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We analyze numerically thermal conductivity of graphene nanoribbons with perfect and rough edges. We
demonstrate that edge roughness can suppress thermal conductivity by two orders of magnitude. This effect is
associated with the edge-induced energy localization and suppression of the phonon transport, and it becomes
more pronounced for longer nanoribbons and low temperatures.
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I. INTRODUCTION

The study of remarkable properties of graphite structures
is one of the hot topics of nanoscience.1 Graphene nanorib-
bons �GNRs� are effectively low-dimensional structures
similar to carbon nanotubes but their main feature is the
presence of edges. Due to the edges, GNRs can demonstrate
many novel properties driven by their geometry and depen-
dent on their width and helicity. A majority of the current
studies of GNRs is devoted to the analysis of electronic and
magnetic properties modified by the presence of edges, in-
cluding the existence of the localized edge modes,2,3 which
are an analog of surface states in the two-dimensional geom-
etry. The edges can support localized vibrational states in
both linear and nonlinear regimes.4,5

The effect of surface disorder, e.g., stipulated by the edge
roughness, on the electronic transport of GNRs has been dis-
cussed in several papers �see, e.g., Refs. 6–9�. It was found
that a relatively modest edge disorder is already sufficient to
induce the conduction energy gap in the otherwise metallic
nanoribbons and to lift any difference in the conductance
between nanoribbons of different edge geometry, suggesting
that this type of disorder can be very important for changing
other fundamental characteristics of GNRs.

In addition to electronic properties, the thermal properties
of graphene are also of both fundamental and practical im-
portance. Several experiments10,11 demonstrated that
graphene has a superior thermal conductivity, likely underly-
ing the high thermal conductivity known in carbon
nanotubes.12

From the other hand, recent experiments demonstrated
that thermal conductivity of silicon nanowires can be dra-
matically reduced by surface roughness.13,14 For a qualitative
explanation of this effect a simple phenomenological model
was suggested in Ref. 15; this model describes a nanowire as
a system of a finite number of interacting one-dimensional
chains with the longitudinal oscillations, where roughness is
modeled by randomly missed atoms in the edge chains. It
was shown that superdiffusion of thermal energy in nano-
wires with atomically smooth edges is replaced by normal
diffusion or subdiffusion in the case of rough edges, thus

leading to a dramatic suppression of thermal conductivity.
However, this simplest one-dimensional model is not appli-
cable to the specific GRN geometry, and it does not allow to
obtain any qualitative result for the effect of roughness on
the thermal conductivity of nanoribbons.

Modeling of a thermal flow in ideal nanoribbons16 sug-
gests that the coefficient of thermal conductivity grows
monotonically with the length. Similar to carbon nanotubes,
the length dependence of thermal conductivity reveals the
variation in a balance between ballistic and diffusive regimes
of the heat conduction.

We notice that the heat transport in GRNs of different
shapes was modeled in Ref. 17. In addition to rectangular
structures, the authors considered triangular nanoribbons, the
nanoribbons with defects �vacancies�, as well as the case of
rough edges when isolated vacancies are placed at the edges.
However, the effect of rough edges on thermal conductivities
of GNRs was not analyzed. Moreover, numerical studies
based on the Nosé-Hoover thermostat do not always provide
accurate results for the heat transfer.18,19 For example, an
alternative approach based on the Langevin thermostat does
not confirm the predictions of Ref. 17 for significant thermal
rectification in asymmetric nanoribbons and thermal conduc-
tivity of �2000 W /mK for short �1.5 nm�5.7 nm� sym-
metric GRNs obtained by employing the Nosé-Hoover ther-
mostat.

Recent studies of the thermal conductivity of GNRs with
smooth and rough edges20 employed an indirect method of
the equilibrium molecular dynamics. In this case, the coeffi-
cient of thermal conductivity is defined through the Green-
Kubo formula. It was shown that in the case of rough edges,
the thermal conductivity coefficient is strong function of the
ribbon width, and this shows the importance of the phonon
scattering from the edges. However, the obtained estimate
for the thermal conductivity �=8000–20 000 W /mK con-
tradicts to the results of the direct numerical modeling.16

Theoretical studies of the phonon thermal conductivity of
single-layer graphene flakes were presented in Refs. 21 and
22. The calculations based on the Klemens approximation
revealed that umklapp-limited thermal conductivity of
graphene grows with increasing linear dimensions of
graphene flakes. The phonon scattering on defects and
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graphene edges has also been included into the model. It was
found that thermal conductivity of single-layer graphene at
room temperature is in the range of �2000–5000 W /mK
depending on the flake width, the defect concentration, and
edge roughness.

