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We present analytical expressions for the polarizability P��qx ,�� of graphene modeled by the hexagonal
tight-binding model for small wave number qx ��-M direction� but arbitrary chemical potential �. Generally,
we find P��qx ,��= P�

��� /�q�+qx
2P�

���� with �q=vFqx the Dirac energy, where the first term is due to intra-
band and the second due to interband transitions. Explicitly, we derive the analytical expression for the
imaginary part of the polarizability including intraband contributions and recover the result obtained from the
Dirac cone approximation for �→0. For ���3t, there is a square-root singularity at �q=vFqx independent of
�. For doping levels close to the van Hove singularity, �= t���, Im P��qx ,�� is constant for �� / t�� /�q

�1.
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I. INTRODUCTION

Graphene is a two-dimensional carbon allotrope which
has attracted immense research activity due to its novel me-
chanical and electronic properties.1–4 It is also interesting in
view of potential applications in nanomechanical and nano-
electronic devices, and one of the reasons for this lies in the
possibility to change the carrier density and type by applying
a gate voltage between graphene and the isolating substrate.
This gave rise to the celebrated ambipolar field effect with an
almost constant mobility of around 104 cm2 /Vs for
graphene on SiO2 substrate.5

But it is also possible to modify the Fermi surface via
chemical doping, i.e., by the deposition of, e.g., potassium
atoms which donate their lone valence electrons to the sur-
face layer.6 Whereas with a typical back-gate voltage, chemi-
cal potentials on the order of a few 100 meV can be reached,
doping levels up to the van Hove singularity were recently
achieved via chemically n-type doping using various combi-
nations of K and Ca on both sides of graphene.7

For small energies and chemical potentials � ,�	1 eV,
graphene can be well described by the Dirac cone approxi-
mation, optionally including weak trigonal warping
corrections.8,9 For larger energies or doping levels around the
van Hove singularity, the linearization around the K points is
not applicable anymore and one usually has to resort to nu-
merical methods.10 Only around special symmetry points like
the M point, analytical solutions are still feasible.11,12

The tight-binding model on a hexagonal lattice with only
one orbital is a good approximation to the electronic struc-
ture of graphene for doping levels up to the M point.13 In-
cluding interaction effects via exchange self-energy correc-
tions preserve the trigonal warping of the Fermi-surface
topology14 and only close to the van Hove singularity the
local Coulomb interaction U can lead to instabilities at low
energies.15 Superconductivity mediated via electron-electron
interaction was hence predicted for graphene provided that
the Fermi surface is close to the M point.7

Instabilities due to Coulomb interaction can be analyzed
in terms of the effective interaction vertex which is dressed
by the static polarizability as a first approximation.16 Usually
this is done numerically and only for gated graphene with

small chemical potential, analytical expressions were ob-
tained within the Dirac cone approximation.17–21 Here, we
will report on an analytical solution for the imaginary part of
the polarizability for arbitrary chemical potential within the
tight-binding model. The solution is valid for low energies

�	2� and small incoming wave vector �q�=qx where the x
axis denotes the high-symmetry direction which connects the
� and the M point. Analytical expressions are especially im-
portant close to the van Hove singularity since numerical
methods tend to fail in this regime. They also provide insight
in the scaling properties and can explain the peak splitting in
arbitrary direction of the square-root singularity seen in the
numerical solution of Ref. 12.

II. POLARIZABILITY OF THE HONEYCOMB LATTICE

The density-density correlation or Lindhard function of
the honeycomb lattice is given by

P��q,�� =
− gs

�2��2�
1.BZ

d2k �
�,��=�

F�,���k,q� ,

F�,���k,q� = f�·���k,q�
nF�E��k�� − nF�E���k + q��

E��k� − E���k + q� + 
� + i0
�1�

with the eigenenergies E��k�= � t�k� �t	2.7 eV is the
hopping amplitude�, nF�E� the Fermi function, gs=2 the spin
degeneracy and k=��eik·� the complex structure factor
where � denote the three nearest-neighbor vectors. Due to
the two gapless bands, the above expression contains the
band-overlap function

f��k,q� =
1

2

1 � Re� k

�k�
k+q

�

�k+q�� , �2�

which marks the crucial difference to standard textbook re-
sults containing only one band.

