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We analyze the influence of different bilinear terms giving rise to time-reversal invariant topological insu-
lating phases in monolayer and bilayer graphene. We make use of the effective action formalism to determine
the dependence of the Chern Simons coefficient on the different interactions and generalize the formalism to
include various degrees of freedom arising in bilayer graphene which give rise to different topological phases.
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I. INTRODUCTION

Since its recent synthesis, graphene1,2 has become an ideal
playground to establish fundamental concepts in condensed
matter physics.3 It is by now well known that the low-energy
excitations of the neutral system can be described by a con-
tinuum model that includes two flavors of massless Dirac
particles in two spatial dimensions.4 The two flavors are as-
sociated to the two Fermi points that constitute the Fermi
surface of the neutral material and, in the standard descrip-
tion, the electron spin is an extra degree of freedom usually
disregarded as long as the physics in the system does not
explicitly depend on it. In the last years it has been realized
that when the physics involves the spin degree of freedom,
interesting things might happen and new states of matter can
emerge such as the topological insulating state.5–8 This state
relies on the existence of a nonzero spin-orbit �SO� coupling
which is believed to be very small in graphene5,9 but which
recent proposals show that it can be enhanced by various
factors such as curvature,10,11 impurities,12 or Coulomb
interactions.13 Also the application of a perpendicular electric
field in graphene can induce an extrinsic Rashba SO cou-
pling whose value can also be enhanced by interactions with
the substrate.14 Apart from the SO processes it is known that
a staggered potential can open a gap in the spectrum, existing
some experimental evidence about the gap opening process
when graphene is deposited on top of SiC.15 The way in
which those terms compete among each other can lead to a
rich phase diagram of insulating and gapless phases as dis-
cussed in Ref. 16 for monolayer graphene.

There are other ways to get a nontrivial insulating state in
graphene without invoking the presence of a SO coupling.
Recently it has been shown theoretically that a proper choice
of strain pattern can lead to the appearance of a gapped phase
with an energy spectrum similar to the system of Landau
levels and a pair of counterpropagating edge states, carrying
different value of the valley index.17 Contrary to what hap-
pens when the SO coupling is considered, here we cannot
establish that these counterpropagating states are protected
by some symmetry �when the SO coupling is considered the
edge states are protected against disorder by time-reversal
symmetry�. Nevertheless, the topological character of the
counterpropagating states is maintained for distances smaller
that the mean-free path in the system. Other situation where
a topological insulating phase can appear without a SO in-

teraction is by deposition of adatoms on the surface of
graphene. When these adatoms are placed only in one of the
two sublattices, a gap is opened and again, a pair of counter-
propagating states appear at the boundaries carrying opposite
valley number.18

The goal of this work is to describe how time-reversal
invariant topological phases can be identified and analyzed
in a unifying way using the effective action formalism, a
technique which has been widely used in condensed matter
systems.19 We derive a way to compute the Chern-Simons
coefficient associated to the different situations allowed by
the bilinear terms in the Hamiltonian. We will also see how
terms different from the usual spin-orbit coupling can lead to
a Chern-Simons term even in the absence of an external elec-
tromagnetic field. It is well known that in the graphene sys-
tem a finite density of carriers can be induced by applying an
external voltage. We will pay special attention to the situa-
tion in which there is a finite chemical potential in the
samples. As we will see this changes some physical situa-
tions and introduce phases in which the system is metallic
with a finite value of the Chern-Simons coefficient.

Bilayer graphene20 is a more promising material than the
monolayer for potential applications due to the possibility of
opening a gap by applying an external voltage.21 Its possible
insulating phases are also richer and are being subject of
great attention recently.22–25 We extend the formalism to the
bilayer case and provide a table of the insulating phases aris-
ing from the competition of the various spin-orbit couplings
discussed in Ref. 24.

The paper is structured as follows: In Sec. II we describe
the model for the monolayer graphene used in this work and
present the formalism of the effective action to derive an
expression to compute the Chern Simons coefficient. In Sec.
III the formalism is applied to study various insulating
phases in the monolayer case with a finite chemical potential.
Section IV is devoted to analyze various nontrivial topologi-
cally insulating phases in bilayer graphene. We conclude
with a summary and discussion of the results in Sec. V.

II. SPIN CHERN-SIMONS COEFFICIENT
FROM THE EFFECTIVE ACTION

In this section we review some of the known low-energy
aspects of graphene in the context of the effective action
formalism for completeness. For details, we refer the reader
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to Ref. 16 and to the references mentioned below.