Anderson localization in disordered nanoribbons was
studied in Refs. 6–9 where it was shown that the transport
characteristics, such as elastic mean-free path and localiza-
tion length change rapidly with a growth of defect concen-
tration at the edges. Therefore, we expect that the Anderson
localization observed for quasi-one-dimensional disordered
systems could suppress substantially thermal conductivity.

In this paper, we study thermal conductivity of isolated
graphene nanoribbons with perfect and rough edges. The pa-
per is organized as follows. In Sec. II we introduce our
model and describe in detail our choice of interacting poten-
tials for modeling of graphene structures, and introduce the
effective density d�0�d�1� characterizing the rough edges
of the nanoribbon. In Sec. III we discuss the method of direct
numerical modeling of heat transport along the nanoribbon,
whereas in Sec. IV we discuss localization of oscillatory
modes in the nanoribbons with rough edges and demonstrate
that only the modes with the wavelength on the order of the
nanoribbon’s width are not localized. Section V is devoted to
the study of thermal conductivity of nanoribbons with rough
edges, where we show that the ballistic regime of the phonon
transport in ideal nanoribbons is replaced by the energy su-
perdiffusion in the presence of rough edges. In Sec. VI we
analyze the dependence of the coefficient of thermal conduc-
tivity of a finite-length nanoribbon on the edge roughness,
and demonstrate that the largest suppression of thermal con-
ductivity occurs for the density d=0.5. Dependence of the
thermal conductivity coefficient � on the nanoribbon’s length
N is studied in Sec. VII, where we show that ��N� grows as
a power-law function of the length, and the roughness
changes the exponent of the power-law dependence. Section
VIII discusses the dependence of thermal conductivity on
temperature. Finally, Conclusion provides a summary of the
results.

II. MODEL

We model a graphene nanoribbon as a planar strip of
graphite, with the properties depending on the stripe width
and chirality. We consider a hydrogen-terminated nanorib-
bon, where edge carbon atoms correspond to the molecular
group CH—see Fig. 1. We consider such a group as a single
effective particle �united atom� at the location of the carbon
atom. Therefore, in our model of graphene nanoribbon we
take the mass of atoms inside the strip as M0=12mp, and for
the edge atoms we consider a large mass M1=13mp �where
mp=1.6603�10−27 kg is the proton mass�.

The structure of the zigzag nanoribbon can be presented
as a longitudinal repetition of the elementary cell composed
K atoms �the even number K�4�. We use atom numbering
shown in Fig. 2�a�. In this case, each carbon atoms has a
two-component index �= �n ,k�, where n=0, �1, �2, . . .
stands for the number of the elementary cells, and
k=1,2 , . . . ,K stands for the number atoms in the cell.

To model two rough edges we randomly delete some at-
oms with the second index k=1, 2 and k=K−1, K, see Figs.
1 and 2�a�. When we remove an atom from the edge layer,
the corresponding new edge atom should have two valent
bonds with other carbon atoms, and one valent bond, with
the hydrogen atom, see Figs. 1�b�–1�d�. In this case all valent
bonds in the nanoribbon will have the same length
�0�1.4 Å, and they can be described in a similar way by
employing the same type of interaction potentials.

We notice that, if we consider nanoribbons without full
hydrogen termination, then some edge valent bonds CC will
be shorter and stronger ��0�1.2 Å�, see, e.g., Ref. 23. For
describing these bonds we should employ other types of the
interaction potentials, making the corresponding model
rather complex. That is why, we use hydrogen-terminated
nanoribbons are the most suitable for numerical modeling of
the linear and nonlinear dynamics.

We characterize the degree of roughness by the density of
its edge layers created by the atoms with the indices

FIG. 1. Examples of hydrogen-terminated zigzag nanoribbons
with rough edges for the density of the edge layers: �a� d=0, �b�
d=0.1, �c� d=0.5, �d� d=0.9, and �e� d=1. Number of atoms in the
elementary cell is K=12.
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FIG. 2. �Color online� Schematic view �a� of a zigzag nanorib-
bon with rough edges and atom numbering. The edge unit atoms
�CH groups� are shown as filled circles. Dotted lines separate the
elementary cells of the nanoribbon. K is the number of atoms in the
elementary cell. �b� Configurations of an ideal structure containing
up to ith nearest-neighbor interactions for i=1, . . . ,5.
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��n ,k��n=1
N , k=1,2 ,K−1,K. We define this value as

d=Ne /4N, where N is the dimensionless length of the nan-
oribbon �the number of longitudinal cells� and Ne is the num-
ber of atoms in the edge layers �the atoms with the indices
k=1, 2, K−1, and K�. Several types of the nanoribbon struc-
ture are shown in Fig. 1 for different values of the density of
rough edges. For d=0 �see Fig. 1�a��, the nanoribbon has a
perfect structure with K−4 atoms in the elementary cell.
When the value of the parameter d grows, the number of
defects atoms in the edge layers grows as well, see Figs.
1�b�–1�d�. For d=1 the nanoribbon again has a perfect struc-
ture but its width is increased, and it has K atoms in the
elementary cell �Fig. 1�e��.

