflected from the
potential barrier �see Fig. 1�c��. To study the role of the ac-
driving force and the possibility to make the barrier transpar-
ent, let us introduce the nearest-neighboring tight-binding
approximation and let us assume that the lattice is mostly
excited in its lowest-order Bloch band. Such conditions are
satisfied, for example, by considering an array of weakly
coupled waveguides which is initially excited by a broad
beam tilted at an angle smaller than the Bragg angle �B
=� / �2a�.9,16 Under such assumptions, from Eq. �1� the fol-
lowing coupled-mode equations can be derived:4,9

iċn = − ��cn+1 + cn−1� − f�z�ncn + 	
ncn �2�

for the amplitudes cn of the field trapped in the individual
waveguides, where ��0 is the coupling constant between
adjacent waveguides,

f�z� �
a

�
F�z� = −

ans

�
ẍ0�z� �3�

is the normalized forcing,

	 �
V0

�
, �4�

and


n = �1 for 0 � n � N

0 otherwise.
� �5�

To study field-induced barrier transparency, it is worth intro-
ducing, in place of cn, the amplitudes an defined by the rela-
tions

FIG. 1. �Color online� �a� Behavior of the optical potential
V�x�=ns−n�x� �solid curve� of a one-dimensional lattice with a bar-
rier, composed by the superposition of the periodic optical potential
�lattice period a� and of the rectangular barrier potential �height V0,
width L, represented by the dashed curve in the figure�. The dotted
curve in the figure is the intensity profile of the incident Gaussian
wave packet in the numerical simulations of Sec. III B. �b� Band
diagram �three lower-order bands� of the periodic optical potential.
The energy in the vertical axis is defined as the eigenvalue of the
Hamiltonian H0 of the periodic potential entering in Eq. �1�. �c�
Space-energy band diagram of the lattice with the rectangular bar-
rier. The height V0 of the barrier is larger than the bandwidth 4� of
the lowest lattice band but smaller than the gap separating the first
two bands. �d� Behavior of the Bloch excitation coefficients versus
incidence angle � of a plane wave, normalized to the Bragg angle
�B=� / �2a�.
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an = cn exp	− in

0

z

d
f�
� + i	
nz� , �6�

so that Eq. �2� take the form

iȧn = − �n�z�an+1 − �n−1
� �z�an−1, �7�

where we have set

�n�z� = � exp	i

0

z

d
f�
� + i	�
n − 
n+1�� . �8�

Let us now assume a sinusoidal bending of waveguide axis
with spatial frequency �=2� /� and amplitude A, i.e.,

x0�z� = A cos�2�z/�� , �9�

so that

f�z� = f0 cos�2�z/�� , �10�

where

f0 =
4�2ansA

�2�
. �11�

Let us also assume that: �i� the barrier height V0 and the
quanta of modulation �� are much larger than the width 4��
of the tight-binding energy band;

�ii� the modulation frequency is chosen such that the reso-
nant condition

l� = 	 =
V0

�
�12�

is satisfied for some �small� integer l �typically l=1 or l=2�.
In the high-modulation frequency limit �assumption �i��, at
first order in a multiple-scale asymptotic analysis of Eq. �7�,
the spatial evolution of the amplitudes an is dominated by the

cycle-average coupling rates �̄n= �1 /���0
�dz�n�z� �see, for

instance, Ref. 17�, i.e., one has

iȧn � − �̄nan+1 − �̄n−1
� an−1. �13�

Taking into account that exp�i� sin��z��
=
nJn���exp�in�z� and using Eqs. �5� and �10�, from Eq. �8�
it readily follows that

�̄n = � �J0��� for n � − 1,N

�Jl��� for n = − 1

�− 1�l�Jl��� for n = N ,
� �14�

where we have set

� �
f0

�
=

2�ansA

��
. �15�

Equation �13� thus describe light transport in an effective
lattice with two defects in the coupling rates at lattice sites
n=−1 and n=N. However, if the amplitude A of modulation
is tuned such that

J0��� = � Jl��� , �16�

the effective lattice is homogeneous �i.e., defect free�, and
thus any Bloch wave packet propagates in the lattice without

being reflected.18 That is, if the modulation frequency and
amplitude are tuned to satisfy the conditions, Eqs. �12� and
�16�, the effect of the ac driving is to make the barrier Vb
fully transparent for Bloch wave packets belonging to the
lowest energy band.

