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Many-body instabilities of the half-filled honeycomb bilayer are studied using weak-coupling renormaliza-
tion group �RG� as well as strong-coupling expansion. For spinless fermions and assuming parabolic degen-
eracy, there are four independent four-fermion contact couplings. While the dominant instability depends on
the microscopic values of the couplings, the broken symmetry state is typically a gapped insulator with either
broken inversion symmetry or broken time-reversal symmetry, with a quantized anomalous Hall effect. Under
certain conditions, the dominant instability may appear in the particle-particle �pairing� channel. For some
nongeneric fine-tuned initial conditions, weak-coupling RG trajectories flow into the noninteracting fixed point,
although generally we find runaway flows which we associate with ordering tendencies. Additionally, a tight-
binding model with nearest-neighbor hopping and nearest-neighbor repulsion is studied in weak and strong
couplings and in each regime a gapped phase with inversion symmetry breaking is found. In the strong-
coupling limit, the ground-state wave function is constructed for vanishing in-plane hopping but finite inter-
plane hopping, which explicitly displays the broken inversion symmetry and a finite difference between the
number of particles on the two layers. Finally, we discuss the spin-1/2 case and use Fierz identities to show that
the number of independent four-fermion contact couplings is 9. The corresponding RG equations in the
spin-1/2 case are also presented, and used to show that, just as in strong coupling, the most dominant weak-
coupling instability of the repulsive Hubbard model �at half filling� is an antiferromagnet.
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I. INTRODUCTION

The problem of interacting fermions on the A-B stacked
honeycomb bilayer at half filling has attracted attention due
to a confluence of several factors. First, purely on theoretical
grounds, in its simplest form with the nearest-neighbor
hoping only, the tight-binding approximation gives rise to a
band structure with two bands touching quadratically at the
Fermi level1,2 near two nonequivalent points in the Brillouin
zone, K and K�. Even at the noninteracting level, such
quadratic degeneracy gives rise to logarithmically divergent
susceptibilities2,3 in several channels as temperature, or fre-
quency, are taken to zero.4–6 As a result, some form of spon-
taneous symmetry breaking is expected at finite temperature
upon inclusion of even weak interactions.2–8 And while fine
tuning is necessary to achieve such band structure, in that
�with the exception of square checkerboard and Kagome lat-
tices studied in Ref. 8� inclusion of trigonal warping terms1

eventually gives rise to four Dirac fermions at each K point,
noninteracting susceptibilities may be sufficiently enhanced
that many-body instabilities appear, albeit at finite coupling
strength. In this sense, the A-B stacked honeycomb bilayer
problem is another example of the observation that there are
no generic weak-coupling particle-hole instabilities.9 Rather,
fine tuning, in the form of nesting, for example, is necessary
to bring the strong-coupling physics down to weak coupling.
If we are interested in accessing the symmetry-breaking
phases in the particle-hole channel, as we are in this case,
then fine tuning is a small price to pay for this access, made
available within perturbative renormalization group �RG�.
Second, the isolation of graphene bilayers and the experi-
mental ability to perform, for example, electrical,10–12 angle
resolved photoemission,13 Raman spectroscopy,14 or
infrared15 measurements, while controlling the gate voltage

through the neutrality point, gives rise to the opportunity to
test such theoretical expectations in a reasonably well con-
trolled physical setting. In addition, the technological prom-
ise of this material fuels further need to understand its elec-
tronic structure and with it the many-body interactions.
Finally, the problem of interacting fermions on the
AB-stacked honeycomb bilayer may soon be realized in cold
atom optical lattices, where the theory may also be tested.

The issue of band-structure fine-tuning notwithstanding,
the type of leading instability in a graphene bilayer �with
spin 1/2 fermions� has been a subject of debate as well. A
mean-field approach has been used to argue for an insulating
state with broken inversion symmetry.7 A similar approach
has also been argued to lead to trivial gapped insulating
phases5 as well as to an anomalous quantum Hall phase.16

On the other hand, the leading weak-coupling instability can
be analyzed without resorting to uncontrolled approxima-
tions by using weak-coupling renormalization group. This
approach was used in Ref. 3 where a nematic phase was
found to be the dominant instability within the model stud-
ied. Such instability was subsequently also argued for in Ref.
6. On the other hand, an inversion symmetry-breaking insu-
lating phase has been claimed in Ref. 4.

To determine what type of broken symmetry state is
preferred in the case of spinless fermions, we perform
weak-coupling RG analysis by studying the flow of four-
independent symmetry allowed short-range interactions.
While some of the phases obtained here using a fully con-
trolled weak-coupling RG analysis have been discussed be-
fore, either within mean-field or RG analysis, this work con-
sistently analyzes the conditions under which few of these
competing phases dominate over others. This is elaborated
on in more detail below when discussing the flow diagram
and the susceptibility analysis for the competing order pa-
rameters. We find that generically, depending on the initial
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values of the four-fermion contact couplings, the system
flows into a gapped phase with either broken inversion sym-
metry and a finite difference between the total number of
particles on the two layers or broken time-reversal symmetry.
The former state was not found to be preferred in the model
for spin-1/2 fermions studied in Ref. 3 �where the nematic
state was found to dominate� but an example of the latter
state corresponded to one of the fixed points found therein.
In particular, for the spinless case studied here, we find that a
gapped state with anomalous �zero B-field� quantum Hall
conductivity �2 e2

h has the most divergent susceptibility for a
range of initial couplings as determined by the �right� sink of
the RG trajectories shown in Fig. 3. While nongeneric, we
also specify special conditions under which the interacting
model flows back to the noninteracting fixed point.

In addition, we analyze the specific microscopic model
with nearest-neighbor hopping�s� t �and t�� and nearest-
neighbor repulsion V in both the weak-coupling RG and in
strong coupling. In both regimes we find the �trivial� insulat-
ing phase with broken inversion symmetry to dominate. As
discussed in more detail below, in weak coupling the RG
flow tends to the left sink shown in Fig. 3, with a suscepti-
bility that dominates over other broken symmetry states
mainly due to subdominant terms. In strong coupling, we
construct a ground state wave function for V�0, V��0, t
=0 but t��0, which shows explicitly the broken layer in-
version. Since in this model, the same symmetry appears to
be broken in the limit of both weak and strong couplings, it
is reasonable to assume that such a broken symmetry state
appears at any V , V��0.

A similar analysis is presented in the spin-1/2 case with
short-range interactions. For the repulsive Hubbard model,
we find that the most dominant weak-coupling instability is
toward an antiferromagnetic state. Since the same ordering
tendency happens in the strong coupling, it is reasonable to
assume that in this model, the Neel ordering appears at any
U�0.

This paper is organized as follows: in Sec. II we write
down the �noninteracting� bilayer Hamiltonian first in the
tight-binding approximation and then within k ·p perturba-
tion theory. In Sec. III we construct the low-energy effective
theory at the neutrality point by fine tuning the trigonal
warping terms to zero. The rest of that section deals with
identifying microscopic-symmetry-allowed four-fermion
contact interaction terms using the method of Herbut et al.17

used for the same purpose in single-layer graphene. Before
the reduction due to Fierz identities, there are nine such cou-
plings which further reduce to four once Fierz identities are
taken into account. The weak-coupling RG is presented in
Sec. IV, along with the flow diagram in the space of coupling
constant ratios and the analysis of the susceptibility growth.
The t-V model with weak- and strong-coupling limits is stud-
ied in Sec. V. In Sec. VI, the spin-1/2 case is revisited. Sym-
metry is used to construct an 18-dimensional Fierz vector
along with the 18�18 Fierz matrix to show that there are
nine independent couplings in this case. Their RG equations
are determined and while more general, they are shown to
reduce to the ones studied in Ref. 3 under conditions outlined
therein. In Sec. VII we study the Hubbard model in weak and

strong couplings. Section VIII is devoted to conclusions. De-
tails of the derivation are presented in Appendices A and B.

II. BILAYER HAMILTONIAN

In this section we will define the noninteracting model by
using two different approximation methods. First, the well-
known tight-binding approximation2 will be used and then
the k ·p method or equivalently the method of
invariants.1,6,18,19 Both methods lead to the same form of the
low-energy Hamiltonian and it is ultimately a question of
convenience which one should be adopted.

A. Tight-binding approximation

The noninteracting Hamiltonian in the tight-binding ap-
proximation can be written as

H0 = H0
� + H0

� , �1�

where

H0
� = H0,0

� + H0,1
� + H0,2

� , �2�

H0,0
� = t��

R
�a1

†�R�a2�R� + H.c.� , �3�

H0,1
� = t�

�1��
R,�

�b1
†�R + ��a2�R� + b2

†�R − ��a1�R� + H.c.� ,

�4�

H0,2
� = t�

�2��
R,�

�b1
†�R + �1z�b2�R + �1 + �� + H.c.� , �5�

H0
� = − t�

R,�
�b1

†�R + ��a1�R� + b2
†�R − ��a2�R� + H.c.� ,

�6�

In the case of bilayer graphene, the values of the hopping
integrals t, t�, and t�

�1,2� were extracted experimentally in
Ref. 20. If we define the Fourier transform of a Fermi field as
cj�r�=Nuc

−1/2�keik·rcj,k, where c=a or b, j=1 or 2, and Nuc is
the number of unit cells. Next, we let �k

†

= �a1,k
† ,a2,k

† ,b2,k
† ,b1,k

† � to write the noninteracting Hamil-
tonian �1� as

H0 = �
k

�k
†�

t� 0 t�
�1�dk

� − tdk

0 t� − tdk
� t�

�1�dk

t�
�1�dk − tdk 0 t�

�2�dk
�

− tdk
� t�

�1�dk
� t�

�2�dk 0
��k. �7�

In the above, the wave-vector-dependent function dk

=��eik·� where the sum runs over �1=
	3
2 x̂a+ 1

2 ŷa, �2=
−

	3
2 x̂a+ 1

2 ŷa, and �3=−ŷa. Near K, dK+k
− 3
2a t�kx+ iky�=

−vFk+. Near −K, d−K+k
 3
2a t�kx− iky�=vFk−. The low-energy

spectrum of this �well-known� Hamiltonian,1,21 which is eas-
ily diagonalized, will be discussed in the next section.

