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We show that mean field rate equations �MFRE� for submonolayer growth with hit and stick aggregation can
successfully predict the island size distributions �ISDs� in the precoalescence regime if the full dependence of
capture numbers on both the island size and the coverage is taken into account. This is demonstrated by
comparison of the integrated MFRE with results from extensive kinetic Monte Carlo simulations. The attempt
to use various simplified expressions for the capture numbers in the integration of the MFRE turns out to be
insufficient to yield a good description of the ISD.
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The kinetics of submonolayer nucleation and island
growth during the initial stage of epitaxial thin-film growth
has been studied intensively both experimentally and theo-
retically �for reviews, see Refs. 1–3�. A good understanding
of this kinetics assists in tailoring self-organized nanostruc-
tures and thin-film devices for specific needs. Mean field rate
equations �MFRE� �Ref. 4� successfully predict important
features such as the scaling behavior of the density of stable
islands with respect to the �=D /F ratio of the adatom dif-
fusion rate D and incoming flux F.5–8 They seem to fail,
however, to predict correctly the number densities ns of is-
lands composed of s atoms, i.e., the island size distributions
�ISDs�.9 In this connection, Ratsch and Venables10 addressed
a still open question: whether the MFRE are successful in
describing the precise shape of the ISD, if the correct depen-
dence of the capture numbers �s��� on both s and the cov-
erage � were taken into account. The answer to this question
is not obvious since the MFRE with correct capture numbers
�s��� still neglect �i� many-particle correlation effects,11 �ii�
spatial fluctuations in shapes and capture zones of islands,
and �iii� coalescence events that, despite rare in the early
stage growth, could have a significant influence.

Various theoretical approaches have been developed in
the past for obtaining appropriate analytical formulas or ap-
proximate numerical results for the �s��� �for details, see
Refs. 1 and 10, and references therein�. These approaches
focus mostly on the low-temperature case with critical size
i=1, i.e., the case when already dimers can be considered as
stable �on a time scale, where the ISD in the initial growth
regime is formed�. Some results for higher i were reported in
Ref. 1 and were generated mainly in connection with a
geometry-based simulation strategy.12 The roughest approach
for i=1 is to neglect the � dependence and to use just two
numbers, �1 for the adatoms and an average number �̄ for all
stable islands with s�2 and to fit these numbers to give best
agreement with simulated or measured data. Alternatively,
simulated capture numbers for various s at a fixed coverage
� have been considered13 and used in the analysis of
experiments.14 As shown in Fig. 1, however, neither of these
approaches as well as a more sophisticated self-consistent
treatment9,15 is successful in providing a good description of
the ISD as obtained from kinetic Monte Carlo �KMC� simu-

lations. Therefore a semiempirical form of the ISD �Ref. 16�
is often used in the analysis of experiments.17,18 It is inter-
esting to note that a semiempirical form has been suggested
recently also for the capture zone distribution in Ref. 19. The
parameters used in this form, however, are controversially
discussed.20,21

A first numerical study for computing coverage dependent
capture numbers has been performed in Refs. 22 and 23 us-
ing a level set method. Integration of the MFRE with the
obtained capture numbers gave quantitative agreement with
KMC results for the island density N but the statistics was
insufficient to achieve conclusive answers with respect to the
ISD. For taking into account the correlation between s and
the size of capture zone areas, i.e., that larger islands tend to
exhibit larger capture zones, a generalization of the MFRE
toward an evolution equation for the joint probability of is-
land size and capture area was setup.24–26 This, however, had
to be done at the expense of introducing additional param-
eters for considering nucleation events inside the capture
zones.

In this study we compute the capture numbers �s��� as a
function of both the island size s and the coverage � by
performing extensive KMC simulations. We show that based
on these functions the ISD for growth kinetics with hit and
stick aggregation is well predicted by the MFRE in the
growth regime before coalescence. We discuss simplified
forms of the capture numbers �s��� with respect to predict-
ing the ISD, which could render an analytical treatment of
the problem possible.

The MFRE for a situation at low temperatures �no re-
evaporation� with a critical nucleus of size i=1 and consid-
eration of direct impingement of arriving atoms at islands are

dn1

dt
= �1 − ��F − 2D�1n1

2 − Dn1�
s�1

�sns − 2F�1n1

− F�
s�1

�sns, �1�
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dns

dt
= Dn1��s−1ns−1 − �sns� + F�s−1ns−1 − F�sns, s = 2,3, . . .