III. NUMERICAL SIMULATIONS

In this section we confirm, by direct numerical simula-
tions of both the tight-binding Eq. �2� and the full wave Eq.
�1�, the field-induced barrier transparency phenomenon pre-
dicted in the previous section in the high-frequency modula-
tion regime.

A. Tight-binding lattice model

Let us first consider beam reflection and transmission in
the tight-binding lattice model described by the coupled
mode Eq. �2� with periodic coefficients. Equation �2� has
been numerically integrated using an accurate fourth-order
variable-step Runge-Kutta method with absorbing boundary
conditions. As an example, Figs. 2�a�–2�d� �upper panels�
show the numerically computed evolution of lattice site oc-
cupation probabilities �cn�z��2 for 	 /�=4, N=6, �=	 and
for a few increasing values of the modulation amplitude,
measured by the dimensionless parameter �= f0 /�. For com-
parison, the lower panels in Figs. 2�a�–2�d� show the corre-
sponding evolution of occupation probabilities as obtained
by integration of the averaged effective lattice equations
�Eqs. �13� and �14��, valid in the high modulation frequency
limit. The array is initially excited by a Gaussian distribution
cn�0�=exp�−�n−n0�2 /w2�exp�iqn� with mean position n0=
−26, width w=4, and momentum q=� /2 �corresponding to
the largest cycle-averaged group velocity far from the bar-
rier�. Note that at �=1.435, at which the condition, Eq. �16�,
is satisfied for l=1, the wave packet is not reflected, and the
barrier appears to be fully transparent �see Fig. 2�c��. In the
simulations shown in Fig. 2, the ratio � /�=4 is large
enough to ensure the validity of the averaged Eq. �13�, at
least at first-order approximation. In fact, a more careful
comparison of the results obtained from the original coupled-
mode equations with periodic coefficients �Eq. �2� and �7��
and the averaged Eq. �13� shows some slight discrepancies,
which basically arise from neglecting higher-order terms in
the asymptotic analysis of Eq. �7� �for more details see, for
instance, Ref. 17�. In particular, according to the average
model, Eq. �13�, transparency should be observed regardless
of the initial value of wave-packet momentum q, i.e., of its
mean energy; however, numerical simulations of the original
�periodic� coupled-mode Eq. �2� shows that some reflected
light is observed at the barrier when the initial wave-packet
momentum q �i.e., its mean group velocity� is reduced. This
is shown, as an example, in Figs. 2�e� and 2�f�, where the
evolution of lattice site occupation probabilities are depicted
for the same initial Gaussian wave packet of Fig. 2�c� �i.e., at
the transparency condition�, but with an initial momentum
lowered to q=� /3 �Fig. 2�e�� and q=� /4 �Fig. 2�f��. An-
other difference between the average and periodic coupled-
mode equations can be seen by computing the first resonance

FIELD-INDUCED BARRIER TRANSPARENCY OF BLOCH… PHYSICAL REVIEW B 82, 205123 �2010�

205123-3



curve of the transparency process, depicted in Fig. 3�a�. The
figure shows the behavior of the power reflection R and
transmission T coefficients versus � �near the first resonance
��	=V0 /�� for the same initial Gaussian wave packet with
momentum q=� /2, as obtained by numerical integration of
Eq. �2�. For the sake of simplicity, the coefficients R and T
have been computed by considering the first potential step
solely of the barrier, so that multiple reflections that would
arise in the presence of the two potential discontinuities of
the rectangular barrier �see, for example, Fig. 2�b�� are
avoided. For each modulation frequency �, the modulation
amplitude A was correspondingly varied such that the ratio
�= f0 /� �see Eq. �15�� remains constant and equal to 1.435,
at which the condition, Eq. �16�, is satisfied. Note that, the

condition of exact transparency �R=0� is attained at the ratio
� /	�0.95, which is slightly smaller than 1, as expected
from the averaged model �Eq. �12� with l=1�. As discussed
above, the validity of the averaged model becomes more
accurate, and the agreement between the averaged and origi-
nal �periodic� coupled mode equations closer, as the ratio
�	 /� of barrier height and width of tight-binding energy
band is increased.