A. Monolayer graphene: The model

The low-energy elementary excitations of neutral
graphene around its Fermi points can be described by the
following massless Dirac Hamiltonian:

H0�k� = i��y�zkx − �x1�ky�1s � �1kx + �2ky . �1�

The Pauli matrices labeled �, �, and s represent pseudospin,
valley, and spin degrees of freedom, respectively. The � ma-
trices are 8�8 matrices chosen to fulfill the condition
��� ,���=4�2g�� with g��=diag�1,−1,−1�. With these con-
ventions, the zeroth gamma matrix is defined as �0=1s1v�z.
Since we will not consider many body effects the Fermi ve-
locity is set to one by a proper scaling of the fields and the
parameters in the Hamiltonian. We have also put �=1. Note
that the matrices chosen differ from the convention used in
Ref. 5 ��KM�. The two are related by ��=�z�KM

� . In what
follows we will group all possible bilinear couplings with an
arbitrary matrix � and write the corresponding Lagrangean
as

L0 = 	̄���k� − 	
i


i�i
	 , �2�

where 	̄=	+�0. While each 2�2 Hamiltonian around
a given Fermi point is not time-reversal invariant
�T :H�K1�=H��K2�� grouping the two valleys in a 4�4 no-
tation makes the full Hamiltonian H0 invariant under both
inversion symmetry �realized as an interchange of sublattices
A and B often called parity P in the graphene context� and
time reversal T �interchange of K1 and K2�. These discrete
symmetries—together with translation invariance—protect
the Fermi points and prevent the opening of a gap in the
spectrum when the intrinsic spin of the electron is not taken
into account.26

A staggered potential is a time-reversal invariant contri-
bution �although it is a Dirac mass term that breaks parity�
that opens a gap in the spectrum. In our notation it will will
be represented by a coupling constant m followed by the unit
matrix

�m = 1s1�1�. �3�

The main contribution of Ref. 5 was to realize that when the
spin degree of freedom is taken into account the intrinsic SO
term acts like two copies of the Haldane mass27 with
opposite sign for each spin projection. The Haldane mass
was one of the first attempts to get Landau levels with net
zero magnetic field.28 With our convention it is defined as
�H=1s�z1� and breaks T. The symmetry is restored by the
inclusion of the two opposite spin contributions. In our con-
vention the intrinsic SO coupling has the form

Hso = �so�so � �sosz�z1�. �4�

We will also consider in our work the Rashba term which is
written as

HR = 
R�R � 
Ri�sy�z�y + sx1��x� . �5�

As mentioned before, the SO term opens a gap in the system
and respects both time reversal and parity symmetry. The
other time-reversal invariant term that opens a gap is a spa-
tially constant Kekulé distortion which is off-diagonal in the
valley and lattice indexes. Its contribution to the Chern-
Simons term discussed in this work is the same as that of the
staggered potential and we will not consider it here.

B. Spin Chern-Simons term

It is well known that in �2+1� space time dimensions, a
single massive Dirac fermion coupled to a background U�1�
electromagnetic �EM� field induces a topological Chern-
Simons term in the effective action of the gauge field.29,30 In
condensed matter language and in connection with the phys-
ics of the quantum-Hall effect28,31,32� this can be seen as
follows: the action for the minimal model of a Dirac fermion
	 coupled to an EM field described by the gauge potential A�

is given by

S =� d3x�	̄����� + ieA��	 + m	̄	 −
1

4
F��F�� . �6�

The first radiative correction to the vacuum polarization �re-
lated by the Kubo formula to the conductivity tensor� is
given by

����q� = ie2� d3k

�2�3Tr��� 1

��k� − m
�� 1

���k + q�� − m
 .

�7�

From the properties of the Dirac matrices it is known that the
vacuum polarization tensor can be decomposed as

����q� = �g�� −
q�q�

q2 
�e�q2� + im����q��o�q2� , �8�

where the symmetric �antisymmetric� part is even �odd� un-
der inversion and time-reversal symmetries. The tensor struc-
ture of the odd term, which emerges from the trace of three �
matrices, induces a Chern-Simons interaction in the effective
action of the electromagnetic field of the form

Scs = C� d3x����A���A� �9�

and a transverse fermionic current

�J�� = C������A�, �10�

where C is the Chern-Simons coefficient which is propor-
tional to the sign of the fermionic mass.