�2�

These equations refer to the growth regime, where coales-
cence events of islands should be negligible, and it is pre-
sumed that only single adatoms are mobile and that atom
movements between the first and second layer can be disre-
garded. Moreover, adatoms arriving on top of an island are
not counted, i.e., s in a strict sense refers to the number of
substrate sites covered by an island �or the island area�. Ac-
cordingly, the deposition flux F of adatoms in Eq. �1� has to
be restricted to the uncovered fraction �1−�� of the substrate
area. The terms 2D�1n1

2 and F�1n1 describe the nucleation of
dimers due to attachment of two adatoms by diffusion and
due to direct impingement, respectively. The term Dn1�sns
describes the attachment of adatoms to islands of size s�1
and F�sns the direct impingement of deposited atoms to
boundaries of islands with size s. Dividing Eqs. �1� and �2�
by F leads to evolution equations with the coverage �=Ft as
independent variable and to a replacement of D by �=D /F
on the right-hand side.

Our KMC simulations are performed with an exact
continuous-time algorithm and periodic boundary conditions
on a square lattice with L�L=8000�8000 sites. The lattice
constant is set to unity. We consider a kinetics with “hit
and stick” aggregation, which implies fractal island
morphologies.1–3 To calculate the capture numbers �s at the
coverage �, we use the following procedure: each simulation
run is stopped at coverage � and the number densities ns
=Ns /L2, s=1,2 , . . . are determined, where Ns are the num-
bers of monomers �s=1� and islands �s�1�. Then the simu-
lation is continued for a long-time interval T without depo-
sition and the following additional rules: �i� when an adatom
is attaching to an island of size s�1, a counter Ms for such
attachments is incremented and the adatom thereafter repo-
sitioned at a randomly selected site of the free substrate area
�i.e., a site which is neither covered nor a nearest neighbor of
a covered site�; �ii� when two adatoms form a dimer, a
counter M1 for these nucleation events is incremented and
the two adatoms thereafter repositioned randomly as de-

scribed in �i�. In this way a stationary state is maintained at
the coverage �. Using the counters, the mean times 	s
=T /Ms, s=1,2 , . . ., for the respective nucleation and attach-
ment events are determined. Given these times, the capture
numbers �s are calculated by equating D�sn1ns, s=1,2 , . . .
with 1 /	s, yielding �s=1 / �Dn1ns	s�. Averaging the �s over
many simulation runs �configurations� finally gives �s���.
The �s��� are determined from the lengths of the islands
boundaries, which are simultaneously monitored during the
simulation and averaged for each size s.

Overall the functions �s��� and �s��� were obtained for
57 different � values in the range 0.005–0.2 and a large
number of island sizes for each value of �, ranging up to
1000 values for the largest �. The typical number of
nucleation/attachment events for each � value was 108.

Figure 2�a� shows results for �s��� as a function of s for
four different fixed � at �=107. For large s we find a linear
dependence of �s��� on s at all coverages, which can be
explained1 by noting that the �s��� become proportional to
the mean capture zone areas As. Since a double-sized capture
zone gives on average rise to a double-sized island, it holds
As�s and hence �s�s. The asymptotic behavior can be de-
scribed by �s����a���s+b���, where the slope a��� is an
increasing and the offset b��� a decreasing function of �,
see Fig. 2�b�. For small s, a nonlinear dependence of �s���
on s is in agreements with earlier findings.15 As shown in the
inset of Fig. 2�a�, the direct capture numbers �s��� have also
a linear dependence on s but are approximately independent
of �, i.e., �s����s. In Fig. 2�c� we show the capture num-
ber �1��� related to nucleation events and the mean capture
number �̄���=�s=2


 �s���ns /N, where N=�s=2

 ns. These

functions are important when considering the scaled capture
numbers �s��� / �̄��� as function of the scaled island size
s / s̄���, where s̄���=�s=2


 sns /N�4.7+818� at �=107

here.27 Looking at the scaled capture numbers �s / �̄ at fixed
�=0.1 for various � in Fig. 2�d�, we find no collapse onto
one curve in the � range 105–108 studied here. It is possible
that for larger � a “scaling limit” with a data collapse
emerges, which would allow one to apply the analytical
theory for the scaled ISD developed by Bartelt and Evans.13

From the data in Fig. 2�d� one can infer that much larger �
values than 108 are necessary to approach a possible limit.
Despite of the fact that an analogous investigation for such
large � values would require a tremendous additional com-
putational effort, we would like to note that the analysis of
the scaled ISD is not the primary goal of this work but the
question whether an integration of the MFRE with suitable
capture numbers can predict the ISD for � values as typically
present in experiments.