B. k·p approach

Instead of resorting to the tight-binding approximation,
we can also arrive at the low-energy Hamiltonian by analyz-
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ing the symmetry of the bilayer potential alone. This is a
standard technique when dealing with semiconductors18 and
one which has also been applied to graphene.19 For the sake
of self-inclusiveness, we present this method as well to show
that one arrives at the same general form of the Hamiltonian
as in the tight-binding approximation, although in practice
the coefficients of various symmetry-allowed terms must be
determined from experiment. We start with the Schrodinger
equation for a particle moving in potential due to the atoms
in layers 1 and 2 separated by 2c

H0 =
p2

2me
+

pz
2

2me
+ V1�r� + V2�r� , �8�

where

V1�r� = �
R

�V0�r − R − cẑ� + V0�r − R − �1 − cẑ�� , �9�

V2�r� = �
R

�V0�r − R + cẑ� + V0�r − R + �1 + cẑ�� . �10�

The low-energy field theory is written in terms of the eight-
component Fermi fields �two layers, 1 and 2, two valleys, K
and −K, and two sublattices a and b as sketched in Fig. 1�,

��r� = �
j=1,2

�uK
�aj��r��K

�aj��r� + uK
�bj��r��K

�bj��r� + u−K
�aj��r��−K

�aj��r�

+ u−K
�bj��r��−K

�bj��r�� . �11�

The rapidly varying Bloch functions at K and at K�=−K are
related by complex conjugation, uK�r�=u−K

� �r�, irrespective
of the layer or sublattice index. Moreover, the Bloch func-
tions uK

aj�r� and uK
bj�r� transform irreducibly under point-

group operations of the lattice �see Fig. 1�. For the sake of
concreteness, within the nearly free electron approximation
for electron wave functions ��1,2� confined to layers 1 and 2,
respectively, we have

�uK
�a1�� =

��1�
	3

��K� + �K + G1� + �K − G3�� , �12�

�uK
�b1�� =

��1�
	3

��K� − 	��K + G1� − 	�K − G3�� , �13�

�uK
�a2�� =

��2�
	3

��K� + �K + G1� + �K − G3�� , �14�

�uK
�b2�� =

��2�
	3

��K� − 	�K + G1� − 	��K − G3�� , �15�

where 	=ei
/3= 1
2 + i

	3
2 ,


uK
�aj��H0�uK

�aj�� = 
uK
�bj��H0�uK

�bj�� = E0,


uK
�a2��H0�uK

�a1�� = E0 + 
uK
�a2��V̂2�uK

�a1�� � E0 + t�,


uK
�bi��H0�uK

�aj�� = E0, �16�

i.e., the interlayer hopping arises from the mixing of the
sublattices a1 and a2. The matrix elements of the in-plane
momentum operator p are also dictated by symmetry to be


uK
�aj��p�uK

�aj�� = 
uK
�bj��p�uK

�bj�� = 
uK
�a1��p�uK

�a2�� = 0,


uK
�a2��p�uK

�b2�� = 
uK
�b1��p�uK

�a1�� � x̂ − iŷ ,


uK
�a1��p�uK

�b2�� = 
uK
�b1��p�uK

�a2�� � x̂ − iŷ ,


uK
�b2��p�uK

�b1�� � x̂ − iŷ . �17�

Defining �K
† �r�= ��K

�a1�†
�r� ,�K

�a2�†
�r� ,�K

�b2�†
�r� ,�K

�b1�†
�r��, gives

us the effective Hamiltonian near K to read

� d2r�K
† �r��

0 t� v2k− vFk+

t� 0 vFk− v2k+

v2k+ vFk+ 0 v1k−

vFk− v2k− v1k+ 0
��K�r� . �18�

This is equivalent to what we found in the tight-binding ap-
proximation.

The spectra of the k ·p and the tight-binding Hamiltonians
are well known and have been discussed extensively in the
literature �see, e.g., Refs. 1, 2, and 20�. In the vicinity of each
K point, there are four Dirac points: one isotropic at �K and
three anisotropic ones arranged in accordance with threefold
lattice symmetry around the isotropic one. When we neglect
trigonal warping terms, by setting v1=v2=0, or set the higher
order hopping terms t�

�1�= t�
�2�=0, the four Dirac points merge

into a parabolic degeneracy.

III. LOW-ENERGY EFFECTIVE THEORY

In the weak-coupling limit, the kinetic energy dictates
which modes are important to determine the behavior of the
system at low energies. Clearly, at k=0 we have two degen-
erate levels and two levels at �t�. Since we wish to work
with a theory for the low-energy modes only, we need to
project out the bands which originate from the two “split-
off” bands. We can do so in several equivalent ways. The
method used here implements the path integral formalism,
where we integrate out the Fermi fields associated with a1
and a2 modes �sites�, and arrive at an effective action with an

b2

b1

a1,2

R1

R2

a

K−K

4π

3
√

3a

−ω

−ω

−ω

−ω

−ω

−ω

−ω
∗

−ω
∗

−ω
∗ −ω

∗

−ω
∗

−ω
∗

1

1

1

1

G1

G2

G3

Γ

(i) (ii)

FIG. 1. �i� Schematic representation of the A-B stacked bilayer.
The low-energy wave function near K is also sketched, with 	

=ei
/3= 1
2 + i

	3
2 . The primitive lattice vectors are R1=	3ax̂ and R2

=
	3
2 ax̂+ 3

2aŷ. The area of the unit cell is Auc= ẑ · �R1�R2�= 3	3
2 a2.

�ii� Schematic representation of the �reciprocal� k space.
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effective “Hamiltonian” for the low-energy modes. In addi-
tion to the wave-vector dependence, this Hamiltonian is fre-
quency dependent as well. Near the K point, the effective
quadratic action after integrating out the a modes is

e−Sef f
�0�

= e−�0
�d
�b���
+Hbb��b

�� D��a��a�e−�0
�d
��a���
+Haa��a+�a�Hab�b+�b�Hba�a�.

Since the integral is Gaussian, we can easily perform it and
find that up to an additive constant

Sef f
�0� =

1

�
�

n

�b��i	n��− i	n + Hbb − HabGaa�i	n�Hba��b�i	n� ,

where

HabGaa�i	n�Hba =
1

t�
2 + 	n

2�Ak2 Bk+
2

Bk−
2 Ak2� , �19�

A = �i	n�vF
2 + v2

2� + 2t�vFv2� , �20�

B = �t��vF
2 + v2

2� + 2i	nvFv2� , �21�

and

Hbb = � 0 v1k−

v1k+ 0
� . �22�

Within the k ·p theory, the parameters v1 and v2 should be
determined from experiment. To make contact with the no-
tation in literature, Ref. 21 have v1=v3 and v2=−v4 �see their
Eqs. �6� and �15��.

If we are interested in the modes near the Fermi level of
an unbiased bilayer, we can simply set 	n=0 in the effective
action �Eqs. �19�–�22��. As will be obvious from the discus-
sion in the next section, terms arising from the corrections
are perturbatively irrelevant near the Gaussian fixed point in
the sense discussed in a different context in Ref. 22.

In what follows we will also set v1=v2=0 to fine tune the
system to quadratic degeneracy. Such a situation arises if in
the tight-binding formulation we consider only the nearest-
neighbor hopping integrals, t and t�. Otherwise, as men-
tioned in Sec. I, the ultimate low-energy dispersion involves
four �one isotropic and three anisotropic� Dirac cones.1,6,21

While such fine tuning appears artificial, it is an example of
the maxim9 that there are no generic weak-coupling particle-
hole instabilities. Rather, fine tuning, in the form of nesting,
for example, is necessary to bring the strong-coupling phys-
ics down to weak coupling. If we are interested in accessing
the symmetry-breaking phases in the particle-hole channel,
as we are in this case, then fine tuning is a small price to pay
for this access made available within perturbative RG.9

Putting back the −K point, the low-energy degrees of
freedom can now be expressed in terms of a four component
Fermi field

�†�r� = ��K
�b1�†

�r�,�K
�b2�†

�r�,�−K
�b1�†

�r�,�−K
�b2�†

�r�� ,

i.e., the electronic degrees of freedom are expanded as

�̃�r� = �
j=1,2

�uK
�bj��r��K

�bj��r� + u−K
�bj��r��−K

�bj��r�� . �23�

The noninteracting low-energy �imaginary time 
� La-
grangian, which includes both K and K� valleys, and which
will serve as our �Gaussian� fixed point of departure, can
therefore be written as

L0 =� d2r��†�
,r�� �

�

+ �

a=x,y
�adp

a���
,r�� , �24�

where we defined the vector function dk and the 4�4 ma-
trices �x,y as

dk
x =

kx
2 − ky

2

2m
, dk

y = −
2kxky

2m
, �25�

�x = 1�x = �2, �y = 
z�y = �1. �26�

The effective-mass parameter entering the above equations is
m= t� / �2vF

2� �in the tight-binding approximation vF
=3t / �2a��. The four component Fermi objects � appearing in
Eq. �24� were defined as the envelope Fermi fields in Eq.
�23�. In the above, the first Pauli matrix acts in the valley
�K space and the second in the layer 1,2 space. To make
contact with the literature we also use Dirac � matrices
which we represent as

�0 = 1�z, �27�

�1 = 
z�y , �28�

�2 = 1�x, �29�

�3 = 
x�y , �30�

�5 = 
y�y . �31�

The action �d
L0 is invariant under the scale transforma-
tion

r → sr , �32�


 → s2
 , �33�

� → s−1� . �34�

This means that the “dynamical critical exponent” z=2 for
the Gaussian theory, which will be our point of departure
when analyzing weak-coupling instabilities.