When two Dirac fermions related by time reversal sym-
metry are considered, each of them will contribute to C with
an opposite value giving a null transverse current in Eq. �10�.
Time reversal symmetry dictates that C↑=−C↓ and hence the
total Chern number is C=C↑+C↓=0. So in order to generate
a Chern-Simons-type term in a time-reversal invariant fash-
ion we need to generate different masses �open a gap in the
spectrum� for different members of the same pair of flavors.
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In graphene there are four flavors of massless Dirac fer-
mions related by pairs �valley number� by time-reversal sym-
metry. To describe an insulating state originated by some
masslike term, we need to couple the Dirac fermions to a
proper background field which can describe the difference
between a standard insulating phase and a topologically in-
sulating phase. Given a flavor, say spin, we must couple the
fermions to an external background V� field that sees the
spin

S =� d3k

�2�3 �	̄���k� − ��	 − 	̄��	A� − 	̄���5	V�� .

�11�

The matrix �5 has to be chosen appropriately to do the job
and it should not be identified with the usual product of all
the other matrices. Its role is to ensure that the traces in the
calculation of the gauge effective action are nonzero �the
details are explained in the next section�. For instance, in the
case of the spin current discussed in Ref. 5 the matrix �5 is
defined as �5=sz1v1�. In this way after integrating out the
fermions and calculating the lowest order terms in the effec-
tive action �see next section�, Eq. �10� will be properly modi-
fied to give

�J↑
� − J↓

�� �
�Scs

�V�

= Cs�
�����A�. �12�

The spin Chern-Simons coefficient Cs is defined as
Cs=C↑−C↓ �Ref. 5� and it will be related to the electron’s
Green’s function in the next section. As mentioned before,
time-reversal symmetry dictates that the total Chern number
is zero but we can still find a transverse current being topo-
logical in origin given by Cs. This number classifies the
quantum spin-Hall state.

This approach can be generalized to other degrees of free-
dom such as the valley degree of freedom by properly modi-
fying �5. We will discuss this issue in the section devoted to
the bilayer case.

C. Effective action

We will describe in this section how to construct the spin
Chern-Simons coefficient �or any other topological charge�
on practical grounds when a generic masslike term � is con-
sidered in the Lagrangean in Eq. �2�, leaving the particular
cases for the following sections. A similar construction was
done in Ref. 33 in order to classify the topological insulators
in three spatial dimensions and in Ref. 16 for monolayer
graphene. Consider the action defined in Eq. �11�. The one-
loop effective action for the gauge field is obtained by per-
forming the functional Gaussian integration of the fermionic
variables. Since Eq. �11� is quadratic in the fermions it is
straightforward to get

�1�A,V� =� d3k

�2�3Tr ln���k� − � − e��A� − ���5V�� .

�13�

It is important to note that in Eq. �13� the momentum vari-
able k� actually represents the derivative operator so in order

to deal with the logarithm in Eq. �13� we need to expand it in
Taylor series of the potentials A� and V�. For that, we will
formally define the fermionic Green’s function as

G�k� =
i

��k� − �
�14�

and we will write Eq. �13� as

�1�A,V� =� dk3

�2�3 	
n=1

�

−
1

n
Tr��G0�k,���− ie��A� − ie�5���5V���n� ,

�15�

where we have dropped out an irrelevant �infinite� constant
that does not depend on the fields A or V. In order to extract
the spin Chern-Simons term we can concentrate in the l=2
term in this Taylor expansion. Moreover since we will con-
sider k in Eq. �15� as the derivative operator, we will seek for
the terms in the expansion that will contain derivatives of the
fields A and V, particularly the term V�A, as it can be seen
from Eq. �12�. We can perform the calculation in momentum
space, where the l=2 term reads

�1
l=2 =

e2

2
� d3q

�2�3

d3k

�2�3Tr�G�k���G�k + q����5�V�A�.

�16�

Expanding G�k+q� in series of q up to first order we can
identify the corresponding Chern-Simons term which in real
space reads

Sscs = i� d3xCs
���V���A�, �17�

where Cs
��� is defined as

Cs
��� = − i

e2

2
� dk3

�2�3Tr�G�k,����G�k,����G�k,�����5� .

�18�

It is interesting to note that the the last expression can be
written in the form of a Pontryagin index34,35

Cs
��� = − i

e2

2
� d3k

�2�3Tr�G�k�G−1G�k�G−1G�k�G−1�5� .