It is possible to transform the integration over the rhom-
bical Brillouin zone into an integration over a quadratic area.
First, we symmetrize the Brillouin zone by introducing di-
mensionless parameters 3akx /2→kx and �3aky /2→ky with
a=1.4 Å the carbon-carbon distance. Second, the integration
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over the outer triangles of Fig. 1 is written as the integration
over the quadratic area by symmetrizing the sign of the ex-
ternal wave number q→ �sqx ,s�qy� with s ,s�=�. The inte-
gration over the inner squares of Fig. 1 can be written as the
integration over the quadratic area by slightly modifying the
integrand F�,���k ,q�. For this we introduce the generalized
energy E�,j�k�=��k

j � and overlap function f�
j with

�k
j � = �3 + 2 cos�2ky� + j4 cos�ky�cos�kx� �3�

and

f�
j �k,q� =

1

2

1 �

f̃ j�k,q�
�k��k+q�

 , �4�

where

f̃ j�k,q� = cos�qx� + j2 cos�ky�cos�kx + qx�

+ 2�2 cos�ky�cos�qx/2� + j cos�kx + qx/2��

�cos�ky + qy� �5�

and the dimensionless variables qxa→qx and �3qya /2→qy.
Changing now the integrand F�,���k ,q� to F�,��

j �k ,q� by
substituting E��k�→E�,j�k� and f��k ,q�→ f�

j �k ,q�, we
have

P��q,�� =
gs

�3

�2��2
 2

3a
2�

0

�/2

dkx�
0

�/2

dky

� �
�,��=�

�
j=�

�
s,s�=�

F�,��
j �k,sqx,s�qy� . �6�

From this definition of the polarizability, we can make a
suitable substitution to obtain an analytical solution.

III. ANALYTICAL SOLUTION

For finite chemical potential ��0, zero temperature T
=0, and small wave vector �q�a�1, the imaginary part of the
polarizability for low energies 
�	2� is only determined
by intraband transitions. This limit shall be denoted by
Im P�→ Im P�

�. With qs,s�= �sqx ,s�qy�, �̃=� / t, and �̃
=
� / t, we obtain

Im P�
��q,��

=
gs

�3

4�t

 2

3a
2�

0

�/2

dkx�
0

�/2

dky �
s,s�=�

�
j=�

f+
j �k,qs,s��

�qs,s��k�k
j ����̃ − �k

j �����̃ − qs,s��k�k
j �� . �7�

For q vectors in x direction, i.e., qy =0, the integral over the
two delta functions can be performed analytically with the
substitution x=sin kx and y=sin ky.

The analytical expression depends on the zeros of the first
delta function

y�
2 =

3 − �̃2

4
�

�̃

2
�1 − ��/�q�2, �8�

where �q=vFqx is the Dirac energy with vF= 3
2at /
 the

Fermi velocity. The final result can then be written in the
compact form

Im P�
��qx,�� =

gs
�3

8�

�

�
vF�2

�

��q
2 − �2

����
+ − ��

����� − ��
−�

y−
�1 − y−

2
+

1

y+
�1 − y+

2� �9�

with ��
− =���̃−1��� and ��

+ =�q���3− �̃�+�����̃−�3�,
where ��=

�q

2
�10− �̃2−9 / �̃2. Note that Im P�

��qx ,�� only
depends on the ratio � /�q.

Real and imaginary part of a response function are related
via the Kramers-Kronig relation. For this, the � dependence
for the whole spectrum is needed but we can define the con-
tribution to the real part of the polarizability that originates
from intraband transitions

Re P�
��qx,�� =

2

�
�

0

�q

d��
�� Im P�

��qx,���
����2 − �2 . �10�

Also Re P�
��qx ,�� depends only on � /�q. For �=0, there is

no dependence on qx and we have

Re P�
��qx,� = 0� = ���� �11�

with ����= 1
A�k���− t�k�� the density of states of the tight-

binding model which can be expressed in terms of the com-
plete elliptic integral of the first kind.22

Let us now discuss the f-sum rule for small qx defined
as23

2

�


2Ac

�aqx�2t
�

0

6t

d�� Im P��qx,�� = I� �12�

with I�=
gs

2N�k�k����̃− �k��, where A=AcN is the area of
the sample �Ac=3�3a2 /2�.

Let us divide the total weight I� into partial weights due
to intraband and interband contributions I�=I�

�+I�
�. With

Eq. �9� and �̃�1, I�
� is then given by

kx

ky
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FIG. 1. �a� The hexagonal and rhombical Brillouin zone. �b� The
symmetrized rhombical Brillouin zone and its segmentation. The
inner square refers to j=−, the outer triangles refer to j=+ and
additionally the values of s and s� are given.
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I�
� =

9gs

4�2�
0

1

d�� �1 − �2

���+ − ����− + ��
+

�1 − �2

���+ + ����− − ��
� ,

�13�

where �+= �3− �̃2� /2�̃ and �−= �1+ �̃2� /2�̃ which can be ex-
pressed in terms of elliptic functions. For �̃�1, the integra-
tion bounds have to be modified.