Short-range interactions

From the above discussion of the Gaussian fixed point, it
is evident that the short-range interactions, when projected
onto our low-energy modes, will contain among other �per-
turbatively irrelevant� terms, contact four-fermion terms
which are marginal by power counting. The rest of this sec-
tion deals with identifying such symmetry-allowed interac-
tion terms. The method used here follows almost verbatim
the method used by Herbut et al.17 in their analysis of the

OSKAR VAFEK PHYSICAL REVIEW B 82, 205106 �2010�

205106-4



short-range interactions in single-layer graphene. In addition
to the lattice symmetries used in Ref. 17, we also include the
threefold rotational symmetry,19 which reduces the number
of independent four-fermion couplings to 4.

We can therefore start by writing the general Lagrangian

L = L0 + Lint, �35�

where L0 was introduced in Eq. �24� and

Lint =
1

2�
S,T

gST� d2r��†S��r,
����†T��r,
�� , �36�

where, at this point, the sum over S includes all 16 indepen-
dent four-by-four matrices �generators of SU�4�� and so does
the sum over T. Naively, we have 16+8�15=136 couplings
to consider. Just as in the case of the single-layer graphene,17

this number will be dramatically reduced first by using the
discrete symmetries of the lattice and second by using Fierz
identities.

The key role in this reduction is played by the behavior of
the Bloch functions u�r� under symmetry operations, which
dictates the transformation properties of the four component,
slowly varying, envelope Fermi fields ��r�.18,19 The dimer
centered rotation by 2
 /3, mirror reflection about the yz
plane and about the xz axis followed by xy plane, respec-
tively, give

Ĉ3��x,y� = − e−i�
/3�
3�3��−
1

2
x −

	3

2
y,

	3

2
x −

1

2
y�

=− e�
/3��1�2��−
1

2
x −

	3

2
y,

	3

2
x −

1

2
y� , �37�

�̂v
y��x,y� = 
112��− x,y� = i�1�5��− x,y� , �38�

�̂v
z �̂v

x��x,y� = 12�1��x,− y� = �2��x,− y� , �39�

The time-reversal symmetry and translational symmetry give

���r� = 
112���r� = i�1�5���r� , �40�

t̂��r� = eiK·R
312��r + R� = eK·R�3�5��r + R� . �41�

In the above, R=mR1+nR2 where R1=	3ax̂ and R2=
	3
2 ax̂

+ 3
2aŷ. And since K= 4


3	3a
x̂, K ·R= 2


3 �2m+n�, where m ,n
=0, �1, �2, . . . The lattice translational symmetry therefore
corresponds to the Z3 discrete analog of the chiral Uc�1�
generated by �3�5.

1. Symmetry reduction

Following Herbut et al.,17 we split the 16 linearly inde-
pendent four-by-four matrices S and T into four sets

A = �14,�2,i�0�3,i�1�5� , �42�

B = �i�0�1,− i�3�5,i�0�5,i�1�3� , �43�

C = ��0,i�0�2,�3,i�2�3� , �44�

D = ��1,i�1�2,�5,i�2�5� . �45�

The matrices which belong to the set A are even under both
reflection operations �Eqs. �38� and �39��. The matrices in the
set B are odd under y reflections �Eq. �38�� and even under
“x” reflections �Eq. �39��. The matrices in the set C are even
under y reflections �Eq. �38�� and odd under x reflections
�Eq. �39��. And finally, matrices belonging to the set D are
odd under both Eqs. �38� and �39�. This means that only
quartic terms combining matrices from the same set are al-
lowed by symmetry. Each such set contains 4+2�3=10
such terms and that leaves 40 couplings.

Eight matrices A1,2, B1,2, C1,2, and D1,2 are left invariant
under the spatial translation operation �41�. These give rise to
3�4=12 couplings, eight direct gXjXj

�X=A, B, C, or D and
j=1 or 2�, as well as four mixed gX1X2

. In addition, there are
four sets of pairs which transform as vectors under Eq. �41�,
�= �A3 ,B3�, �= �B4 ,A4�, �= �C3 ,D3�, and �= �C4 ,D4�. These
give rise to additional six couplings. Schematically, four of
them are ��=�,�,�,�� j=1

2 g�� j � � j and two mixed ones are
g���A3 � A4−B3 � B4� and g���C3 � C4+D3 � D4�. Alto-
gether, after inclusion of the translation symmetry, we are
left with 18 couplings.

The unitary part of the time-reversal operations �, Eq.
�40�, happens to correspond to the mirror reflection about y,
�Eq. �38��, which has already been taken into account. How-
ever, complex conjugation, further restricts the number of
couplings. Specifically, mixed terms with one purely real and
one purely imaginary matrix cannot appear, therefore gC1C2
=gD1D2

=g��=0. This leaves 15 couplings.17

The lattice symmetries considered by Herbut et al.17 did
not contain site- or plaquette-centered rotation19 by 120°. As
stated in Eq. �37�, this symmetry is generated by i�1�2. In-
cluding this symmetry requires that the cross terms gA1A2
=gB1B2

=g��=0. Moreover, it requires that gA2A2
=gD1D1

,
gB1B1

=gC2C2
, and g�=g�.

This leaves us with the following nine terms:

gA1A1
��†A1��2 + gA2A2

���†A2��2 + ��†D1��2�

+ gB1B1
���†B1��2 + ��†C2��2� + gB2B2

��†B2��2

+ gC1C1
��†C1��2 + gD2D2

��†D2��2 + g����†A3��2

+ ��†B3��2� + g����†C3��2 + ��†D3��2� + g����†B4��2

+ ��†A4��2 + ��†C4��2 + ��†D4��2� . �46�

The nine terms can be further reduced to four independent
ones by using Fierz identities.

2. Fierz identities

We set gXX=gX to continue with the notation of Ref. 17.
We use the method employed therein to write down Fierz
identities17,23 which, due to the Grassman nature of the Fermi
fields, relate various seemingly unrelated couplings.

The starting point is the SU�4� algebraic identity �see Eq.
�A4� of Ref. 17�
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SijTmn =
1

16
Tr�S�aT�b��in

b �mj
a , �47�

which leads to

��†�x�S��x����†�y�T��y�� = −
1

16
Tr�S�aT�b���†�x��b��y��

���†�y��a��x�� . �48�

The minus sign comes from � and �† being anticommuting
�four component� Grassman fields. For contact terms x=y
and the above Eq. �48� constitutes a set of linear relations
between different terms of our symmetry reduced interaction
Lagrangian �Eq. �46��.

If we arrange the quartic terms into a vector

V = ���†A1��2,��†A2��2 + ��†D1��2,��†B1��2

+ ��†C2��2,��†B2��2,��†C1��2,��†D2��2,��†A3��2

+ ��†B3��2,��†B4��2 + ��†A4��2 + ��†C4��2

+ ��†D4��2,��†C3��2 + ��†D3��2� , �49�

then the Fierz identities lead to the linear constraint

FV = 0. �50�

A straightforward, though somewhat laborious, application
of Eq. �48� leads to the explicit form of the Fierz matrix in
the case of spinless fermions

F =�
5 1 1 1 1 1 1 1 1

2 4 0 2 − 2 − 2 2 0 − 2

2 0 4 2 − 2 − 2 − 2 0 2

1 1 1 5 1 1 − 1 − 1 − 1

1 − 1 − 1 1 5 1 − 1 1 − 1

1 − 1 − 1 1 1 5 1 − 1 1

2 2 − 2 − 2 − 2 2 4 0 0

4 0 0 − 4 4 − 4 0 4 0

2 − 2 2 − 2 − 2 2 0 0 4

� .

�51�

The matrix F has four zero eigenvalues and as a result there
are four independent couplings.17

In order to make a connection with the previous work,3

we choose to eliminate

��†B1��2 + ��†C2��2 = − 2��†A1��2 + ���†A2��2

+ ��†D1��2� − 2��†D2��2

− 2���†C3��2 + ��†D3��2� ,

�52�

��†B2��2 = − ���†A2��2 + ��†D1��2� + ��†D2��2

+ ���†C3��2 + ��†D3��2� , �53�

��†C1��2 = − ��†A1��2 + ���†A2��2 + ��†D1��2�

− 2��†D2��2 − ���†C3��2 + ��†D3��2� ,

�54�

��†A3��2 + ��†B3��2 = − 2��†A1��2 − 2��†D2��2

− ���†C3��2 + ��†D3��2� , �55�

and

��†B4��2 + ��†A4��2 + ��†C4��2 + ��†D4��2 = − 2���†A2��2

+ ��†D1��2� + 4��†D2��2 + 2���†C3��2 + ��†D3��2� ,

�56�

in favor of the remaining four terms. These equations will be
used in deriving our RG equations since elimination of fast
modes will generate terms such as, for example, ��†B2��2.
The above equations show that such a term does not corre-
spond to a new coupling in a renormalized action but rather
is a linear combination of terms already present.

Finally, we arrive at our interaction Lagrangian

Lint =
1

2
� d2r�gA1

��†A1��r,
��2 + gA2
���†A2��r,
��2

+ ��†D1��r,
��2�� +
1

2
� d2r�gD2

��†D2��r,
��2

+ g����†C3��r,
��2 + ��†D3��r,
��2�� . �57�

Above is the most general four-fermion contact interaction
Lagrangian for spinless fermions allowed by the symmetry
of the A-B stacked honeycomb bilayer. In the next section,
we study the weak-coupling RG flow of the four couplings
gA1

, gA2
, gD2

, and g�. The first three couplings appeared in
our previous work3 where we called them g1, g2, and g3. The
fourth coupling, g�, did not appear there since the starting
point assumed only finite g1 and, as we will see later, g� is
not generated if its starting value is zero.