To describe the dynamics of nanoribbons with both ideal
and rough edges, we present the system Hamiltonian in the
form

H = 	
n=−	

+	

	
k=1

Kn 
1

2
M�n,k��u̇�n,k�,u̇�n,k�� + P�n,k�� , �1�

where K−4�Kn�K is the number of atoms in the nth el-
ementary cell, M� is the mass of the carbon atom with the
index �= �n ,k�, u�= �x��t� ,y��t� ,z��t�� is the radius vector of
the carbon atom with the index � at the moment t. The term
P� describes the interaction of the atom with the index
�= �n ,k� with its neighboring atoms.

We mimic hydrogen H termination of the edges using a
united atom approach, and describe the edge atomic groups
CH as united atoms with mass M1=13mp �for internal atoms
we take M�=M0=12mp�. This approach does not allow to
describe high-frequency motion of the H atom �with the
frequency 
CH�3000 cm−1�. However, this high-frequency
motion should not affect much the thermal conductivity since
the later is dominated by the phonons with much lower
frequencies. We notice that high-frequency oscillations
of the CH bonds can be described the methods of
molecular dynamics only for very high temperatures,
T��
CH /kB=4316 K.

The potential P�n,k� depends on variations in bond length,
bond angles, and dihedral angles between the planes formed
by three neighboring carbon atoms, and it can be written in
the form

P = 	
1

U1 + 	
2

U2 + 	
3

U3 + 	
4

U4 + 	
5

U5, �2�

where i, with i=1, 2, 3, 4, 5 stand for the sets of configu-
rations including up to nearest-neighbor interactions. Owing
to a large redundancy, the sets only need to contain configu-
rations of the atoms shown in Fig. 2�b�, including their ro-
tated and mirrored versions.

The potential U1�u� ,u�� describes the deformation energy
due to a direct interaction between pairs of atoms with the
indices � and �, as shown in Fig. 2�b�. The potential
U2�u� ,u� ,u�� describes the deformation energy of the angle
between the valent bonds u�u� and u�u�. Potentials
Ui�u� ,u� ,u� ,u��, i=3, 4, 5, describes the deformation en-
ergy associated with a change in the effective angle between
the planes u� ,u� ,u� and u� ,u� ,u�.

We use the potentials employed in the modeling of the
dynamics of large polymer macromolecules24,25 for the va-
lent bond coupling,

U1�u1,u2� = �1�exp�− �0�� − �0�� − 1�2, � = �u2 − u1� ,
�3�

where �1=4.9632 eV is the energy of the valent bond and
�0=1.418 Å is the equilibrium length of the bond; the po-
tential of the valent angle

U2�u1,u2,u3� = �2�cos � − cos �0�2,

cos � = �u3 − u2,u1 − u2�/��u3 − u2� · �u2 − u1�� �4�

so that the equilibrium value of the angle is defined as
cos �0=cos�2� /3�=−1 /2; the potential of the torsion angle

Ui�u1,u2,u3,u4� = �i�1 − zi cos �� ,

cos � = �v1,v2�/��v1� · �v2�� ,

v1 = �u2 − u1� � �u3 − u2� ,

v2 = �u3 − u2� � �u3 − u4� , �5�

where the sign zi=1 for the indices i=3, 4 �equilibrium value
of the torsional angle �0=0� and zi=−1 for the index
i=5��0=��.

The specific values of the parameters are �0
=1.7889 Å−1, �2=1.3143 eV, and �3=0.499 eV, and they
are found from the frequency spectrum of small-amplitude
oscillations of a sheet of graphite.26 According to the results
of Ref. 27 the energy �4 is close to the energy �3, whereas
�5��4���5 /�4��1 /20�. Therefore, in what follows we use
the values �4=�3=0.499 eV and assume �5=0, the latter
means that we omit the last term in the sum �Eq. �2��.

III. METHODS

In order to model the heat transport, we consider the na-
noribbon of a finite length with two ends places in thermo-
stats kept at different temperatures, as shown schematically
in Fig. 3. In order to calculate numerically the coefficient of
thermal conductivity, we should calculate the heat flux at any
cross section of the nanoribbon. Therefore, first we obtain
the formula for calculating the longitudinal local heat flux.