B. Full-wave equation

We checked the validity of the tight-binding lattice analy-
sis and the onset of field-induced barrier transparency in pho-
tonic waveguide arrays by direct numerical simulations of

FIG. 2. �Color online� Beam evolution �snapshots of lattice site intensities �cn�z��2� for an initial Gaussian wave-packet distribution with
transverse momentum q as obtained by numerical simulations of the coupled mode Eq. �2� �upper panels� and by the averaged Eq. �17�
�lower panels� for 	 /�=4 and �=	. In �a�–�d�, the initial transverse beam momentum is q=� /2, in �e� q=� /3, whereas in �f� q=� /4. In
�a� �=0 �nonmodulated lattice�, in �b� �=0.8, in �c�, �e�, and �f� �=1.435 �transparency condition�, and in �d� �=1.8.

FIG. 3. �Color online� Behavior of the power reflection �R� and transmission �T� coefficients of a Gaussian wave packet at the first barrier
discontinuity near the first transparency resonance �=	 numerically computed �a� using the tight-binding model, Eq. �2�, and �b� the full
wave Eq. �1�. Parameter values in the two cases are given in the text.
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the paraxial wave Eq. �1� using standard pseudospectral
methods. The optical potential V�x�=ns−n�x� of the lattice
used in numerical simulations is shown in Fig. 1�a� and cor-
responds to a typical effective index profile of lithium-
niobate waveguide arrays, fabricated by the proton-exchange
technique and probed at �=1.44 �m wavelength �see, for
instance, the experiment reported in Ref. 16�. The refractive
index profile nw�x� of each waveguide in the array is taken to
be given by16

nw�x� = �n
erf��x + wg�/Dx� − erf��x − wg�/Dx�

2 erf�wg/Dx�
, �17�

where wg=3.5 �m is the channel width, Dx=1 �m the dif-
fusion length, and �n=0.003 the peak index change. The
waveguide spacing �lattice period� is a=12 �m and the sub-
strate refractive index at the probing wavelength is ns
=2.1381. The band structure of the lattice, numerically com-
puted by a standard plane-wave expansion method, is shown
in Fig. 1�b�. From the width of the lowest order �tight-
binding� lattice band, a coupling rate ��3.25 cm−1 can be
estimated between adjacent waveguides. When the lattice is
excited by a broad wave packet, tilted at an angle �, it gen-
erally breaks up into the superposition of different wave
packets, belonging to the various lattice bands and refracting
at different angles �see, for instance, Refs. 16 and 19�. The
fractional excitations of the different lattice bands are given
by the Bloch-wave excitation coefficients Cn, defined as in
Ref. 19. Figure 1�d� shows the numerically computed behav-
ior of Cn��� for the various lattice bands of the periodic part
of the optical potential of Fig. 1�a� versus the tilt angle � of
the incident beam, in units of the Bragg angle �B=� / �2a�. As
one can see, for broad input beams tilted at an angle �
smaller than half of the Bragg angle, the lowest-order lattice
band is mainly excited, which indicates that in this case the
tight-binding model of Sec. II can be safely applied. The
barrier height used in the numerical simulations is V0
=�n /5=6�10−4, whereas its width is L=72 �m. A sche-
matic of the space-dependent band diagram of the lattice,
shown in Fig. 1�c�, clearly indicates that, in the absence of
the external ac field, the barrier is impenetrable and any
Bloch wave packet, incident onto the barrier, is reflected.
This is shown, as an example, in Fig. 4�a�, where the numeri-
cally computed evolution of the field intensity ���x ,z��2
along the nonmodulated lattice is depicted by assuming, as
an initial condition, the tilted Gaussian beam ��x ,0�=exp�
−�x+x0�2 /w2�exp�2�i�x /�� with spot size w=30 �m, offset
x0=108 �m �see the dotted curve in Fig. 1�a��, and tilt angle
�=�B /2�1.719°. Let us now introduce a sinusoidal modu-
lation of the axis bending x0�z� at a spatial frequency �
=2� /� close to the first resonance �l=1 in Eq. �12��, which
corresponds to a spatial modulation period �=2.45 mm.
Note that the ratio between modulation frequency � and cou-
pling rate � of waveguides turns out to be �7.9, i.e., the
high-frequency modulation condition is well satisfied. Fig-
ures 4�b�–4�d� show the evolution of the same Gaussian
wave packet as in Fig. 4�a� but in the periodically curved
waveguide array for increasing values of the modulation am-
plitude A, measured by the dimensionless parameter � given
by Eq. �15�. Note that the cycle-averaged transverse group