IV. RENORMALIZATION GROUP ANALYSIS

Clearly, gST’s are marginal by power counting and the
question is how they flow. The RG procedure employed here
follows Ref. 22 and consists of integrating out the fermionic
modes in a thin shell between the initial cutoff � and � /s
while the integral over 	 extends from −� to �. Since we are
working in weak coupling, we can integrate out the fast
modes perturbatively in g’s. The diagrams needed are shown
in Fig. 2. Afterward, the lengths r, times 
 and the modes �

FIG. 2. Diagrams appearing at one-loop RG. Each vertex can be
represented by either a 4�4 matrix �spinless� or 8�8 matrix �spin-
1/2� case.

OSKAR VAFEK PHYSICAL REVIEW B 82, 205106 �2010�

205106-6



are rescaled according to Eq. �32� and the change in the
coupling constants is noted. �To the order we are working,
the dynamical critical exponent z remains 2.� While the de-
tails of the derivation are provided in Appendix A, we note
in passing that the analysis is facilitated by the use of the
identities

�
−�

� d	

2

�

�/s

� d2k

�2
�2Gk�i	� � G�k��i	�

= ��14 � 14 +
1

2�
a=1

2

�a � �a� m

4

ln s , �58�

where the noninteracting Green’s function is

Gk�i	� = �− i	 + � · dk�−1 =
i	 + � · dk

	2 + � k2

2m
�2 �59�

and, just as before, dk
x =

kx
2−ky

2

2m , dk
y =−

2kxky

2m , �x=�2, and �y =�1.
Using this procedure, we find the RG equations for the

four coupling constants to be

dgA1

d ln s
= − 4gA1

gA2

m

4

, �60�

dgA2

d ln s
= − �gA1

2 − 2gA1
gA2

+ 8gA2

2 − 2gA2
gD2

+ gD2

2

+ 4�3gA2
− gD2

�g� + 6g�
2�

m

4

, �61�

dgD2

d ln s
= 2�2gA2

2 + 2gA1
gD2

− 6gA2
gD2

− 2gD2

2

+ 8gA2
g� + 2g�

2�
m

4

, �62�

dg�

d ln s
= − 2g��− 2gA1

+ 2gA2
+ 2g��

m

4

. �63�

These equations reduce to the ones studied in Ref. 3 when
we set g�=0 in this work and N=2 in Eqs. �6�–�8� of Ref. 3.
Their analysis proceeds along the lines discussed in Ref. 3.
We note that each RG equation corresponds to a quadratic
polynomial in coupling constants. Therefore, dividing each
equation by gA2

�which is g3 in the notation of Ref. 3�, we
obtain three equations

dgA1

dgA2

= R12�gA1

gA2

,
gD2

gA2

,
g�

gA2

� , �64�

dgD2

dgA2

= R32�gA1

gA2

,
gD2

gA2

,
g�

gA2

� , �65�

dg�

dgA2

= R42�gA1

gA2

,
gD2

gA2

,
g�

gA2

� , �66�

where

R12�x,y,z� =
4x

x2 − 2x + 8 − 2y + y2 + 4�3 − y�z + 6z2 ,

�67�

R32�x,y,z� = −
4�1 + xy − 3y − y2 + 4z + z2�

x2 − 2x + 8 − 2y + y2 + 4�3 − y�z + 6z2 ,

�68�

R42�x,y,z� =
2z�− 2x + 2 + 2z�

x2 − 2x + 8 − 2y + y2 + 4�3 − y�z + 6z2 .

�69�

Equations �64�–�66� are homogeneous, which means that we
can instead study the flow of the coupling constant ratios

gA2

d
gA1

gA2

dgA2

= −
gA1

gA2

+ R12�gA1

gA2

,
gD2

gA2

,
g�

gA2

� , �70�

gA2

d
gD2

gA2

dgA2

= −
gD2

gA2

+ R32�gA1

gA2

,
gD2

gA2

,
g�

gA2

� , �71�

gA2

d
g�

gA2

dgA2

= −
g�

gA2

+ R42�gA1

gA2

,
gD2

gA2

,
g�

gA2

� . �72�

Note that the right-hand side of these equations is a function
of coupling constant ratios only, i.e., it is autonomous in the

new variables
gA1

gA2

,
gD2

gA2

, and
g�

gA2

. We can think of the right-hand

sides effectively as �highly nonlinear� � functions for the
ratios. The advantage of rewriting the flow equations this
way is that in this form it is easier to analyze the qualitative
nature of the flow diagram. Unlike in the case where g� was
assumed to vanish from the start,3 in the present case the �
function for gA2

is not negative semidefinite. It may appear
therefore, that we lose the directionality of the flow equa-
tions in the three-dimensional �3D� ratio space. This turns
out not to be the case since the �ellipsoidal� region in the 3D
ratio space where dgA2

/d ln s changes sign is precisely the
same region where the “�” functions for the ratios change
sign, and so it is enough to determine the directionality of the
flow of the trajectories near fixed points of the ratios, which
turns out to be simple enough.

The qualitative analysis proceeds by finding the fixed
points in the ratio space. There are four of them,

�gA1

�

gA2

� ,
gD2

�

gA2

� ,
g�

�

gA2

� � = �0,− 1.085,0� , �73�
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�gA1

�

gA2

� ,
gD2

�

gA2

� ,
g�

�

gA2

� � = �0,0.566,0� , �74�

�gA1

�

gA2

� ,
gD2

�

gA2

� ,
g�

�

gA2

� � = �0,6.519,0� , �75�

�gA1

�

gA2

� ,
gD2

�

gA2

� ,
g�

�

gA2

� � = �− 1,− 1,− 1� . �76�

The first three are the N=2 analog of the �N=4� fixed ratios
found in Ref. 3 while the fourth one is new. For gA2

�0 the
stability analysis gives the first �Eq. �73�� and the third one
�Eq. �75�� to be sinks �see Fig. 3�. The second one �Eq. �74��
is mixed, with two stable directions �negative eigenvalues�
and one unstable direction �positive eigenvalue�. The fourth
one �Eq. �76�� is also mixed, with one positive, one negative,
and one zero eigenvalues. For gA2

�0 the directionality of
the flows is reversed and the sinks become sources while the
mixed fixed points remain mixed but also with reversed
sense of flow. These “runaway” flows in the coupling con-
stant ratio space for gA2

�0 simply correspond to decrease in
gA2

which eventually crosses zero, where the ratios become
infinite, and then become negative. Once negative, the flows
are described by the two stable sinks, separated by a critical
plane �3D version of the �red� separatrix shown in Fig. 3 of
Ref. 3�. The generic flow for initial gA2

of any sign is toward
large and negative gA2

and toward either one of the two ratio
sinks.

However, it is interesting to ask, under which �nontrivial�
conditions, may all the coupling constants flow to zero. One
possibility is to fine tune the initial values of gA1

and g� to
zero, set the initial value of gA2

�0 and the ratio −1.085
�gD2

/gA2
�6.519. In this case, the flow is toward both gA2

→0 and gD2
→0 while their ratio approaches 0.566. Note

that in this case we have to fine tune two of the four sym-

metry allowed couplings gA1
and g� to vanish.

Another possibility involves the new fixed point in the

ratio space at �
gA1

gA2

,
gD2

gA2

,
g�

gA2

�= �−1,−1,−1�. While the fixed

point is mixed, in that one of the RG eigenvalues is negative
and one positive, one eigenvalue, whose right eigenvector is
� 1

	3
, 1

	3
, 1

	3
�, vanishes. This means that in the vicinity of this

fixed point, the flow along or against this direction in the
ratio space is very slow. Importantly, our numerical integra-
tion finds that for gA2

�0, starting anywhere�!� along the line

�
gA1

gA2

,
gD2

gA2

,
g�

gA2

�= �−� ,−� ,−�� for 0���1, the flow is toward

�=1 with decreasing gA2
→0. The flow trajectories passing

through this line segment in the ratio space, however, are not
straight lines. In fact, they connect with the fixed point

�
gA1

gA2

,
gD2

gA2

,
g�

gA2

�= �0,−1.085,0�. This means that there is a non-

trivial �curved� finite surface in the ratio space along which
the flow is directed toward the noninteracting fixed point if
gA2

starts out positive. In this case only one parameter needs
to be fine tuned in order to start on this surface. This inter-
esting behavior, however, is nongeneric, in that such a sur-
face is unstable, and the generic flow for initial gA2

�0 is
toward large and negative gA2

and toward the two ratio sinks.

Susceptibilities and ordered states

The physics associated with the fixed ratios analyzed in
the previous section can be understood by studying the flow
of the susceptibilities toward forming various orders. For
translationally invariant order parameters, the susceptibilities
can be calculated from the above flows by introducing source
terms into the action so that S→S+�S,

�S = − �ph
Oi� d
d2r�†�r,
�O�i���r,
�

− �pp
Oi� d
d2r�a�r,
�Oab

�i��b�r,
� . �77�

Next, we integrate out the fermionic modes within a small
shell given by � /s�k�� and find the correction to the
source term perturbatively in the g’s. We then substitute the
flow of the g’s into the prefactors of various source terms and
ask which diverges the fastest as s increases.