Since I� and I�
� are independent of qx and the leading

order of the band overlap of the interband transition is pro-
portional to qx

2, we have for the interband contributions to the

polarizibility Im P�
��qx ,��=qx

2��
�−2��P̃���, where P̃
only depends on the energy. Obtaining the real part via the
Kramers-Kronig relation, we can thus generally write the
polarizability as

P��qx,�� = P�
���/�q� + qx

2P�
���� , �14�

where the first term is due to intraband and the second term
due to interband processes. In Table I, the relative weight of
the intraband transition is shown as they contribute to the
total weight.

IV. DISCUSSION

A distinct signature of noninteracting two-dimensional
electrons is a divergent behavior of the polarizability at the
threshold for the excitation of electron-hole pairs determined
by the Fermi velocity. For small chemical potential, the
Fermi velocity vF in graphene is independent of � and the
divergence takes place at �q=vFqx. But even in the regime
where the Dirac cone approximation does not hold, i.e., cur-
vature in form of trigonal warping has to be taken into ac-
count, we find the same divergent behavior at �q. It is re-
markable that this threshold is independent of the chemical
potential � up to ���3t.

For �→0, we obtain

Im P�→0
� �qx,�� =

gs

�

�

�
vF�2

����q − ��
��q

2 − �2
. �15�

This expression is also obtained from the Dirac cone ap-
proximation in the limit � ,q��. This shows that the Dirac
cone approximation is valid only in the limit �→0 which
leads to the criticality of Dirac Fermions at zero gate voltage
and zero temperature.24

Let us now discuss the special case where the chemical
potential lies at the van Hove singularity. For �= t, we have

Im P�=t�qx,� → 0� =
gs

�3

2�

t

�
vF�2 . �16�

Whereas Im P�=t�qx ,�→0��const is a necessary condi-
tion to yield the logarithmic singularity of the density of

states at the van Hove singularity, we shall now investigate
the behavior for chemical potentials close to the van Hove
singularity �= t���. Neglecting quadratic contributions
O���2� which is valid for ��̃� �� /�q�, only the solution y+
contributes to a finite imaginary part for low energies and we
obtain

Im P�=t����qx,� → 0� =
gs

�3

4�

t � ���/2�
�
vF�2 . �17�

We thus find the onset of non-Fermi-liquid behavior for ex-
citations in the direction of the highest symmetry for chemi-
cal potentials close to the van Hove singularity. For energies
with 2���̃� �� /�q��1 and �� t, also y contributes to the
constant behavior and we obtain the limit value of Eq. �16�.

In Fig. 2, we show the results in three panels for the three
regimes �̃�1 �left panel�, 1��̃��3 �middle panel�, and
�̃��3 �right panel�. For �̃�1, the characteristic feature is
the square-root singularity at �=�q, independent of the �̃.
For low chemical potential �̃	0.3, the result agrees well
with the Dirac cone approximation �dashed curve�. For larger
chemical potential, there is increasing weight for lower en-
ergies and for �̃=1, Im P� shows constant behavior for low
energies. For chemical potentials with 1��̃��3, there is, in
addition to the square-root singularity at �=�q, also a
square-root singularity at �=��. For �̃��3, only the
square-root singularity at �=�� survives.

For arbitrary direction �=tan−1�qy /qx�, in particular, for q
in y direction, the solution of the zeros of the delta functions

TABLE I. Total and relative weight due to intraband transitions of the f-sum rule for various chemical
potentials �.

�̃ 0.1 0.5 0.9 1.0 1.1 1.5 2.0 2.5

I� 1.574 1.558 1.462 1.395 1.319 1.076 0.755 0.396

I�
� /I� 0.053 0.266 0.528 0.654 0.773 0.927 0.981 0.997
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FIG. 2. �Color online� The imaginary part of the polarizability
as function of the energy � for various chemical potential �̃=� / t
divided into the three regimes: �̃�1 �left panel�, 1��̃��3
�middle panel�, and �̃��3 �right panel�. The result of the Dirac
cone approximation is also shown �dashed line�.
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of Eq. �7� involves polynomials of fourth and sixth orders,
and we were not able to obtain an analytical solution. The
numerical solution, though, shows the expected peak split-
ting of the square-root singularity at �=�q, as shown in Fig.
3, with the maximal peak splitting for �=� /6+n� /3, n
�N. As suggested by the analytical expression, the double-
peak structure appears even for small chemical potentials,
e.g., � / t=0.05, for which the Dirac cone approximation
should hold.

