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Quantum delocalization and correlation effects in one-dimensional chains of bosons are treated using a
Bose-Hubbard Hamiltonian including on-site and nearest-neighbor repulsion terms. The parameters were cho-
sen in such a way that the calculations are appropriate for hydrogen atoms adsorbed in the troughs of fcc�110�
surfaces. Employing direct diagonalization of the Hamilton matrix for small periodic systems, we find that the
hydrogen atoms are always delocalized except for half-filling corresponding to a coverage of �=1 /2, where an
ordered structure results for small tunnel parameters and sufficiently large nearest-neighbor repulsion, in
accordance with experimental findings. For this coverage, a phase diagram as a function of the tunnel param-
eter and the nearest-neighbor repulsion is determined. Only if the translational invariance of the chain is
perturbed, ordered structures for other coverages can be created. Larger systems are studied using the density
matrix renormalization group �DMRG� algorithm. Using the finite length version of the DMRG algorithm, we
find ordered states also for coverages of �=1 /3 and 1/4 which are obviously a consequence of the perturbation
caused by the termination of the finite chains.
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I. INTRODUCTION

There is currently a strong interest in tailored quantum
matter confined in reduced dimensions or in periodic
lattices.1 They allow to study fundamental phenomena such
as decoherence and quantum phase transitions in strongly
correlated systems which are relevant for, e.g., quantum
computing. Typically cold atoms trapped in optical lattices
have been employed to prepare such systems.2 However, na-
ture provides a template for the trapping of quantum particles
in a periodic lattice that can be prepared with a high degree
of perfection, namely, low-index single-crystal metal
surfaces.3 Via adsorption, these surfaces can host light par-
ticles such as hydrogen that exhibit quantum phenomena
such as delocalization and correlation.4,5

The diffusion of hydrogen atoms on such metal surfaces is
hindered by relatively small barriers.6,7 It has been realized
already quite long ago that because of these small barriers
hydrogen atoms can become delocalized at low temperatures
forming single-particle Bloch waves.4,5,8–11 This leads to pro-
tonic vibrational bands,12 analogous to the electron bands
formed by the conduction electrons of metals. These vibronic
states can be detected by measuring the vibrational spectra of
adsorbed hydrogen atoms.13 From the band width of the vi-
brational bands the degree of delocalization of the hydrogen
atoms can be deduced.5 In passing, we note that there is still
a discussion going on whether adsorbed hydrogen atoms
should be regarded as bosons or as fermions.5 Furthermore,
quantum effects in the hydrogen-adsorption dynamics are
also still debated.14–18

Experimentally, it has been observed that the band width
of excited hydrogen-derived vibronic bands on the �110� sur-
faces of Cu �Ref. 13� and Pd �Ref. 19� decreases for higher
hydrogen coverages. Theoretically, the system was modeled
by a simple one-dimensional Bose-Hubbard-type Hamil-
tonian for one vibrationally excited hydrogen atom subject to
a repulsive interaction with fixed ground-state hydrogen

atoms.13 The restriction to a one-dimensional model was
based on the assumption that the hydrogen atoms only move
along the �11̄0� troughs of the �110� surface and do not in-
teract with hydrogen located in other troughs. The repulsion
between the hydrogen atoms leads to an effective localiza-
tion of the vibrationally excited hydrogen atom which re-
duces the band width of the vibronic bands, as reproduced by
the simple Bose-Hubbard-type model.13,19 Single-particle de-
localization effects of adsorbed hydrogen have also been ob-
served on a number of other single-crystal surfaces �see Ref.
5 and references therein�.

As a function of the hydrogen coverage, not only one-
particle quantum effects can be observed, but also many-
body quantum effects such as quantum phase transitions, i.e.,
phase transitions that are not induced by temperature but by
the change of a physical parameter at zero temperature. For
example, in the H/NiAl�110� system, at low coverages a 1
�1 hydrogen structure was observed20 that was interpreted
as being due to delocalized itinerant hydrogen. At coverages
between 0.4 and 0.6, a c�2�2� hydrogen structure is ob-
served, however, with such a shallow corrugation amplitude
that it was taken as evidence for the delocalization of hydro-
gen in this ordered phase.20,21

It is important to realize that the Bose-Hubbard studies of
hydrogen atoms on fcc�110� surfaces performed so far13,19

just treated single-particle quantum effects. Thus collective
quantum phenomena of adsorbed hydrogen atoms were not
addressed. At low temperatures, the quantum nature of the
hydrogen atoms should be relevant for the adsorption struc-
tures that evolve. To describe this properly, a real many-
particle picture in the language of second quantization is
needed. However, a direct solution of the appropriate Hamil-
tonian is computationally very costly because of the rapidly
growing Hilbert space of the system as a function of the
system size. This makes it necessary to use the theory of
quantum phase transitions and quantum mechanical renor-
malization groups.
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It is true, that there have already been several studies
addressing bosonic particles in one-dimensional chains using
Bose-Hubbard models in second quantization together with
renormalization-group algorithms22,23 or Monte Carlo
methods.24 Hence it is well known that in the presence of
on-site �OS� interactions only, so-called Mott insulators are
found at integer densities surrounded by superfluid
phases,25,26 whereas the introduction of nearest-neighbor
�NN� interaction leads to charge-density waves at half-
integer densities.23 However, these theoretical studies were
not necessarily driven to simulate a particular physical sys-
tem but rather to understand the generic behavior of one-
dimensional bosonic systems. Here we have a well-defined
physical system in mind, namely, the adsorption of hydrogen
atoms in a periodic one-dimensional structure provided by a
metal substrate. Hence the physical parameters entering the
corresponding Bose-Hubbard Hamiltonian, in particular, the
on-site and the nearest-neighbor repulsion, are no longer free
parameters. Rather, they should reflect the properties of a
particular system. They can be derived either empirically
from experiments or from first-principles calculations27

which are predominantly based on density-functional theory
�DFT�. Since typically every adsorption site can only be oc-
cupied by one hydrogen atom which is reflected by a large
on-site repulsion term, the filling or rather the coverage can-
not exceed one. This particular parameter regime with a
dominant on-site repulsion has not been scrutinized in one-
dimensional Bose-Hubbard models yet.