�19�

In what follows we will use these definitions to calculate
some particular cases including the effect of the chemical
potential.

III. TOPOLOGICAL INSULATING PHASES
IN MONOLAYER GRAPHENE

A. An illustrative case: Intrinsic spin-orbit coupling

Although known in the literature for quite some time5 it is
illustrative to consider the case with only intrinsic spin-orbit
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coupling as a starting point to construct more elaborate situ-
ations. In the simple case of the SO coupling with the chemi-
cal potential ��� set to zero, it is trivial to check that �so
commutes with all the � matrices and thus we can write G�k�
as

G�k� = i
��k� + �so�so

k2 − �so
2 . �20�

Written G�k� in this way, by the trace of the � matrices it is
apparent that only the term proportional to �so

3 will survive,
being proportional to 8i���� as well. The integral in momen-
tum can be evaluated easily, as long as we note that the
integral is insensitive to the sign of �so. The result is5

Cs
��� = ����e2

2
�

0

� dk

�2�
2k�so

�k2 + �so
2 �3/2

= e2���� �so

2��so�

= e2����

2
sign��so� . �21�

This is a widely known result. It can be proven that this
number, sign��so� is the same Z2 topological invariant de-
fined by Kane and Mele in the case of two dimensional to-
pological insulators.6

This result is modified by the presence of a finite chemical
potential. When �����so, the chemical potential crosses one
of the bands changing the position of the poles in Eq. �18�.
Thus, we obtain

Cs
��� = ���� �soe

2

2���
�22�

a result first obtained in Ref. 36. When �����so the two
poles in Eq. �18� are located always on different semiplanes
�upper and lower� and so the integral gives the same result as
in the case of zero chemical potential. With this result we
learn how to proceed with more general cases and the effect
that we should expect with the introduction of a chemical
potential. When the chemical potential crosses the bands, the
topological nature of the effective action is not destroyed, but
the result is no longer quantized and depends explicitly on
the position of the chemical potential. When the chemical
potential lies inside the gap, the system is a topological in-
sulator with a quantized spin Chern-Simons response.

B. Competition between the intrinsic spin-orbit term
and the staggered potential

We will follow the method sketched in the previous sec-
tion to study analytically the competition of the SO term
with the staggered potential in the presence of a finite �and
zero� chemical potential. The interest of this case resides on
the fact that while both terms open a gap in the system, the
nature of the insulating phase is different. It also introduces
some technical complications whose resolution will be useful
for the analysis of more complicated situations. The compe-
tition of the intrinsic spin-orbit term and the staggered po-

tential was studied numerically in Ref. 5 for zero chemical
potential. In what follows we will complete the discussion
and give an analytical result valid for finite �. A similar
analysis was also done in Ref. 16, where the interplay of a
Haldane mass and a staggered potential for zero chemical
potential is analyzed.

The appropriate masslike term in this case is
M =m�m+�so�so, where �m and �SO are defined in Eqs. �3�
and �4�, respectively. We begin by the case where the chemi-
cal potential is zero. The first difficulty that arises is that we
can no longer write the Green’s function in the simple form
Eq. �20�. In the simple case of the SO coupling all the
fermion flavors had the same dispersion relation,
��k�= ��k2+�so

2 , and we were dealing with a multiflavor
two-band model. We only had an unique pole in the Green’s
function and the degeneracy of the system came from the
matrix structure in the numerator of Eq. �20�. When consid-
ering the two terms, this degeneracy is partially lifted and we
have a nondegenerated multiband model. It can be easily
seen by diagonalizing the Hamiltonian in the presence of the
two terms. The four bands are given by the expressions
�= ��k2+ �m+�so�2 and �= ��k2+ �m−�so�2. Effectively,
our system is now made of two �doubly degenerated� two-
band subsystems. However, although the denominator in Eq.
�14� is not any more proportional to the identity matrix, it is
still a diagonal matrix that can be inverted. Using expression
�18� and following the recipe of the last section one can see
that we have two copies of the SO problem with two differ-
ent masses given by m��so. The result is accordingly

Cs
��� = e2����

4
�sign��so − m� + sign��so + m�� . �23�

It is clear that the interplay between a staggered potential and
a spin-orbit coupling is such that the Chern-Simons coeffi-
cient is still quantized. When �so=0 we recover a topologi-
cally trivial insulator and when m=0 we recover the result of
the previous section as expected. The new feature compared
to previous results is that when both are nonzero �and for
���� �m�� there is still a topological response of the system.