1. Particle-hole channels

In the particle-hole channel, we therefore find

�Oi�s���
† Oi���r,
� = s2�Oi�1���

† Oi��

+ s2�Oi�1��
M

gMM�OM��
† M���r,
�

− s2�Oi�1��
M

gMM��
† �OM���r,
� ,

�78�

where i is summed over the 16 independent order parameters
�generators of SU�4��, and

�OM = �
−�

� d	

2

�

�/s

� d2k

�2
�2Tr�Gk�i	�OiGk�i	�M� , �79�

−2−2

−1

−1

−1
0

0

0

00

1

1

1

22
44

66

gA1
/gA2

gA1
/gA2

gD2
/gA2

gD2
/gA2

gγ/gA2

FIG. 3. �Color online� Flow diagram in the coupling constant
ratio space assuming that gA2

�0 �generic behavior�. There are two
sinks given by Eqs. �73� and �75� in the text and two mixed fixed
ratios �Eqs. �74� and �76��. For gA2

�0 the flow is reversed, and
generically, the divergent coupling constant ratios simply mean that
gA2

has shrunk and crossed 0. After this point gA2
becomes negative

and the directionality shown here is restored.
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�OM = �
−�

� d	

2

�

�/s

� d2k

�2
�2 MGk�i	�OiGk�i	�M . �80�

Using Eq. �58� one can easily convince oneself that the only
nonzero contributions to �OM come from O=M, and that the
matrix �OM is proportional to O. From here we find the flow
equations for the source terms

d ln �Xj

d ln s
= 2 + �AXj

gA1
+ BXj

gD2
+ CXj

gA2
+ DXj

g��
m

4

,

�81�

where X=A ,B ,C ,D and j=1,2 ,3 ,4. The results of this cal-
culation, i.e., the values of AXj

, BXj
, CXj

, and DXj
, are shown

in Table I. The coupling constants g are functions of s and, in
order to determine the most likely ordering tendency, it is
necessary to find out which source term �Xj

grows the fast-
est. We can write each of these equations as

d ln �Xj

d ln s
= 2 + gA2�AXj

gA1

gA2

+ BXj

gD2

gA2

+ CXj
+ DXj

g�

gA2

� m

4


�82�

and near the two sinks, we can take gA2
�0 and substitute the

fixed point ratios.

Near the first sink �
gA1

�

gA2
� ,

gD2
�

gA2
� ,

g�
�

gA2
� �= �0,−1.085,0� and, plug-

ging in these values, we find that the fastest divergence ap-
pears for �ph

C1, �ph
C3, and �ph

D3. Discriminating between the first
and the last two ordering tendencies requires knowledge of
the sign of the subleading ratio

g�

gA2

.

If
g�

gA2

�0, i.e., if it approaches 0 from below as s in-

creases, then the most dominant particle-hole ordering ten-
dency is toward a finite expectation value of C1=�0=12�z.
Physically, this order parameter, which corresponds to an
imbalance in the number of particles on the two different
layers, opens up a gap at the K and −K points in the Bril-
louin zone and the system is a �trivial� insulator. As shown
below, this turns out to be the case for a lattice model with a
nearest-neighbor repulsion V.

On the other hand, if
g�

gA2

�0 and approaches zero from

above as s increases, then the most dominant ordering ten-
dency among the particle-hole channels studied here is to-
ward finite expectation values of C3=�3=
x�y and D3=�5
=
y�y, both of which are odd under time-reversal symmetry
�Eq. �40��.

Near the second sink �
gA1

�

gA2
� ,

gD2
�

gA2
� ,

g�
�

gA2
� �= �0,6.519,0� the most

dominant ordering tendency is toward a finite expectation
value of D2= i�1�2=
z�z. The corresponding order parameter
also opens up a gap in the single-particle spectrum but unlike
C1, it breaks time-reversal symmetry. This results in an
anomalous quantum Hall state, with zero B-field Hall con-
ductivity �xy = �2 e2

h . Such a state is a bilayer analog of the
Haldane model for the quantum Hall effect without Landau
levels.24

2. Particle-particle channels

Since our Fermions are spinless, if the integral

� d2r�a�r,
�Oab
�i��b�r,
�

is to be finite, we must have Oab
i =−Oba

i . Of the 16 SU�4�
generators �Eq. �42�� this condition selects the six matrices
B3, B4, C2, C3, D1, and D4. Integrating out the fast modes, we
are left with the following renormalization of the source term
for the slow modes ��:

�Oi�s��a
��r,
�Oab

�i��b
��r,
�

= s2�Oi�1��a
�Oab

�i��b
��r,
�

+ s2�Oi�1��
M

gMM� d	

2

�

�/s

� d2k

�2
�2O��
i Gk,�a�i	n�

�Mab�b��r,
�G−k,�c�i	n�Mcd�d��r,
� . �83�

Evaluating the necessary matrix products leads to

d ln �B3

d ln s
= 2 − �gA1

+ gD2
− 2g��

m

4

, �84�

d ln �B4

d ln s
= 2 − �2gA1

− 2gD2
+ 4gA2

+ 4g��
m

4

, �85�

d ln �C3

d ln s
= 2 − �gA1

+ gD2
− 2g��

m

4

, �86�

d ln �C2

d ln s
=

d ln �D1

d ln s
=

d ln �D4

d ln s
= 2. �87�

Near the first sink �
gA1

�

gA2
� ,

gD2
�

gA2
� ,

g�
�

gA2
� �= �0,−1.085,0� and, substitut-

ing these values into Eqs. �84�–�87�, we find that the stron-
gest divergence appears for �pp

B4. The leading divergence is as
fast as for �ph

C1, �ph
C3, and �ph

D3 but it differs in the subleading
terms. In fact, for gA1

�0, the strongest divergence is in the
particle-hole channel �ph

C1 discussed above. In principle, fine
tuning and keeping the subleading term gA1

/gA2
�0 �and set-

ting g�=0 or keeping g� /gA2
�0� may lead to the strongest

divergence appearing in the particle-particle channel.

V. t-V MODEL FOR SPINLESS FERMIONS

While the weak-coupling results are quite general, we can
apply them to a specific microscopic model, which happens

TABLE I. The susceptibility coefficients AXj
, BXj

, CXj
, and DXj

in Eq. �81� for different particle-hole order parameters �†Oi�.

�†Xj� 1 2 3 4

�A 0, 0, 0, 0 1 ,−1 ,−4,−2 0, 0, 0, 0 1 ,−1 ,0 ,0

�B 1,−1,0 ,2 0, 0, 0, 0 0, 0, 0, 0 1 ,−1 ,0 ,0

�C 2,2 ,−4 ,−4 1,−1,0 ,2 2 ,2 ,−4 ,−8 1,−1,0 ,0

�D 1,−1,−4,−2 1,−6,−4,4 2 ,2 ,−4 ,−8 1,−1,0 ,0
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to be quite revealing in that we can also analyze it for strong
coupling and thus compare the two regimes. We consider
spinless fermions hopping on the half-filled A-B stacked
honeycomb bilayer, with nearest-neighbor hoppings t and t�

only and with nearest-neighbor repulsions V and V�. The
corresponding Hamiltonian is

H = H0
� + H0

� + V� + V� , �88�

where

H0
� = − t��

R
�a1

†�R�a2�R� + H.c.� ,

H0
� = − t�

R,�
�b1

†�R + ��a1�R� + b2
†�R − ��a2�R� + H.c.� ,

�89�

V� = V��
R
�a1

†�R�a1�R� −
1

2
��a2

†�R�a2�R� −
1

2
� ,

V� = V�
R,�

�a1
†�R�a1�R� −

1

2
��b1

†�R + ��b1�R + �� −
1

2
�

+ V�
R,�

�a2
†�R�a2�R� −

1

2
��b2

†�R − ��b2�R − �� −
1

2
� .

�90�

A. Weak coupling

In order to project onto the low-energy modes, we first
rewrite Hamiltonian �88� as an imaginary time Grassman
path integral. We then integrate out the a1 and a2 modes
perturbatively. This results in

Lef f
�t−V� = L0 + Lint, �91�

where

L0 =
t2

t�
�

R,�,��

�b1
†�R + �,
�b2�R − ��,
� + H.c.� , �92�

Lint = −
V2

8t�
�
R
��

�

nb1
�R + �,
� − nb2

�R − �,
��2
.

�93�

Fourier transforming the Fermi modes in the first term �Eq.
�92�� gives rise to the kinetic-energy term �Eq. �24�� with
m=2t� / �9t2�. The interaction term can be written as

Lint = −
V2

8t�

1

Nuc
�
q,G

��d−qnb1,−q�
� − dqnb2,−q�
��

� �dq+Gnb1,q+G�
� − dG−qnb2,G+q�
��� , �94�

where G is a reciprocal lattice vector and nbj,q

= 1
Nuc

�kbj,k
† bj,k+q. In addition, each fermionic mode is re-

stricted to reside in the first Brillouin zone. Taking k in the

above sum to be near K or −K gives two possibilities for q:
either q�0 or q� �2K. Note that in the first case d0=3
while in the second case d�2K=0. Therefore, only the first
term contributes a marginal coupling, and the above Hamil-
tonian gives rise to the low-energy interaction Lagrangian

Lint
t−V = gC1

�0�� d2r��†C1��r,
��2, �95�

where

gC1

�0� = −
9V2

8t�

Auc
−1. �96�

The area of the unit cell Auc= ẑ · �R1�R2�= 3	3
2 a2. This means

that we should start our RG flow with a small and negative
�attractive� gC1

�0���†C1��2, which should be rewritten using the
Fierz identity �Eq. �54��. The initial conditions are therefore

gA1
�s = 1� = − gC1

�0�, gD2
�s = 1� = − 2gC1

�0�, �97�

gA2
�s = 1� = gC1

�0�, g��s = 1� = − gC1

�0�. �98�

Substituting these as the initial conditions into our RG equa-
tions we find that none of the coupling constants change sign
and they all diverge at the same value of s. The ratios of the

couplings flow to the fixed point �
gA1

�

gA2
� ,

gD2
�

gA2
� ,

g�
�

gA2
� �= �0,

−1.085,0�. Therefore, as discussed in the previous section,
the fastest divergence appears in the channel 12�z. We there-
fore conclude that the weak-coupling instability of this
model is toward a gapped, broken inversion symmetry state
with an imbalance of the number of particles on layer 1
compared to layer 2 �Fig. 4�.