We define the 3Kn-dimensional coordinate vector
un= �xn,k ,yn,k ,zn,k�k=1

Kn which determines the atom coordinates

T=T+ T=T-

1≤ n ≤ N+ N <n N-N+ ≤ - N-N <n N- ≤

FIG. 3. Example of a hydrogen-terminated zigzag nanoribbon
with rough edges with N longitudinal segments. First left N+ seg-
ments are attached to the T=T+ thermostat and the last right N−

segments are attached to the T=T− thermostat. Number of atoms in
the elementary cell K=12 and density of the edge layers d=0.5.
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of an elementary cell n, and then write Hamiltonian �1� in the
form

H = 	
n

hn = 	
n

1

2
�Mnu̇n,u̇n� + Pn�un−1,un,un+1�� , �6�

where the first term describes the kinetic energy of the atoms
�Mn is diagonal mass matrix of the nth elementary cell�, and
the second term describes the interaction between the atoms
in the cell and with the atoms of neighboring cells.

Hamiltonian �6� generates the system of equations of mo-
tion,

− Mnün = Fn = P1,n+1 + P2,n + P3,n−1, �7�

where the function Pi,n=Pi�un−1 ,un ,un+1�, Pi
=�P�u1 ,u2 ,u3� /�ui, i=1, 2, 3.

Local heat flux through the nth cross section, jn,
determines a local longitudinal energy density hn by

means of a discrete continuity equation, ḣn= jn− jn+1. Using
the energy density from Eq. �6� and the motion equations
�Eq. �7��, we obtain the general expression for the energy
flux through the nth cross section of the nanotube,
jn= �P1,n , u̇n−1�− �P3,n−1 , u̇n�.

For a direct modeling of the heat transfer along the
nanoribbon, we consider a nanoribbon of a fixed length
�N−1�h with fixed ends. We place the first N+=40 segments
into the Langevin thermostat at T+=310 K, and the last
N−=40 segments, into the thermostat at T−=290 K—see
Fig. 3. As a result, for modeling of the thermal conductivity
we need integrating numerically the following system of
equations:

Mnün = − Fn − �Mnu̇n + �n
+, for n = 2, . . . ,N+,

Mnün = − Fn, for n = N+ + 1, . . . ,N − N−,

Mnün = − Fn − �Mnu̇n + �n
−, for n = N − N− + 1, . . . ,N − 1,

�8�

where �=1 / tr is the damping coefficient �relaxation time
tr=0.1 ps�, and

�n
� = ��1,1,�1,2,�1,3, . . . ,�Kn,1,�Kn,2,�Kn,3�

is 12Kn-dimensional vector of normally distributed random
forces normalized by conditions

�n,i
� �t1��l,j

��t2�� = 2Mn,ikBT��nl�ij��t1 − t2� .

Details of this numerical procedure for modeling the thermal
conductivity can be found in our earlier paper28 devoted to
the study of thermal conductivity of carbon nanotubes.

We select the initial conditions for system �Eq. �8�� cor-
responding to the ground state of the nanoribbon, and solve
the equations of motion numerically tracing the transition to
the regime with a stationary heat flux. At the inner part of the
nanotube �N+�n�N−N−�, we observe the formation of a
temperature gradient corresponding to a constant flux. Dis-
tribution of the average values of temperature and heat flux
along the nanotube can be found in the form

Tn = lim
t→	

1

3KnkBt
�

0

t

�Mnu̇n���,u̇n����d� ,

Jn = lim
t→	

h

t
�

0

t

jn���d� ,

where kB is the Boltzmann constant. For nanoribbons with
rough edges we make the averaging not only in time but also
on 240 independent realizations of the roughness.

Distribution of the temperature and local heat flux along
the rough-edged nanoribbon is shown in Figs. 4�a� and 4�b�.
The heat flux in each cross section of the inner part of the
nanoribbon should remain constant, namely, Jn�J for
N+�n�N−N−. The requirement of independence of the
heat flux Jn on a local position n is a good criterion for the
accuracy of numerical simulations, as well as it may be used
to determine the integration time for calculating the mean
values of Jn and Tn. As follows from the figures, the heat flux
remains constant along the central inner part of the nanorib-
bon.