By combining the linear function for large s with a poly-
nomial at small s to take into account the nonlinearity, we
fitted the curves in Fig. 2�a� and used these fits to integrate
the MFRE, Eqs. �1� and �2�. The data for the resulting
MFRE-ISDs in Figs. 3�a� and 3�b� are one of our key find-
ings. As shown in Fig. 3�a�, the MFRE-ISD �solid lines� is
for all coverages in the precoalescence regime in excellent
agreement with the corresponding KMC-ISD �symbols� ob-
tained from the KMC simulations. A variation in � does not
affect the quality of agreement, as can be seen from Fig.
3�b�, where we plot the scaled ISDs nss̄

2 /� versus s / s̄ for a
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FIG. 1. Island size distribution obtained from KMC simulation
in comparison with ISDs calculated from an integration of the
MFRE using three different approximations for the �s���.
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fixed coverage �=0.1 and four different �. Moreover, one
can infer from this figure that the scaled ISDs tends to ap-
proach a limiting master curve when �→
. For comparison
with earlier results in the literature, we show in the inset of
Fig. 3�b� the scaled ISDs in the more common double-linear
plot instead of the linear-log representation used otherwise in
Figs. 1, 3�a�, 3�b�, and 4. We chose this linear-log represen-
tation to show that the MFRE capture the behavior also cor-
rectly in the wings at very small �s� s̄� and very large island
sizes �s� s̄�. In fact, the agreement is seen over about 4
orders of magnitude of ns in Fig. 3�a�. A 
2 test with a stan-
dard significance level of 5% is passed for all ��0.18,
which means the MFRE can be safely used up to coverages
of at least 20%. This demonstrates that the approximations
involved in the MFRE are appropriate to predict the ISD
with high accuracy for the hit and stick aggregation consid-
ered here.

So far we have used the complete functional form for
�s��� and �s���. The question arises whether all details seen
in Fig. 2�a� are necessary with respect to a good prediction of
the ISD. To this end we discuss the following simplifications:
�i� all �s are set to zero, �ii� the �s��� are replaced by �1���
for s=1 and �̄��� for s�2 �and analogously for the �s����,
and �iii� the asymptotics �s����a���s+b��� is used for all
s�2 while we keep the �1��� �again the analogous proce-
dure is used for the �s����.

Figure 4 shows the MFRE-ISD resulting from these sim-
plifications. Neglecting the �s in Eqs. �1� and �2�, the ISD is
again well predicted, see the dashed line. For larger � the
agreement becomes even better �not shown�. When neglect-
ing the s dependence �case �ii�� the MFRE-ISD has a maxi-
mum still close to the KMC-ISD but its width is much
smaller than that of the KMC-ISD. The width of the respec-
tive scaled distribution tends to zero for �→
. Let us re-
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FIG. 2. �a� Dependence of the capture numbers �s��� on s for four different fixed coverages; the inset shows the corresponding �s���.
�b� The coefficients a and b of the asymptote �s����a���s+b���, and �c� �1 and �̄ as functions of �. For a convenient extraction of the
data in �b� and �c� the following fit function can be used �solid lines�: a=0.103 exp�5.6��, b=3.85−1.1 exp�7.26��, �1=−4.5
+6.55 exp�3.05��, and �̄���=−6.8+9.8 exp�9.3��. �d� Scaled capture number �s / �̄ versus s / s̄ at fixed �=0.1 for various � values.
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FIG. 3. �a� Island size distributions for three different coverages
at fixed �=107 and �b� scaled ISDs for four different �. The inset in
�b� shows the scaled ISDs in a double-linear representation. The
symbols mark the results from the KMC simulations and the solid
lines the results obtained from integrating the MFRE, Eqs. �1� and
�2�, with �s��� and �s��� determined by KMC simulations �see
text�.
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mind that we already showed in Fig. 1 that a full neglect of
the � dependence also does not yield a good ISD. In case
�iii� the MFRE-ISD is also poor in comparison with the
KMC-ISD. The MFRE-ISD shows a second maximum at s

=2, which is caused by the fact that the linear relationship
underestimates the �2��� value, leading to a higher lifetime
and correspondingly larger concentration of dimers. Gener-
ally speaking, a linear relationship between �s��� and s does
not cover the small s behavior but, as one would expect, it
gives a fair account of the shape of the ISD for large s.

In summary, we have demonstrated that an integration of
the standard MFRE with coverage dependent capture num-
bers yields an MFRE-ISD that for hit and stick aggregation
is in excellent agreement with the KMC-ISD. The full de-
pendence of the capture numbers on both the island size and
the coverage was determined from extensive KMC simula-
tions and the functional form was analyzed in detail. Despite
the fact that a linear dependence on the island size holds over
almost the entire s range, the nonlinear behavior is crucial for
a good account of the ISD. This implies that it will be diffi-
cult to find simple functions, which one could use in an
analytical continuum approach for the scaled ISD.13
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