The curves of Fig. 3 were obtained for kBT / t=0.01, thus
slightly larger than room temperature. The curves for �=0

are basically unaffected by temperature but for arbitrary di-
rection the algebraic divergences seen for � / t=0.5 are
smeared out at larger temperature as it is the case for � / t
=0.05. The curves for � / t=0.05 and ��0 develop the alge-
braic divergence for decreasing temperature, so generally, we
can say that the algebraic divergences become broadened
when the energy set by the temperature is much larger that
the maximal peak splitting at �=� /6. For the curves of
Fig. 2, we find from the numerical solution that the singular-
ity at �=�q is practically unaffected by temperature whereas
the singularity at �=�� is strongly broadened for T�0.

V. CONCLUSION

In summary, we have presented analytical expressions for
the imaginary part of the polarizability for wave vectors in
the �-M direction. The results are valid for all chemical po-
tentials, � for low energies 
�	2�, and small wave vector
�q�a�1. As a special feature, we find a singularity at the
Dirac energy �q=vFq up to large �̃��3. For the chemical
potential close to the van Hove singularity, we find the onset
of non-Fermi-liquid behavior with Im P�=t����const for
�� / t�� /�q�1. For arbitrary direction �, there is a peak
splitting at �q which prevails for small chemical potentials
and only for �=0, the Dirac cone approximation is recovered
for �→0.

ACKNOWLEDGMENTS

We acknowledge useful discussions with G. Gómez-
Santos. This work has been supported by FCT under Grant
No. PTDC/FIS/101434/2008 and MIC under Grant No.
FIS2010-21883-C02-02.

1 A. K. Geim, Science 324, 1530 �2009�.
2 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 �2009�.
3 S. Das Sarma, S. Adam, E. Hwang, and E. Rossi,

arXiv:1003.4731 �unpublished�.
4 N. Peres, Rev. Mod. Phys. 82, 2673 �2010�.
5 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.

Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci-
ence 306, 666 �2004�.

6 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Science 313, 951 �2006�.

7 J. L. McChesney, A. Bostwick, T. Ohta, T. Seyller, K. Horn, J.
Gonzalez, and E. Rotenberg, Phys. Rev. Lett. 104, 136803
�2010�.

8 A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg,
Nat. Phys. 3, 36 �2007�.

9 M. Mucha-Kruczyński, O. Tsyplyatyev, A. Grishin, E. McCann,
V. I. Falko, A. Bostwick, and E. Rotenberg, Phys. Rev. B 77,
195403 �2008�.

10 L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, and S. G. Louie,
Phys. Rev. Lett. 103, 186802 �2009�.

11 J. González, Phys. Rev. B 78, 205431 �2008�.

12 T. Stauber, J. Schliemann, and N. M. R. Peres, Phys. Rev. B 81,
085409 �2010�.

13 B. R. K. Nanda and S. Satpathy, Phys. Rev. B 80, 165430
�2009�.

14 R. Roldán, M. P. López-Sancho, and F. Guinea, Phys. Rev. B 77,
115410 �2008�.

15 J. González, Phys. Rev. B 67, 054510 �2003�.
16 D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 35, 6694

�1987�.
17 K. W.-K. Shung, Phys. Rev. B 34, 979 �1986�; 34, 1264 �1986�.
18 J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B

59, R2474 �1999�.
19 T. Ando, J. Phys. Soc. Jpn. 75, 074716 �2006�.
20 B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8,

318 �2006�.
21 E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418

�2007�.
22 E. V. Castro, N. M. R. Peres, T. Stauber, and N. A. P. Silva, Phys.

Rev. Lett. 100, 186803 �2008�.
23 T. Stauber and G. Gómez-Santos, Phys. Rev. B 82, 155412

�2010�.
24 M. Müller and S. Sachdev, Phys. Rev. B 78, 115419 �2008�.

0.9 0.95 1 1.05

ω/ωq

0

1

2

3

4

5

6

7

8

(v
F

2 /µ
)

Im
P

(|q
|,ϕ

,ω
)

ϕ=0

ϕ=10
o

ϕ=20
o

ϕ=30
o

Dirac

|q|a=0.01 , µ=0.05t

0 0.2 0.4 0.6 0.8 1

ω/ωq

0

1

2

3

4

5

6

7

8

(v
F

2 /µ
)

Im
P

(|q
|,ϕ

,ω
)

ϕ=0

ϕ=10
o

ϕ=20
o

ϕ=30
o

Dirac

|q|a=0.01 , µ=0.5t

FIG. 3. �Color online� The imaginary part of the polarizability
Im P���q� ,� ,�� with �q�a=0.01 as function of the energy � for
various angles � and two chemical potentials � / t=0.05 �left� and
� / t=0.5 �right� at kBT / t=0.01. Also shown the result from the
Dirac cone approximation at zero temperature �dashed line�.
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