A linear temperature gradient can be used to define the
local coefficient of thermal conductivity,
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FIG. 4. �Color online� Distribution of �a� local heat flux Jn and
�b� local average temperature Tn along a zigzag nanoribbon with
rough edges �K=12 and density d=0.5�. Length of the nanoribbon
is L= �N−1�h=98.1 nm �N=400 and h=0.246 nm�, and tempera-
tures are T+=310 K and T−=290 K, the numbers of end segments
interacting with the thermostats N�=40 �corresponding fragments
are shown in gray�. Heat conductivity is �=16.2 W /mK. For cal-
culations we used 240 independent realizations of the nanoribbons
with rough edges, and the dynamics was analyzed for the temporal
interval of 4 ns.
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��Ni� = �N − N− − N+ − 1�J/�TN++1 − TN−N−
�S ,

where Ni=N−N−−N+ is the number of periods in the
central part of the nanoribbon, S=2�Dy +2rC�rC is the
area of the nanoribbon cross section �nanoribbon width
Dy = �2+3d+3�K−8� /4��0, van der Waals carbon radius
rC=1.85 Å�. Using this definition, we can calculate the
asymptotic value of the coefficient �=limN→	 ��N�.

IV. MODE LOCALIZATION IN NANORIBBONS
WITH ROUGH EDGES

For small displacements v�t�= �vn�t��n=1
N = �un�t�−un

0�n=1
N ,

where the vector u0= �un
0�n=1

N defines positions of atoms in the
ground state of the ribbon, and the amplitude is small,
�v���0, the motion equations �Eq. �7�� can be presented a
system of linear equations −Bv=Av, where B is the
diagonal matrix of masses and A is a symmetric real matrix.
To find the eigenmodes of the nanoribbon in the form
v=Ae exp�−i
t� we should solve an eigenvalue problem
�A−
2B�e=0, where 
 is the mode frequency, A�0 is the
mode amplitude, and the eigenmode vector e= �en,k�n=1,k=1

N,Kn is
normalized by the condition �e ,Be�=1.

To analyze eigenvalue oscillation, we define the distribu-
tion function of the oscillatory energy along nanoribbon as
follows:

pn = 	
k=1

Kn

Mn,k�en,k�2.

The energy distribution is normalized by the following con-
dition, 	n=1

N pn= �e ,Be�=1. We introduce the parameter char-
acterizing the energy localization in the nanoribbon as fol-
lows, D=1 /	n=1

N pn
2. This parameter characterizes the

dimensionless width of the energy localization in the nanor-
ibbon. If the vibrational mode is localized only on one el-
ementary cell �i.e., there exists an cell n0 for which pn0

=1�,
the width is D=1. In the opposite limit, when the vibrational
energy is distributed equally on all atoms �pn�1 /N�, we
have D=N so that in a general case 1�D�N.

First, we study an ideal nanoribbon of a fixed length with
N=300 and K=10. To find all oscillatory eigenmodes of such
a structure, we solve the generalized eigenvalue problem
with real symmetric matrices of the order 3NK�3NK. The
nanoribbon has 3NK=9000 eigenmodes with the eigenfre-
quencies 0�
�1600 cm−1. Dependence of the width of
the eigenmode D vs its frequency 
 is shown in Fig. 5�a�. As
follows from that figure, practically all eigenmodes of the
nanoribbon has the width 200�D�300 comparable with
the length of the nanoribbon. There exist only a few modes
localized at the edge atoms of the nanoribbon with the indi-
ces n=1 and n=N; more detailed analysis of such localized
surface modes can be found in Ref. 4. However, for the
periodic boundary conditions no surface states occur, and all
modes have the width 200�D�300.

For the nanoribbon with rough edges �N=300,K=12,d
=0.5�, most of eigenmodes is localized �see Fig. 5�a�, curve
2�, and only low-frequency oscillatory modes with the wave-
length on the order of the nanoribbon length are not much

affected by the edge roughness. While the frequency spec-
trum of the nanoribbons with both perfect and rough edges
remains unchanged, its structure becomes “smoothen” in the
case of disorder, see Figs. 5�b� and 5�c�.

This analysis of linear eigenmodes of the nanoribbon re-
veals that in the case of rough edges majority of vibrational
modes are localized as functions of the longitudinal index n.
This means that in our system we observe the manifestation
of the Anderson localization due to the edge disorder, earlier
discussed only for the wave transmission in surface-
disordered waveguides.29,30 Only the modes with the wave-
length on the order of the nanoribbon length are not local-
ized. As a result, we expect that the edge disorder should
lead to suppression of phonon transport and dramatic reduc-
tion in the thermal conductivity.