Lets turn now to the case of having a finite chemical
potential, not discussed previously in the literature. Similarly
to what happened in the intrinsic SO case, depending on the
relative value of � against �so�m we will have different
results. Without doing any extra work we can read the result
from the considerations made in the case of the intrinsic
spin-orbit coupling by changing the masses appropriately.
There are four different cases: �a� ���� ��so−m� and
���� ��so+m�.

Under these conditions the chemical potential lies inside
both gaps gap and the response is still quantized

Cs
��� = e2����

4
�sign��so − m� + sign��so + m�� . �24�

�b� ���� ��so−m� and ���� ��so+m�.
In this case, the chemical potential crosses the bands for

both masses and hence both integrals give a nonquantized
result analogous to Eq. �22�
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Cs
��� = e2����

4
��so − m

���
+

�so + m

��� 
 = e2����

2
��so

��� 
 .

�25�

It is interesting to note that this result does not depend on the
value of m. Finally, the two cases left can be written in a
compact way: �c� ���� ��so�m� and ���� ��so�m�. These
are the cases where one integral gives a topological contri-
bution, as the chemical potential lies inside one of the gaps
but the other subspace gives a nonquantized contribution as
the chemical potential crosses one of its bands. Hence, the
result is

Cs
��� = e2����

4
��so � m

���
+ sign��so � m� . �26�

The � signs indicate wether it is the conduction or the va-
lence band which is crossed.

From these simple analytic results one infers that there is
a competition between the staggered potential and the intrin-
sic spin orbit, conditioned by the presence of the chemical
potential. The inclusion of the finite chemical potential com-
pletes the known results for this case.

C. Competition between a Rashba coupling and intrinsic
spin-orbit coupling at finite chemical potential

The competition of the intrinsic SO coupling and the
Rashba contribution was already studied in the original Ref.
5 for zero chemical potential. As the Rashba term by itself
does not open a gap in the spectrum it was found that the
topological insulating phase only exists for absolute values
of �so bigger than �
R�. The inclusion of a finite chemical
potential makes the physical analysis more interesting. Un-
like the other cases, this is more complex and a general ana-
lytical treatment with arbitrary � is messy. A detailed calcu-
lation can be found in Ref. 36; in what follows we aim to
complete their analysis with several new analytical results
together with an interpretation of the divergences that appear
in this case.

1. Case �=−�so

The band structure when these couplings are included is
shown in Fig. 1. As it is known in the presence of a Rashba
term 
R the spin degree of freedom is no longer a good
quantum number and we do not expect the spin hall conduc-
tivity to be quantized. After performing the trace in Eq. �18�,
the integral left is given by

Cs
��� =

e2

2
� dk3

�2�3 �− 8i�����
�4
R

2�k0 + �so��k0�k0 + �so� − kx
2 + ky

2� + �so�− k0
2 + k2 + �so

2 �2�
��− k0

2 + k2 + �so
2 �2 − 4
R

2�k0 + �so�2�2 , �27�

�2 �1 1 2

�2

�1

1

2

�2 �1 1 2

�3

�2

�1

1

2
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�2 �1 1 2
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1
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3

�2 �1 1 2

�3

�2

�1

1

2

3

�2 �1 1 2

�2

�1

1

2

(a) (b) (c)

(d) (e)

FIG. 1. �Color online� Band structure for different values of 
R and �so. �a� With 
R=0 and �so�0 a gap opens. The bands are
degenerate in spin. �b� With 
R�0 and �so=0 the gap is closed but the spin degeneracy is lifted. �c� With 
R��so a gap opens in the
spectrum.�d� With 
R��so the gap closes. �e� When 
R=�so three of the bands touch which leads to a divergence in C5

��� �see text�. The
horizontal solid line indicates where the chemical potential would lie if it was fixed at �=−�so. The band structure at this point generates
a divergence when 
R��so.
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where k0
�A= ��k2+ �
R−�so�2−
R−� and k0

�B

= ��k2+ �
R+�so�2+
R−� are the poles. The simplest case
�regarding its pole structure� is the case �=−�so �see Fig. 1�
since for all values of the parameters there are two bands
below �and two above� the chemical potential, therefore de-
fining the same pole structure for all values of k. Since the
chemical potential is placed at a special point of the band
structure were the bands meet when the gap closes, we ex-
pect to have divergences which we interpret as the divergent
contribution from the zero modes.