B. Strong-coupling limit

Setting t= t�=0 we find three ground states at half filling:
�i� each site of sublattice a1 and of b2 is singly occupied, �ii�
each site of sublattice a2 and of b1 is singly occupied, and
�iii� each site of sublattice b1 and of b2 is singly occupied.
Each of these states breaks sublattice symmetry but the av-
erage density of particles on each layer is the same and equal

b
†
2
|0〉

|0〉

cos θa
†
1
+ sin θa

†
2

|0〉

FIG. 4. Schematic representation of the strong-coupling state for
the spinless t-V model. For t=0 but finite t�, V, and V�, the sub-
lattice b1 is empty, while sublattice b2 is fully occupied. The a1-a2

dimer is singly occupied, with an electron partially delocalized onto
a2 despite the repulsion from the occupied b2 sites. Such gapped
state breaks inversion symmetry between the layers 1 and 2.
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to 1 per unit cell �which contains two sites in each layer�.
The states �i� and �ii� differ from the state �iii� by the occu-
pation of the a1-a2 dimer which is singly occupied for the
former and empty for the latter.

If we now set t=0 but t��0 then we can further lower
the energy of �i� and �ii� by delocalizing the electron on the
dimer. So, consider the deformation of the state �i�: we seek
a state of the form

���� = �
R

�cos �a1
†�R� + sin �a2

†�R��b2
†�R + ���0� . �99�

For t�=0, we have �=0 but once t��0 we expect ��0.
Acting on ���� with H �for t=0� and requiring ���� to be

an eigenstate gives

�−
V�

4
−

3V

2
�cos � − t� sin � = E cos � , �100�

− t� cos � + �−
V�

4
+

3V

2
�cos � = E sin � . �101�

The above equation has two eigenvalues E�=

−
V�

4 �	t�
2 + 9V2

4 , and clearly t� favors a state with a delocal-
ized particle on the dimer. Thus in the ground state

cos � =
1
	2	1 +

3V

2�E+ +
V�

4
� , �102�

sin � =
1
	2	1 −

3V

2�E+ +
V�

4
� . �103�

This state breaks the sublattice symmetry and there are
clearly more particles on layer 2 than on layer 1. Similarly, if
we deform �ii� in analogous way, we will find a state with
more particles on layer 1 than on layer 2. Both of these states
are gapped.

For infinitesimal t, we expect the energy of the broken
symmetry state to be further lowered via second-order pro-
cesses. This leads us to the conclusion that in the strong-
coupling limit, our Hamiltonian H has a ground state with
broken inversion symmetry, i.e., the total number of particles
on the upper layer is different from the total number of par-
ticles on the lower layer.

VI. SPIN-1
2 CASE

The symmetry-based reduction in the number of coupling
can be used for the spin-1

2 case as well. All the arguments
presented in the section dealing with short range interactions
follow through but now the Fierz vector is 18 dimensional,
instead of 9. Specifically, each term in Eq. �49�, when mul-
tiplied by the appropriate coupling, gives rise to two terms as

gXj
��†Xj��2 → gXj

�c����
†Xj���2 + gXj

�s����
†Xj�� �����2,

�104�

where the Pauli �� corresponds to spin-1
2 SU�2�. The seem-

ingly independent couplings in the two different channels, c

and s, are still related to each other via a Fierz-type identity.
In particular, we can use the SU�8� algebraic identity

SijTmn =
1

64
Tr�S�aT�b��in

b �mj
a , �105�

where S and T are 8�8 matrices, and the 64 generators �a

can be obtained from the 16 SU�4� generators as ��a

� 1,�a � �z ,�a � �x ,�a � �y�. This leads to

��†�x�S��x����†�y�T��y�� = −
1

64
Tr�S�aT�b���†�x��b��y��

���†�y��a��x�� . �106�

Again, the minus sign comes from � and �† being anticom-
muting �four component� Grassman fields. For contact terms
x=y and the above equation constitutes a set of linear rela-
tions among the 18 symmetry allowed terms.

If we now arrange the quartic terms into an 18-component
vector V �Eq. �B1�� we can write the above constraint as

FV = 0, �107�

where the matrix F, displayed in Appendix B �Eq. �B2��, has
nine zero eigenvalues, and, as a result17 there are nine inde-
pendent couplings in the spin-1

2 case. From here it can be
shown that one can eliminate all the �spin-spin� gX

s couplings
in favor of the �charge-charge� gX

c couplings.6

Using the same technique as described for the spinless
case in Appendix A, we find the RG flow equations for the
nine couplings in the spin-1/2 case. These equations,
�A10�–�A17�, are shown explicitly at the end of Appendix A.
While full analysis of Eqs. �A10�–�A17� is beyond the scope
of this paper, we have studied the effect of three of these
couplings in Ref. 3, starting with gA1

�c�, and generating gA2

�c� and
gD2

�c�. No other couplings are generated, assuming they vanish
to begin with, in agreement with Eqs. �A10�–�A17�. The
equations presented in Appendix A of this paper reduce to
Eqs. �6�–�8� of Ref. 3 provided we set N=4 there and iden-
tify g1↔gA1

�c�, g2↔gD2

�c�, and g3↔gA2

�c�. In this case, for finite
initial gA1

�c��0 and vanishing initial gA2

�c� and gD2

�c�, the most
dominant divergence appears in the nematic channel, which
corresponds to one of the ratio sinks g

D2

*�c� /g
A2

*�c�
=m1


−0.525. For certain combinations of the couplings, a differ-
ent sink �gD2

��c� /gA2

��c�=m3
13.98, top fixed point in Fig. 3 in
Ref. 3� may be reached. Thus, an anomalous quantum Hall
state may in principle be stabilized in weak coupling as well.
Finally, we note in passing that the number �Eq. �9�� of in-
dependent couplings in the spin-1

2 case is in agreement with
Ref. 6 but disagreement with Ref. 4.

Susceptibilities

Just as in the spinless case we can analyze the flow of
various source terms � in order to determine the most domi-
nant weak-coupling ordering tendencies. Since in the spin-
1/2 case there are nine independent coupling constants, we
have
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d ln �Xj

d ln s
= 2 + �AXj

gA1
+ BXj

gD2
+ CXj

gA2
+ DXj

g� + EXj
gB1

+ FXj
gB2

+ GXj
gC1

+ HXj
g� + IXj

g��
m

4

. �108�

The coefficients A–I in 32 different particle-hole channels
are listed in Table II. The most dominant instability channel,
Xj, yields the largest right-hand side of the above equation
�Fig. 5�.

VII. HUBBARD MODEL ON THE A-B STACKED
HONEYCOMB BILAYER

In this section we use the above machinery to study the
weak- and strong-coupling limits of the repulsive Hubbard
model on the A-B stacked honeycomb bilayer. Just as before,
we assume nearest-neighbor hopping only, and the potential
energy term can be written as

V�H� = U�
j=1

2

�
R

aj↑
† �R�aj↑�R�aj↓

† �R�aj↓�R� + U�
R

b1↑
† �R

+ ��b1↑�R + ��b1↓
† �R + ��b1↓�R + �� + U�

R
b1↑

† �R

− ��b1↑�R − ��b1↓
† �R − ��b1↓�R − �� . �109�

A. Weak-coupling limit

Projecting the Hubbard interaction onto the low energy
modes we find

Lint =
U

2Auc
�
j=1

2 � d2r���†M j
�f�����†M j

�f��� + ��†M j
�b���

���†M j
�b�T

�� + ��†M j
�b�T

����†M j
�b���� , �110�

where

M1
�f� =�

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0
� � 12, M2

�f� =�
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1
� � 12,

M1
�b� =�

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0
� � 12, M2

�b� =�
0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0
� � 12.

The eight-component Fermi fields � are understood to be at
space-�imaginary-�time point r, 
.

Using the notation established in the previous sections,
we note that the above interaction terms in the low energy
effective Lagrangian can be written as

TABLE II. The susceptibility coefficients �spin-1/2 case� AXj
, BXj

, CXj
, DXj

, EXj
, FXj

, GXj
, HXj

, and IXj
in Eq. �81� for different

particle-hole order parameters �†Oi�.

�†Xj � 1� 1 2 3 4

�A 0, 0, 0, 0, 0, 0, 0, 0, 0 1 ,−1 ,−8,−2,0 ,1 ,−1 ,2 ,0 0, 0, 0, 0, 0, 0, 0, 0, 0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,−8

�B 1,−1,0 ,2 ,−8 ,1 ,−1 ,−2,0 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,−8

�C 2,2 ,−4 ,−4,−4,2 ,−14,−4,8 1 ,−1,0 ,2 ,−8 ,1 ,−1 ,−2,0 2 ,2 ,−4 ,−16,4 ,−2 ,−2,0 ,0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,−8

�D 1,−1,−8,−2,0 ,1 ,−1 ,2 ,0 2 ,−14,−4,4 ,−4 ,2 ,2 ,4 ,−8 2,2 ,−4 ,−16,4 ,−2 ,−2,0 ,0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,−8

�†Xj � �� � 1 2 3 4

�A 0, 0, 0, 0, 0, 0, 0, 0, 0 1 ,−1 ,0 ,−2 ,0 ,1 ,−1 ,2 ,0 0, 0, 0, 0, 0, 0, 0, 0, 0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,0

�B 1,−1,0 ,2 ,0 ,1 ,−1 ,−2,0 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,0

�C 2,2 ,−4 ,−4,−4,2 ,2 ,−4 ,8 1 ,−1,0 ,2 ,0 ,1 ,−1 ,−2,0 2 ,2 ,−4 ,0 ,4 ,−2 ,−2,0 ,0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,0

�D 1,−1,0 ,−2 ,0 ,1 ,−1 ,2 ,0 2 ,2 ,−4 ,4 ,−4 ,2 ,2 ,4 ,−8 2,2 ,−4 ,0 ,4 ,−2 ,−2,0 ,0 1 ,−1 ,0 ,0 ,0 ,−1 ,1 ,0 ,0

, , , , ,C
(s)
1 C

(c)
3 A

(c)
2 B

(c)
1 D

(s)
2 B

(s)
4

30 40 50 ln scrit

ln s

0.25

0.5

0.75

d ln ∆Xj

d ln s
− 2

FIG. 5. �Color online� Susceptibility vs ln s �Eq. �108�� for the
Hubbard model with initial m