V. ENERGY DIFFUSION IN NANORIBBONS
WITH ROUGH EDGES

Now we analyze how the structure of the nanoribbon
edges affects the phonon transport. We take the nanoribbon
with N=2000 cells �corresponding to the dimension length
L=Nh=492 nm�, heat its central part with N�=20 to the
temperature T=30 K, and study the heat transfer along the
nanoribbon. Our numerical results show that random change
in the edge structure �the edge roughness� leads to a substan-
tial change in the heat transport, see Fig. 6, and the energy
spreads much slower than in the case of ideal ribbon.

To characterize the energy diffusion we study the tempo-
ral dependence of the mean spatial width of the energy dis-
tribution along the nanoribbon, defined as
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FIG. 5. �Color online� Dependence �a� of the width of eigen-
value oscillation D on the frequency 
 for an ideal nanoribbon
�curve 1, N=300, K=10, and d=1� and nanoribbon with rough
edges �curve 2, N=300, K=12, and d=0.5�. Spectral density p�
�
for �a� ideal and �b� disordered nanoribbon. For convenience, the
density is normalized by the condition �0

	p�
�d
=100.
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�2�t� = �x2� = 	
n=1

N

�n − �N + 1�/2�pn,

where a series �pn=En / Ē�n=1
N , Ē=	nEn, defines the energy

distribution along the nanoribbon. To increase the accuracy
for calculating the value �2 we carry out the averaging pro-
cedure over 103 independent realizations of the initially ther-
malized central part of the ribbon. The corresponding tem-
poral dependence of �2 is shown in Fig. 7. Generally, the
energy profile spreads as

�2�t� = 2Dt�, with degree 0 � � � 2.

Following this definition, we find for low temperatures that
an ideal nanotube �d=0,1� generates the exponent �=2,
which corresponds to ballistic flow of thermal energy along
the ribbon, and the thermal energy pulse propagates as a
diverging packet of noninteracting phonons �see Figs. 6�a�
and 7, curve 1�. In the nanotube with rough edge, this bal-
listic flow is replaced by superdiffusion of energy with the
exponent � approaching 1. The lowest value �=1.08 is
achieved for the roughness density d=0.7, see Fig. 6�b� and
7, curve 2.

Our results suggest that the exponent ��1 for any value
of the edge roughness. This means that the roughness-
induced edge disorder does not lead to the Anderson local-
ization of all phonons in the ribbon since for the completely
localized states we should obtain subdiffusion when ��1.15

Thus, the edge disorder leads to the suppression of the pho-
non transport and therefore it should affect dramatically the
thermal conductivity of the graphene nanoribbons with rough
edges.

VI. DEPENDENCE OF THERMAL CONDUCTIVITY
ON THE EDGE ROUGHNESS

Our numerical results demonstrate that the thermal con-
ductivity of graphene nanoribbon depends crucially on the

degree of edge roughness. In spite of the fact that the nanor-
ibbon has an ideal internal structure, its thermal conductivity
is reduced dramatically, and it becomes much lower that the
conductivity of an ideal nanoribbon of the same width.

Distribution of the thermal flow Jn and local temperature
Tn along the nanoribbon with rough edges �for the den-
sity d=0.5 and width K=12� is presented in Figs. 4�a� and
4�b�. In comparison with the ideal nanoribbon �not shown�,
the edge disorder leads to reduction in the thermal flow
in at least ten times, as well as it changes the temperature
profile along the nanoribbon. In addition, in an ideal nano-
ribbon we observe thermal resistance at the edges placed
into a thermostat, which disappears in the case of rough
surfaces. As a result, for the length L= �N−N−−N+�h
=78.7 nm,�N=400, N�=40� the coefficient of thermal con-
ductivity of the nanoribbon with rough edges is found as

FIG. 6. Spreading of the heat pulse �initial width L=20h, amplitude Ta=30 K� in �a� nanoribbon �width K=12� with ideal edges
�density d=1� and �b� in nanoribbon with rough edges �K=12 and d=0.7�. The dependence of site energy En on time t is shown. Averaging
was performed for 1000 independent realization of the rough edges.
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FIG. 7. �Color online� Root-mean-square spatial width of energy
distribution �2 along nanoribbon versus time, t, for the nanoribbon
with �a� ideal edges �K=12 and d=1� and �b� rough edges �K=12
and d=0.7�.
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�=16.2 W /mK that is in 15 times lower than the thermal
conductivity of an ideal nanoribbon, �=247 W /mK �density
d=1 and width K=12�.

Dependence of the coefficient of thermal conductivity �
on the degree of roughness characterized by the parameter d
is shown in Fig. 8 for K=12, N=240, and N�=20. As fol-
lows from this figure, the thermal conductivity will be the
lowest for the densities 0.13�d�0.83. The maximum is ob-
served for d=1 and d=0 when we have ideal nanoribbons
with K=12 and K=8 atoms in an elementary cell, respec-
tively. The minimum is observed for the density d=0.5.