velocity of the wave packet, far from the barrier region and
at the tilting angle �=�B /2, is equal to vg=2�a�J0����, and
thus decreases as � is increased from zero �Fig. 4�a�� to �
=1.8 �Fig. 4�d��. As the modulation is increased, the Gauss-
ian wave packet is less and less reflected from the barrier, till
a nearly reflectionless regime, corresponding to full barrier
transparency, is attained when the transparency condition,
Eq. �16�, is reached �see Fig. 4�c��. Barrier transparency is
observed at different values of the initial tilt angle � �i.e.,
initial wave-packet momentum�, expect for small tilt angles
at which the wave packet shows a more complex dynamics
at the barrier crossing �see Fig. 5�. This behavior, already
noticed in Sec. II in the framework of the tight-binding
analysis, is mainly ascribable to a discrepancy between the
average model �Eq. �13�� and the original coupled-mode

FIG. 4. �Color online� Beam intensity evolution �snapshot of
���x ,z��2� of an initial Gaussian beam along the periodically curved
waveguide array of Fig. 1�a� for increasing values of the modula-
tion amplitude �measured by the parameter �, given by Eq. �15��:
�a� �=0 �straight array�; �b� �=0.8, �c� �=1.435 �transparency con-
dition�, and �d� �=1.8. In all the simulations, the input Gaussian
beam is tilted at the angle �=�B /2 and the modulation frequency is
�=0.98	.

FIG. 5. �Color online� Same as Fig. 4, but for an initial Gaussian
beam with �=1.435, �=0.98	 and tilt angle �a� �=�B /3 and �b�
�=�B /4.
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equations with periodic coefficients �Eq. �2� and �7��. A
slight discrepancy can be also seen when computing the
resonance curve of the field-induced barrier transparency
process using the full wave Eq. �1�, similarly to what already
noticed within the tight-binding model �see Fig. 3�a��. In Fig.
3�b�, the numerically computed power reflection �R� and
transmission �T� coefficients versus � �near the first reso-
nance ��	=V0 /�� are depicted for the Gaussian wave
packet of Fig. 4. Like for the resonance curve computed
using the tight-binding model �Fig. 3�a��, the coefficients R
and T have been calculated by considering the first potential
step solely of the barrier, and for each modulation frequency
� the modulation amplitude A was correspondingly varied
such that �= f0 /�=1.435. Note that, as in Fig. 3�a�, the reso-
nance frequency turns out to be slightly smaller than the
theoretical value 	 predicted by the averaged model.

As a concluding remark, it is important to stress that, as
compared to the phenomenon of field-induced barrier trans-
parency for a freely moving quantum particle11 in which par-
ticle transmission occurs solely at special values of initial
momentum �energy� that match the metastable states of the
cycle-average potential barrier, the phenomenon of barrier
transparency for Bloch wave packets predicted in this work
is relatively insensitive to the initial wave-packet momentum
and cannot thus be ascribed to a resonant tunneling phenom-
enon as for the free particle. However, as opposed to the case
of Ref. 11, where the frequency and amplitude of the ac field
may take relatively arbitrary values,20 in our system the
modulation frequency as well as the modulation amplitude
should satisfy certain resonance conditions, namely, Eqs.
�12� and �16�.

IV. CONCLUSIONS

In this work it has been theoretically shown that a rectan-
gular potential barrier for a Bloch particle in a tight-binding
lattice can be made fully transparent by the application of a
strong ac field with appropriate amplitude and frequency. As
this phenomenon bears some connection with the field-
induced barrier transparency phenomenon previously pre-
dicted for freely moving quantum particles scattered by an
ac-driven potential barrier,11,12 the transparency effect for the
Bloch particle has a rather different physical origin, as dis-
cussed in this work. In particular, in the high-frequency limit
transparency is attained independently of the energy of the
Bloch wave packet, and therefore particle transmission
across the barrier cannot be explained as a resonant tunneling
process across the cycle-averaged potential, as for a freely
moving particle.11 This phenomenon could be experimentally
observed in periodically curved waveguide arrays, where
light transport along the lattice mimics the coherent temporal
evolution of a Bloch particle with an external ac-driving
field.9 Numerical simulations based on the paraxial
�Schrödinger� wave equation have also shown that the phe-
nomenon of field-induced barrier transparency persists be-
yond the tight-binding approximation, provided that the lat-
tice is initially excited by a broad beam tilted at an angle
smaller than the Bragg angle.
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