4
Ac
U=0.01, in the channels C1

�s�–B4
�s�

�left to right�. The fastest divergence appears in the antiferromag-
netic channel C1 � �� . Altogether 32 particle-hole channels have
been analyzed �Table II�; the channels not shown are either symme-
try related to the ones shown, or d ln � /d ln s−2 vanishes �or is
negative�.
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Lint =
U

4Auc
� d2r���†A1 � 1��2 + ��†C1 � 1��2

+
1

2 �
X=A,B,C,D

��†X4 � 1��2� . �111�

This means that, of the nine symmetry-allowed coupling
constants, the only nonzero ones are gA1

�c�, gC1

�c�, and g�
�c�, with

initial values

gA1

�c��s = 1� = gC1

�c��s = 1� =
U

4Auc
, �112�

g�
�c��s = 1� =

U

8Auc
. �113�

Next, we numerically solve the RG flow �Eqs. �A10�–�A17��
with the above initial conditions �for mU / �4
Auc�=0.01�,
and substitute the resulting s-dependent couplings into the
susceptibility flow �Eq. �108�� using the coefficients dis-
played in Table II. Comparison of the resulting susceptibili-
ties in 32 particle-hole channels shows that the most domi-
nant divergence appears for O=C1 � �� . Physically, this
corresponds to an antiferromagnetic state, with antialigned
spins on the sites b1 and b2.

B. Strong coupling

It is well known that25 in the strong-coupling limit U / t
�1 the Hubbard model with one particle per site is equiva-
lent to the spin-1/2 Heisenberg model with antiferromagnetic
coupling J� t2 /U. If we set t�=0, the two honeycomb layers
decouple and at strong coupling each layer orders
antiferromagnetically26 with a sublattice magnetization that
is free to point along any direction on each layer. Once t� is
finite, the sublattice magnetizations on the two different lay-
ers lock into relative antiferromagnetic arrangement. We thus
find that the half-filled Hubbard model on the A-B stacked
honeycomb bilayer orders antiferromagnetically in both the
weak- and strong-coupling limits.

VIII. CONCLUSIONS

We have studied the effect of short-range interactions on
fermions moving on the A-B stacked bilayer. In order to
access the “strong-coupling phases”9 from weak coupling,
we have fine tuned the spectrum of the noninteracting Hamil-
tonian to achieve parabolic degeneracy, with the ensuing
logarithmically divergent susceptibilities that appear in sev-
eral channels. We have found that, in the spinless fermion
case, the typical dominant ordering tendency opens a spectral
gap, although the nature of the resulting insulating state may
be dramatically different. For example, the weak-coupling
limit of the spinless t-V model, with nearest-neighbor hop-
ping and nearest-neighbor repulsion, leads to an inversion
symmetry-breaking �trivial� insulating phase while the
�right� sink in the RG flow diagram shown in Fig. 3 corre-
sponds to a spontaneously time-reversal symmetry-breaking

anomalous quantum Hall phase with �xy = �2e2 /h. Under
certain conditions, the dominant instability may appear in the
particle-particle channel as well. In addition to the generic
instabilities of the spinless model, fine tuning of the initial
couplings may lead to a flow toward the noninteracting fixed
point. While such behavior is nongeneric, it is interesting
that there is an entire surface in the ratio space �Fig. 3� which
gives rise to such a flow for positive initial gA2

. We have also
studied the strong-coupling limit of the t-V model. In this
case, the ground-state wave function can be shown to explic-
itly display inversion symmetry breaking. Since the same
type of order is found in the asymptotic limits of strong and
weak couplings, it is reasonable to assume that for this spe-
cific model, such ordering happens for any �repulsive� cou-
pling strength.

In the spin-1/2 case, we find nine independent, symmetry-
allowed couplings, and their RG flow equations. While these
equations have not been studied in their entirety, they reduce
to the ones presented before in Ref. 3, in which case an
analysis similar to the one presented for the spinless case
here, leads to either a nematic phase or an anomalous quan-
tum Hall phase with �xy = �4e2 /h, where the extra factor of
2 compared to the spinless case is due to trivial spin degen-
eracy.

Moreover, these Eqs. �A10�–�A17� are solved numerically
for the spin-1/2 Hubbard model at half filling. The initial
values of the effective couplings are such that the most domi-
nant particle-hole instability appears in the antiferromagnetic
channel. This dominance has been established by comparing
susceptibilities toward 32 different ordering tendencies.
Since the same instability appears in the strong-coupling
limit, it is reasonable to conclude that the antiferromagnetic
order sets in for any U�0.

When trigonal warping, which at the noninteracting level
results in splitting of the parabolic degeneracy into four
Dirac points, is taken into account, the logarithmic infrared
divergences are cut off3,6 by the energy scale associated with
the deviation from the parabolic spectrum. This means
that the noninteracting system is stable toward infinitesimal
coupling, i.e., there are no true weak-coupling instabilities.
The RG equations derived in this work will still hold down
to either the energy scale associated with the divergence
of the coupling constants/susceptibilities or to the energy
scale associated with deviations from parabolic spectrum.
In the former case the transition into broken symmetry
states predicted here will occur even if the trigonal warping
effects are not explicitly a part of the analysis. In the
latter case, the values of the couplings obtained at the
scale where deviations from parabolic spectrum must be
included should be used as the initial values for a new
set of RG equations associated with four Dirac points. Since
Dirac points are stable toward infinitesimal short range
interactions, the starting renormalized values of the cou-
plings must exceed some, yet not accurately known, critical
value. It is in this sense that true weak-coupling �particle-
hole� instabilities disappear in the absence of fine tuning.
Nevertheless, this critical value is expected to scale with en-
ergy scale associated with the van Hove singularities, and so
should be appreciably smaller than in the single-layer
graphene.
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It is also worth noting that no such fine tuning is neces-
sary for the models with parabolic touching studied in Ref. 8
in which case there are true weak-coupling instabilities. Un-
fortunately, one cannot just immediately translate the results
regarding the dominance and the nature of the weak-
coupling broken symmetry states found here for the honey-
comb bilayer because �1� the location of the degenerate
points in the Brillouin zone is �qualitatively� different and �2�
the lattice symmetry will, in general, allow different contact
terms than those found here.
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APPENDIX A: DETAILS OF THE RG DERIVATION

For general coupling constants gST, expanding in powers
of g, gives the cumulant expansion


e−�1/2�gST�1�†S��†T��1�� 
 e−�1/2�gST
�1�†S��†T��1�� � exp�gSTgUV

8
�

1,2
�
��†S��†T��1����†U��†V��2��� − 
��†S��†T��1���

�
��†U��†V��2����� ,

where the average 
¯ � is with respect to the Gaussian
weighting factor. We have used a short-hand 1,2 for the
modes at the space �imaginary� time 
1,2 and r1,2 and each
�=��+��. We integrate over the fast modes �� whose
wave numbers � /s�k��. The noninteracting Green’s
function is

Gk�i	� = �− i	 + � · dk�−1 =
i	 + � · dk

	2 + � k2

2m
�2 �A1�

and just as before dk
x =

kx
2−ky

2

2m , dk
y =−

2kxky

2m , and, in the spinless
case, �x=�2 and �y =�1.

Using the identities �Eq. �58��, we can evaluate the
needed diagrams. All possible contractions correspond to the
diagrams in Fig. 2.

For the first diagram we find the following terms:

�Sef f
�RPA� =

1

2 �
S�G

�
U�G

gSgU�
1
�

2
�†�1�S��1�

�Tr�SG�1 − 2�UG�2 − 1���†�2�U��2� ,

�A2�

where, in the spinless case, G= �A1 ,A2 ,D1 ,D2 ,C3 ,D3� and
the corresponding couplings, in order of appearance of S in
G, are �gA1

,gA2
,gA2

,gD2
,g� ,g��. Using the gradient expan-

sion to determine the RG fate of the marginal couplings, we
find that

�Sef f
�RPA� =

1

2 �
S�G

�
U�G

gSgU�
1

�†�1�S��1�Tr�− SU +
1

2
S�1U�1

+
1

2
S�2U�2��†�1�U��1�

m

4

ln s . �A3�

Performing the traces gives

�Sef f
�RPA� = − �

1
�2gA2

2 ���†A2��2 + ��†D1��2� + 4gD2

2 ��†D2��2

+ 4g�
2���†C3��2 + ��†D3��2��

m

4

ln s . �A4�

For the second and third �vertex� diagrams in Fig. 2 we have
the following terms:

�Sef f
�V� = − �

S�G
�

U�G
gSgU�

1
�

2
�†�1�SG�1 − 2�

�UG�2 − 1�S��1��†�2�U��2� . �A5�

Performing the gradient expansion gives

�Sef f
�V� = − �

S�G
�

U�G
gSgU�

1
�†�1�S�− U +

1

2
�1U�1

+
1

2
�2U�2�S��1��†�1�U��1�

m

4

ln s . �A6�

Performing the requisite sums and matrix algebra gives

�Sef f
�V� = − �

1
�gA2

�− gA1
+ gD2

+ 2g�����†A2��2 + ��†D1��2�

− 2gD2
�gA1

− 2gA2
+ gD2

+ 2g����†D2��2�
m

4

ln s

− �
1

�− 2g��gA1
− 2gA2

+ gD2
����†C3��2

+ ��†D3��2��
m

4

ln s . �A7�

For the fourth and fifth diagrams in Fig. 2 we find the fol-
lowing terms:
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�Sef f
�L� = −

1

4 �
S,U�G

gSgU�
1
���†�1��S,U���1��2 +

1

2�
a=1

2

��†�1�

��S�aU + U�aS���1��2� m

4

ln s . �A8�

The corresponding change in the effective action is

�Sef f
�L� = − �

1
�2gA1

gA2
��†A1��2 +

1

2
�gA1

2 + 4gA2

2 − 4gA2
gD2

+ 2gD2

2 + 2g�
2����†A2��2 + ��†D1��2��

− �
1

�2gA2
�gD2

− gA2
���†D2��2 + 2gA2

g����†C3��2

+ ��†D3��2� − 2g�
2��†B2��2� − �

1
��gD2

− 2gA2
�g����†A4��2 + ��†B4��2 + ��†C4��2

+ ��†D4��2�� . �A9�

In order to find the renormalization of the coupling con-
stants, the last two terms must be rewritten using the Fierz
identities �Eqs. �52� and �56��. Adding the terms from
�Sef f

�RPA�, �Sef f
�V�, and �Sef f

�L�, rescaling the fields and the inte-
gration measure, and comparing to the starting action �Eq.
�57�� we find the RG equations �Eq. �60�� for the four cou-
pling constants in the spinless case.