VII. DEPENDENCE OF THERMAL CONDUCTIVITY ON
THE LENGTH

Below we study in more detail the thermal conductivity of
rough-edged nanoribbons with the roughness density d=0.5.
The corresponding structure of this nanoribbon is shown in
Figs. 1�c� and 3.

Our numerical modeling described above demonstrates
that for T=300 K the thermal conductivity of an ideal nan-
oribbon grows with its length L as a power-law function,

��N� � N� for N → 	 , �9�

where ��1 /3. The value of exponent � is almost indepen-
dent on the nanoribbon width, and it changes slightly when
the width increases, see Fig. 9. We notice that the general
power-law dependence �Eq. �9�� is also valid for carbon
nanotubes, however the value of the exponent � depends on
the nanotube radius.28 When the radius grows, the exponent
� changes from the value �=0.38 for the nanotubes �5, 0�,
�3, 0� with the smallest radius R=2 Å to the value �=0.14
for nanotubes with the radius R=8 Å.

Our results for the coefficient of thermal conductivity of
ideal nanoribbons ��N� agree well with the results of numeri-

cal modeling using the so-called Tersoff potential,16 however
they contradict to much higher values obtained in Ref. 17.
We have checked those results by employing the Langevin
thermostat, and we come to the conclusion that the main
results of Ref. 17, namely, significant thermal rectification in
asymmetric nanoribbons and large values of heat conductiv-
ity for short ideal nanoribbons, are results of incorrect use of
the Nosé-Hoover thermostat.

We notice that the dependence �Eq. �9�� agree with the
experimental estimate of thermal conductivity of graphene
��3080–5150 W /mK.10 As follows from Fig. 9, the coef-
ficient of thermal conductivity grows monotonically with the
width of the nanoribbon so that the thermal conductivity of a
planar sheet should be much higher than that of a nanorib-
bon. In accord with our results, for the nanoribbon with the
width D=4.1 nm�K=40� such values of thermal conductiv-
ity are achieved for the length L�50 �m.

In contrast, the thermal conductivity of a nanoribbon with
rough edges grows much slower, and for the parameters
K=12, d=0.5 the power-law dependence �Eq. �9�� has the
exponent �=0.16—see Fig. 9, curve 5. This difference
grows with the length of the nanoribbon. For example, for
L=4.91 nm�N=100, N�=40�, a ratio between the coeffi-
cient of thermal conductivity of rough edge nanoribbon
�K=12, d=0.5�, �r, and ideal �K=10, d=1� nanoribbon of
the same area, �i, is �=�r /�i=0.15 but for the length
L=314.4 nm this ratio becomes much smaller, �=0.06.

We notice that by adding new layers to the nanoribbon we
change the thermal conductivity due to the cross-plane cou-
pling of low-energy phonons and a change in the phonon
umklapp scattering.31 Therefore, we expect that multilayered
nanoribbons will demonstrate even stronger suppression of
thermal conductivity due to edge roughness.
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FIG. 8. �Color online� Dependence of the coefficient of thermal
conductivity � of a finite nanoribbon with rough edges �K=12,
N=240, N�=20, T+=310 K, and T−=290 K� on the density d. For
calculation of � we employed 120 independent realizations of the
rough surfaces with the fixed density d. Thermal conductivity was
calculated from the temporal evolution during 3 ns.
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VIII. DEPENDENCE OF THERMAL CONDUCTIVITY
ON TEMPERATURE

Now we study how this suppression of thermal conduc-
tivity depends on temperature. For an ideal nanoribbon, the
coefficient of thermal conductivity grows monotonically
when temperature decreases �see Fig. 10, curve 1� so that for
T→0 we obtain �→	. This is related to the fact that the
dynamics of nanoribbons approached the dynamics of one-
dimensional linear system with infinite thermal conductivity.
In contrast, for the nanoribbon with rough edges we observe
that for T�100 K its thermal conductivity depends only
weakly on temperature, see Fig. 10, curve 2. This result is
explained by the fact that in the edge-disordered nanoribbon
a majority of linear vibrational modes becomes localized due
to the edge disorder, and the phonon transport is suppressed.