There are eight possible cases depending on the sign of

R, �so, �so+
R, and �so−
R. Since the integral in Eq. �27�
does not distinguish the sign of 
R we can safely assume

R�0. This reduces the problem to four cases: �a� �so�0,
�so+
R�0, and �so−
R�0.

In these conditions the gap remains open ��so�
R� we
get a finite result

Cs
��� = e2����

4

�so


R
ln�
R + �so


R − �so
� . �28�

Note that when 
R /�so→0 we can make use of the relation

arctanh�x� =
1

2
ln�1 + x

1 − x



to recover the standard result with the sign function obtained
for �so only. �b� �so�0, �so+
R�0, and �so−
R�0. With
an analogous analysis one arrives to the same expression but
with a sign difference, which accounts for the change in sign
of �so. �c� �so�0, �so+
R�0, and �so−
R�0. In this case,
one can see that the integral diverges. As explained above,
we now have a semimetal with the chemical potential set at
the touching point of the bands. The contribution of the
k=0 particles turns the integral to be divergent. �c� �so�0,
�so+
R�0, and �so−
R�0:

Again, the integral is found to be divergent but with an
opposite sign.

We can summarize the above result in two compact ex-
pressions. For the case when the gap is opened, i.e.,
�so�
R�0 and �so�−
R�0, one can write

Cs
��� = e2 sign��so�

����

4

�so


R
ln�
R + �so


R − �so
� . �29�

For the other case �
R��so�−
R� where the gap is closed
the integral diverges as C5

���→sign��so�� as a result of the
particular position of the chemical potential, where it en-
counters an infinite contribution from degenerate zero
modes.

2. Case �=0

When �=0 it is immediate to notice that two of the bands
can cross the fermi energy depending on the value of the
parameters. Hence, the chemical potential lies inside the gap
or crosses one of the bands, depending on the value of the
parameters �see Fig. 1�. Again the integral in Eq. �27� which
we have to evaluate has poles at the dispersion relation. An
important difference with respect to other cases is that the
poles have a nontrivial dependence on k. We consider some

illustrative cases: �d� �so�0 and 2
R��so�
R.
This corresponds to a situation where the gap is open but

the chemical potential is such that it intersects one of the
bands hence being the system metallic. The result is given by

Cs
��� = e2�����so

4
R
ln� �so

2�
R + �so�
� . �30�

Interestingly, the case where �so�0, 
R��so has the same
result. In this case the chemical potential intersects one of the
bands but the gap is closed. These results suggest that when
the chemical potential intersects one of the bands and hence
the system becomes metallic, it does not matter whether a
gap is open or not below the chemical potential as both situ-
ations give the result shown above. �e� �so�0 �so�2
R. In
this case, the chemical potential falls inside the bulk gap and
so this situation is reminiscent of the situation with
�=−�so when the gap is open. The result is the one given in
Eq. �28�.

As expected, we recover the result for the previous sec-
tion, but, since the chemical potential is not at a singular
point we do not encounter divergences. The other cases left
can be worked out in a similar fashion. Since the information
they carry is redundant they will not be discussed further.

We have thus completed the analysis made in Ref. 36 by
introducing several novel analytical results together with an
interpretation on the origin of the divergences. The competi-
tion of �so, 
R and staggered potential at zero chemical po-
tential was studied in Ref. 6 and we will not analyze it here.

IV. BILAYER GRAPHENE

A. Model

One can extend the previous analysis to bilayer graphene
where in addition to the valley ���, spin �s�, and pseudospin
��� degrees of freedom we have the layer degree of freedom
���. The new degree of freedom enables a richer playground
for topological phases. Remarkably, the effective action for-
malism allows to span these phases with little effort, as we
shall discuss next.

We will consider the bilayer graphene Lagrangean given
by

L0
�b� = 	̄���k� − 	

i


i�i
	 , �31�

where the bilinear couplings will be described below and the
� matrices are now constructed in the space of valley, pseu-
dospin, spin, and layer. Following the notation of the mono-
layer they are chosen to be �0=1�1s1��z, �1= i�z1s1��y, and
�2=−i1�1s1��x.