The above Eqs. �A2�, �A5�, and �A8� can also be used to
derive the flow equations of the nine coupling constants in
the case of spin-1/2 fermions. In this case, we have G= �A1
� 1,A2 � 1,D1 � 1,B1 � 1,C2 � 1,B2 � 1,C1 � 1,D2 � 1,A3
� 1,B3 � 1,B4 � 1,A4 � 1,C4 � 1,D4 � 1,C3 � 1,D3 � 1� and
the corresponding couplings, in order of appearance of S in
G, are

�gA1

�c�,gA2

�c�,gA2

�c�,gB1

�c�,gB1

�c�,gB2

�c�,gC1

�c�,gD2

�c�,g�
�c�,g�

�c�,g�
�c�,g�

�c�,

g�
�c�,g�

�c�,g�
�c�,g�

�c�� .

The resulting RG flow equations for spin-1/2 fermions are

dgA1

�c�

d ln s
= − 4�gA1

�c�gA2

�c� + gB1

�c�gB2

�c� + 2g�
�c�g�

�c��
m

4

, �A10�

dgA2

�c�

d ln s
= �− gA1

�c�2
+ 2gA1

�c�gA2

�c� − 12gA2

�c�2
− gB2

�c�2
− �gC1

�c� − 2gB1

�c��2

− gD2

�c�2
+ 2gA2

�c��gB2

�c� − gC1

�c� + gD2

�c� + 2g�
�c� − 2g�

�c��

− 2�g�
�c�2

+ �g�
�c� − 2g�

�c��2��
m

4

, �A11�

dgB1

�c�

d ln s
= �2gB1

�c��gA1

�c� − 4gB1

�c� − 4gA2

�c� + gB2

�c� − gC1

�c� + gD2

�c� − 2g�
�c�

+ 2g�
�c�� − 2�gA1

�c�gB2

�c� − gC1

�c��2gA2

�c� − gD2

�c�� − 2g�
�c��2g�

�c�

− g�
�c����

m

4

,

dgB2

�c�

d ln s
= − 4�gA1

�c�gB1

�c� + gA2

�c�gB2

�c� − g�
�c�2

− 2g�
�c�2

+ 2g�
�c�g�

�c�

− g�
�c�2

�
m

4

, �A12�

dgC1

�c�

d ln s
= 4�gC1

�c��gA1

�c� − 3gA2

�c� − 2gB1

�c� + gB2

�c� − 3gC1

�c� + gD2

�c� − 2g�
�c�

+ 4g�
�c� − 2g�

�c�� + gB1

�c��2gA2

�c� − gD2

�c�� − 2g�
�c��g�

�c�

− g�
�c���

m

4

�A13�

dgD2

�c�

d ln s
= 4�gD2

�c��gA1

�c� − 3gA2

�c� − 2gB1

�c� + gB2

�c� + gC1

�c� − 3gD2

�c� + 2g�
�c�

− 4g�
�c� + 2g�

�c�� + gA2

�c�2
+ gB1

�c��gB1

�c� − gC1

�c�� + 2g�
�c��g�

�c�

− g�
�c���

m

4

, �A14�

dg�
�c�

d ln s
= − 4�g�

�c��gA2

�c� − gB2

�c�� + g�
�c��gA1

�c� − 2gB1

�c� + gC1

�c�� + g�
�c��gB1

�c�

− gC1

�c���
m

4

, �A15�

dg�
�c�

d ln s
= 2�g�

�c��gA1

�c� − 4gA2

�c� + gB2

�c� + gC1

�c� + gD2

�c� − 4g�
�c�� − g�

�c��gA1

�c�

− 2gB1

�c� + gC1

�c�� + g�
�c��2gA2

�c� − gB2

�c� − gD2

�c���
m

4

, �A16�

dg�
�c�

d ln s
= − 4�g�

�c��gB1

�c� − gC1

�c�� + g�
�c��gB2

�c� − 2gA2

�c� + gD2

�c�� − g�
�c��gA1

�c�

− 3gA2

�c� + 2gB1

�c� − gC1

�c� + gD2

�c� − 4g�
�c���

m

4

. �A17�
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APPENDIX B: FIERZ REDUCTION FOR SPIN-1
2 case

If we arrange the quartic contact terms into an 18-dimensional vector

V = ����
†A1���2,���

†A2���2 + ���
†D1���2,���

†B1���2 + ���
†C2���2,���

†B2���2,���
†C1���2,���

†D2���2,���
†A3���2

+ ���
†B3���2, �

X=A,B,C,D
���

†X4���2,���
†C3���2 + ���

†D3���2,���
†A1�� �����2,���

†A2�� �����2 + ���
†D1�� �����2,���

†B1�� �����2

+ ���
†C2�� �����2,���

†B2�� �����2,���
†C1�� �����2,���

†D2�� �����2,���
†A3�� �����2

+ ���
†B3�� �����2, �

X=A,B,C,D
���

†X4�� �����2,���
†C3�� �����2 + ���

†D3�� �����2� , �B1�

then the Fierz identities �Eq. �106�� can be used to relate different components of V via the linear constraint FV=0.
In practice, to obtain the Fierz matrix F we arrange the 64 SU�8� generators �a in the order �X � 1,X � �z ,X � �x ,X

� �y�, where X= �A1 ,A2 ,D1 ,B1 ,C2 ,B2 ,C1 ,D2 ,A3 ,B3 ,B4 ,A4 ,C4 ,D4 ,C3 ,D3�. Straightforwardly, a 64-component analog of the

Fierz vector, obtained by using our ordered set of SU�8� generators, will be denoted by Ṽ. Next, we notice that only the
�diagonal� terms with S=T enter our Lint, and that Tr�S�aS�b���ab. Therefore, for �a arranged as described above, we

numerically generate a 64�64 matrix  ̃ab=−Tr��a�b�a�b� /64. We then construct an auxiliary 64�64 matrix

M = �
Q 0 0 0

0 Q Q Q
0 2Q − Q − Q
0 0 Q − Q

� ,

where

Q =

⎝
⎜
⎜
⎜
⎛

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 − 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 − 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1 1 − 1 1 0 0

0 0 0 0 0 0 0 0 0 0 − 1 − 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 1
⎠
⎟
⎟
⎟
⎞

in order to write

Ṽ =  ̃Ṽ ⇒ MṼ = �M ̃M−1�MṼ .

It is easily seen that components 1–9 and 17–25 of MṼ correspond to our Fierz vector V. Moreover, the blocks 1–9 and 17–25

of the matrix M ̃M−1 do not couple to the rest of the components, and, when subtracted from an 18-dimensional unit matrix,
correspond to the sought Fierz matrix,
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F =

⎝
⎜
⎜
⎜
⎛

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 8 0 2 − 2 − 2 2 0 − 2 2 0 0 2 − 2 − 2 2 0 − 2

2 0 8 2 − 2 − 2 − 2 0 2 2 0 0 2 − 2 − 2 − 2 0 2

1 1 1 9 1 1 − 1 − 1 − 1 1 1 1 1 1 1 − 1 − 1 − 1

1 − 1 − 1 1 9 1 − 1 1 − 1 1 − 1 − 1 1 1 1 − 1 1 − 1

1 − 1 − 1 1 1 9 1 − 1 1 1 − 1 − 1 1 1 1 1 − 1 1

2 2 − 2 − 2 − 2 2 8 0 0 2 2 − 2 − 2 − 2 2 0 0 0

4 0 0 − 4 4 − 4 0 8 0 4 0 0 − 4 4 − 4 0 0 0

2 − 2 2 − 2 − 2 2 0 0 8 2 − 2 2 − 2 − 2 2 0 0 0

3 3 3 3 3 3 3 3 3 7 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

6 0 0 6 − 6 − 6 6 0 − 6 − 2 8 0 − 2 2 2 − 2 0 2

6 0 0 6 − 6 − 6 − 6 0 6 − 2 0 8 − 2 2 2 2 0 − 2

3 3 3 3 3 3 − 3 − 3 − 3 − 1 − 1 − 1 7 − 1 − 1 1 1 1

3 − 3 − 3 3 3 3 − 3 3 − 3 − 1 1 1 − 1 7 − 1 1 − 1 1

3 − 3 − 3 3 3 3 3 − 3 3 − 1 1 1 − 1 − 1 7 − 1 1 − 1

6 6 − 6 − 6 − 6 6 0 0 0 − 2 − 2 2 2 2 − 2 8 0 0

12 0 0 − 12 12 − 12 0 0 0 − 4 0 0 4 − 4 4 0 8 0

6 − 6 6 − 6 − 6 6 0 0 0 − 2 2 − 2 2 2 − 2 0 0 8
⎠
⎟
⎟
⎟
⎞

. �B2�

One can check that the above matrix has nine zero eigenvalues, which implies nine independent couplings and nine constraints.
In addition, one can solve the linear system FV=0 and eliminate all terms of the form ���

†Xj�� �����2 in favor of ���
†Xj���2.
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