At low temperatures the system is described well by the
linear approximation. In an ideal nanoribbon, the heat trans-
fer occurs through a ballistic flow of phonons. As a result,
the coefficient of thermal conductivity � grows monotoni-
cally when temperature decreases, namely, ��T�→	 when
T→0. In a finite-width nanoribbon with rough edges the heat
energy is transferred at low temperature through harmonic
oscillations mainly localized at the nanoribbon edges. There-
fore, the ballistic flow of phonons in ideal nanoribbon is
replaced by the energy subdiffusion in the nanoribbon with
rough edges. This effect is enhanced for low temperatures.
Indeed, when temperature decreases, nonlinear effects such
as phonon-phonon scattering disappear, so that only ballistic
flow of phonons remains in an ideal nanoribbon, so that ther-
mal conductivity monotonically increases, whereas in the na-
noribbon with rough edges phonons become scattered by in-
homogeneous edges and the thermal conductivity saturates,
see Fig. 10, curve 2.

As a result, the ratio �=�r /�i decays monotonically. For
example, for the nanoribbon with the length L=78.6 nm, at
T=500 K this ratio is �=0.10, at T=300 K, we have
�=0.077, at T=100 K we obtain �=0.036, at T=50 K we
find �=0.021, and at T=25 K, we have �=0.012 �i.e., the
thermal conductivity is reduced by two orders�.

We should mention that the temperature dependence of
the thermal conductivity found above is obtained in the
framework of classical molecular-dynamics model, which
does not take into account quantum effects of “frozen”
high-frequency oscillations �and it requires substantial
modifications32�. In real crystals at low temperatures, thermal
conductivity decays monotonically when T→0. This is ex-
plained by the fact that at low temperatures the temperature
dependence of thermal conductivity is defined mainly by the
temperature dependence of thermal capacity.

In classical mechanics, the thermal capacity of phonons
does not depend on temperature, whereas in quantum me-
chanics such a dependence is defined by the formula
C�
 ,T�=kBFE�
 ,T�, where the Einstein function

FE�
,T� = � �


kBT
�2 exp��
/kBT�

�exp��
/kBT� − 1�2 ,

where 
 is the phonon frequency. For T→0, Einstein func-
tion FE→0. The dimensionless thermal capacity is defined
by the formula,

c�T� = �
0

	

FE�
,T�p�
�d
 ,

where p�
� is the density of the frequency spectrum normal-
ized by the condition �0

	p�
�d
=1.
The frequency spectrum density of the nanoribbon with

rough edges does not differ much from the density of an
ideal nanoribbon of the same width, see Figs. 5�a� and 5�b�.
Therefore, the temperature dependencies for the dimension-
less thermal capacity c�T� do not differ much as well. In the
nanoribbon with rough edges we observe only slightly in-
creased capacity, see Fig. 11. As a result, we expect that
quantum effect for low-temperature thermal conductivity
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FIG. 10. �Color online� Dependence of the thermal conductivity
coefficient � on the temperature T for the ideal finite nanoribbon
�curve 1, width K=8� and for edge-disordered nanoribbon
�curve 2, width K=10 and d=0.5�. Length of the central part
L=320h=78.6 nm �N=400, N�=40�. For calculating � �curve 2�
we use 120 independent realizations of the rough edges and analyze
the temporal evolution during 4 ns.
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will be similar for nanoribbons with both perfect and rough
edges. Thus, the ratio of conductivities �r /�i should remain
valid even in the quantum regime. Indeed, in the quantum
limit both thermal conductivities �r and �i vanishes for
T→0 but its ratio will remain almost unchanged being close
to the value obtained by means of a classical model.

IX. CONCLUSIONS

We have studied numerically thermal conductivity of
graphene nanoribbons with perfect and rough edges. We
have demonstrated that in nanoribbons with rough edges
only the modes with the wavelengths comparable to the na-
noribbon’s width contribute to the heat transport, and a ma-
jority of oscillatory eigenmodes is localized and do not con-
tribute to thermal conductivity. Thus, a disordered structure
of the nanoribbon edges leads to a qualitative change in the
heat transport, and the ballistic flow of phonons usually ob-
served in ideal nanoribbons is suppressed substantiality in
the case of rough edges being replaced by the energy super-
diffusion.

Our results suggest that thermal conductivity of nanorib-
bons with perfect and rough edges is described by similar
power-law dependencies on the ribbon’s length. However, in
the case of rough edges the coefficient of thermal conductiv-
ity �r is always smaller than the corresponding coefficient �i
for an ideal nanoribbon of the same width. When the nanor-
ibbon’s length grows, �r increases slower than �i so that the
ratio �r /�i decays monotonically with length and growths
with temperature since the suppression of the phonon trans-
port by rough edges is stronger for low temperatures. As a
result, nanoribbons with ideal edges can play a role of highly
efficient conductors while nanoribbons with rough edges can
be employed as efficient thermal resistors.
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