The bilinear terms include the standard interlayer cou-
pling given in our notation by


t�t =
1

2
t�1s1�i��y�x − �x�y� �32�

and an external gate potential which is known to open a gap
in the bilayer system and which is given by
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V�V = V1s1��z�z. �33�

In addition we shall consider two types of bilinear terms, the
staggered potential and the various spin-orbit couplings
given in Ref. 24. The staggered potential is just the trivial
extension of the monolayer. It is given by


m
�b��m

�b� = m1�1s1�1�,

where the superscript �b� denotes bilayer graphene.
Following Ref. 24 �see also Ref. 37�, one can construct

the following spin orbit terms �in the notation of Ref. 5�:


so
�b��so

�b� = 
1�zsz1��z + 
2�zsz�z1� + 
3�1�sx�z�y − �zsy�z�x�

+ 
4�1�sx�y�z − �zsy�x�z� .

The first term is the one corresponding to the �monolayer�
intrinsic spin orbit coupling. The last three terms, which in-
volve � are intrinsic to bilayer graphene where the ones
proportional to 
3 , 
4 are Rashba-type term. We will see
that the effect of 
1 and 
2 is to open a nontrivial gap in the
spectrum and so turning the system into a topological insu-
lator with unprotected edge states. Rashba-type terms where
studied numerically in Ref. 38 and shown to have the same
effect as in the monolayer and hence we will not study their
effect in this work.

The usual spin Chern-Simons term analogous to the one
discussed in the monolayer case will be associated to the
matrix

�5 = 1�sz1�1�.

We will denote as before the value of the coefficient by Cs.
Its computation follows the lines described in Sec. II C. A
nonzero value indicates that the system is a spin topological
insulator and the edges support spin currents.

As discussed in Sec. II the present formalism allows us to
describe other types of insulators by appropriately redefining
�5 to resolve other degrees of freedom, which certifies the
power of the method. In particular we will compute a “val-
ley” Chern number to study the valley topological insulator
character of the system. This insulator will be characterized
by a matrix

�5,v = �z1s1�1�

tailored to resolve the valley degree of freedom. The corre-
sponding Chern-Simons coefficient will be named CK. A
nonzero value of this coefficient implies a topological insu-
lator with valley polarized edges.

B. Summary of the results for bilayer graphene

We have computed the Cs terms for bilayer graphene
along the same lines described previously for the case of the
monolayer. We summarize the results in Table I where the
nonzero couplings are listed �t� is always nonzero and posi-
tive�. As discussed above, we have also calculated the CK
Chern number which is the valley Chern number calculated
with �5 replaced by �5,v in the trace in Eq. �18� and get
similar results.

We omit an explicit derivation of the results since the
integrals appearing are similar to the monolayer case, which
we have detailed earlier and no new technical issue appears
for the case of the bilayer. Nevertheless, the table also in-
cludes the technical detail of why the result vanishes in cases
when it is zero and the method of evaluation of the spatial
integral if the result is finite. The chemical potential in all
cases is set to zero, which in all cases falls inside the gap.
With this set up, no band crosses the Fermi energy and the
integrals are easily evaluated.

These results indicate that bilayer graphene can be a val-
ley topological insulator, as it has been recently suggested39

by only applying a gate voltage V and also a topological
insulator when 
1 and 
2—which open nontrivial gaps—are
present. However, note that the Chern number for bilayer
graphene is two times bigger than for the case of the mono-
layer in all cases. This even Chern number implies that we
are dealing with a topological insulator with unprotected
edge states. The result that bilayer graphene is a topological
insulator for 
1 was already mentioned in Ref. 24 but noth-
ing was said about 
2 which also seems to make the bilayer
system a topological insulator.

The origin of a nontrivial gap given by 
2 can be traced
back to the matrix form of this coupling, together with the
form of a t� coupling in bilayer graphene and the structure of

TABLE I. Classification of the two topological insulating phases of bilayer graphene considered in the
text.

Nonzero couplings Cs CK

V�0 0 �trace vanishes� 2e2

2 sgn�V� �numerical�

1�0 2e2

2 sgn�
1� �analytic� 0 �trace vanishes�

2�0 2e2

2 sgn�
2� �numerical� 0 �trace vanishes�

3�0 0 �vanishes by parity� 0 �trace vanishes�

4�0 0 �trace vanishes� 0 �trace vanishes�

1�0 
2�0 2e2

2 sgn�
1+
2� �numerical� 0 �trace vanishes�

1�0 V�0 e2

2 �sgn�
1+V�+sgn�
1−V�� �numerical� e2

2 �sgn�V+
1�+sgn�V−
1�� �numerical�

2�0 V�0 e2

2 �sgn�
2+V�+sgn�
2−V�� �numerical� e2

2 �sgn�V+
2�+sgn�V−
2�� �numerical�
m�0 0 �trace vanishes� 2e2

2 sgn�m� �analytic�
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�5. All these together provide the complete set of matrices in
the layer index ��x ,�y ,�z ,1�� so that the trace does not
vanish and a nontrivial spin Chern-Simons is generated, hav-
ing however a “layerlike” origin. It is easy to check that
when t�=0, 
2 does not contribute to the spin Chern-Simons
term. In contrast, 
1 in this situation still does contribute,
indicating that the coupling between layers is of critical im-
portance for this spin-orbitlike coupling to have an effect.

From the table of results it is clear that the combined
perturbation 
1 and 
2 can enhance the topological response.
The reason why the couplings 
1 and 
2 have the same effect
can be understood in terms of the effective low-energy
hamiltonian. The equivalence can be traced back to a sym-
metry analysis of the effective model performed in Ref. 37.
This analysis shows that the only term allowed by time-
reversal and discrete spatial symmetries is the Kane-Mele
term associated to 
1. It means that although 
1 and 
2 have
a different microscopic origin, both couplings will lead to the
same term in the low-energy approximation explaining why
in Table I the only effect of 
2 is to renormalize 
1.

The case with 
i�0 �i=1,2� and V�0 is analogous to
the monolayer case where the staggered potential competes
with the spin orbit coupling. As expected, the trivial coupling
is V when calculating Cs and 
i when calculating CK. This
indicates that the �valley� topological nature of the bilayer is
affected by the presence of the gate potential V.

As mentioned above, the Rashba like terms 
3 and 
4 go
against the topological nature of bilayer graphene as it was
discussed in Ref. 38. Table I shows that bilayer graphene is a
rich playground to understand the competition between dif-
ferent topological phases. The addition of a finite chemical
potential will change this picture as it happens in the mono-
layer case. It is worth to mention that the computation of the
different terms in Table I is similar in many aspects to the
computation of Cs in the case of monolayer graphene in the
presence of 
R+�so couplings. In the present case the exis-
tence of the perpendicular hopping term t� makes the low-
energy Hamiltonian quadratic in the momentum operator and
Cs will have a form similar to the expression �27� with the
obvious modifications concerning the position of the Fermi
level inside the gap.

V. CONCLUSIONS AND OPEN QUESTIONS

We have provided a unifying view to generate and com-
pute different Chern-Simons terms that can appear in mono-
layer and bilayer graphene, and used the formalism to study
various topological insulating phases in the system. Part of
the results of this work were already obtained in the literature

and others are distinct. In particular in the monolayer case
we have studied the competition of the intrinsic spin orbit
term with a staggered potential in the presence of finite
chemical potential, and we have completed the analysis of
Ref. 36 by obtaining an analytical expression for the Chern-
Simons term in the case of having an intrinsic SO and a
Rashba term at finite chemical potential. We have also clari-
fied the origin of the divergences encountered for the particu-
lar case of a chemical potential equal to the intrinsic SO
value. For the bilayer graphene we have characterized the
usual spin insulator and a different nontrivial topologically
insulating phase similar to the one described in Ref. 39 that
can be thought of as a valley topological insulator, under the
same formalism. The topological nature of the valley insula-
tor was shown to be affected by the introduction of a gate
voltage. We have also seen that the layer degree of freedom
does not give rise to topological insulating phases with the
physical couplings discussed in this work. Obviously the for-
mal identity of the Hamiltonians with various couplings al-
lows to play with possible couplings to trade spin by layer
degrees of freedom. The major interest will lie in finding
couplings that will be experimentally realizable and can lead
to nontrivial applications as discussed in Ref. 39 an issue out
of the scope of the present work.

The effective action formalism used in this work allows to
compute nonquantized values for the spin Chern numbers, in
contrast to other methods, such as the computation based on
the Berry phase, which only gives the quantized parts. This
nonquantized Chern number is still linked to a spin-Hall ef-
fect which means that we still have counter propagating edge
states whose spin polarization is given by this Chern number.
A nonquantized value means that the spin �or generally
speaking the quantum number carried by the propagating
edge state� is not strictly conserved. In spite of this, there
have been some theoretical studies �in the case of valley-Hall
effect� claiming that although not protected by symmetries,
these counterpropagating edge currents are quite robust
against the effect of disorder and the coherence length of the
quantum number they carry can be significantly large to be
used in some electronic or spintronic applications.39
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