Thus one aim of this work is it to close the gap between
studies related to quantum delocalization phenomena on sur-
faces and work addressing quantum phase transitions in a
more generic sense. To do so, in the following we will first
recall some basics about the Bose-Hubbard model and its
relevance to surface problems. In the second step we study
ideal small one-dimensional systems with periodic boundary
conditions using a full diagonalization scheme. We will also
consider the influence of a small perturbation on the period-
icity of the solution. Finally we will focus on large finite
systems employing the density matrix renormalization-group
algorithm.28–30

II. BOSE-HUBBARD MODEL

The Hubbard model was originally introduced to study
the magnetic properties of electrons in transition metals.31

Since then, the Hubbard model has been applied to a wide
range of fermionic systems, in particular, with respect to
the theoretical description of high-temperature
superconductors.32 Bosonic Bose-Hubbard Hamiltonians
have mainly been applied to neutral atomic gases trapped in
optical lattices.33 As already mentioned, Astaldi et al.13 were
the first to use the Bose-Hubbard Hamiltonian for a surface
science problem, namely, for the description of hydrogen at-
oms adsorbed in the one-dimensional troughs along the

�11̄0� direction of a fcc�110� surface. In the general formu-
lation in second quantization, the Bose-Hubbard Hamiltonian
reads, including OS and NN repulsion terms

H = − T�
i=1

L

�ai−1
+ ai + aiai+1

+ �

hopping term

+
1

2
U�

i=1

L

ni�ni − 1�

OS-repulsion

+ V�
i=1

L

nini+1

NN-repulsion

.

�1�

In our particular application, the single indices i stand for the
adsorption sites along the one-dimensional troughs. In the
following we consider L adsorption sites within the troughs
and refer to the troughs as “chains.” To treat extended sys-
tems, we apply periodic boundary conditions so that effec-
tively we obtain “rings” with the last site being the direct
neighbor of the first site.

In Eq. �1�, ai
+ and ai stand for the bosonic creation and

annihilation operator, respectively, at site i and ni=ai
+ai de-

notes the occupation number operator. The tunneling or hop-
ping term describes the hopping of a particle from one site to
a direct neighbor site with the parameter T being related to
the overlap between the localized wave functions at the
single sites. The OS-repulsion term then introduces a repul-
sion U for particles occupying the same adsorption site. Fi-
nally, the NN interaction V reflects the repulsion between
particles in neighboring sites. The operator itself carries no
information about how many hydrogen atoms N are adsorbed
on the L sites or, in the language of our picture, how many
particles are in the chain. The information of the particle
density �=N /L is contained in the basis of the corresponding
Hilbert space. Since we consider the adsorbed H atoms to be
bosons, this space H is given by

H = span��k1, . . . ,kL�:ki = 0, . . . ,N;�
i=1

L

ki = N	 , �2�

where ki is the occupation number of site i. The dimension of
such a space is given by

d = dim H = 
L + N − 1

N
� =

�L + N − 1�!�L − 1�!
N!

. �3�

Equation �3� shows, that the dimension of the considered
bosonic systems grows drastically with the size parameters L
and N. For example, the routines embedded in the full diago-
nalization program used in Sec. V are only able to handle
fully covered chains ��=1� within a reasonable computa-
tional time for chain lengths L�8.

III. SIMPLE PROBABILITY SPECTRA

In order to understand the resulting distribution of the
hydrogen atoms along the chain, we will first discuss the
energy eigenvalue spectrum. As an example, we consider a
system with N=2 particles in a chain of L=10 sites with
periodic boundary conditions corresponding to a filling or
coverage of �=1 /5 using the parameters suggested by As-
taldi et al.:13 U=80 meV, V=1 meV, and T=5 meV. Note
that these parameters were chosen in order to represent an
adsorbed hydrogen atom in a higher vibrational state, in
which the atomic wave function is spread out to a larger
extent than in the vibrational ground state. Therefore the on-
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site repulsion U is much smaller and the overlap parameter T
is much larger compared to the parameters chosen to repre-
sent vibrational ground state systems considered in Sec. V.

For the considered system with N=2 and L=10 the Hil-
bert space has the dimension d=55 according to Eq. �3�.
Diagonalizing the Hamilton matrix leads to 18 distinct en-
ergy eigenvalues. They can be divided into four groups re-
lated to the energy parameters of the system

�I� � 4T � − 19.1;19.0 meV,

�II� � 3T � − 15.5;− 15.4;15.2;15.4 meV,

�III� � 2T � − 12.1;− 9.6;− 9.5;9.3;9.5;11.3 meV,

�IV� U � 80.0;80.2;80.9;81.6;82.3;82.5 meV. �4�

We will now use the occupation number representation
outlined in Eq. �2� to discuss the energy spectrum extending
an interpretation made in Ref. 13. The basis states are or-
dered as follows. State 1 is given by both particles occupying
the first site

e1 
 �2000000000� . �5�

The next states are created by keeping one particle at site 1
and moving the other particle along the chain. Then the first
particle is set to the second site and the second particle is
again moved along the chain. Note that states that corre-
spond to an exchange of the particles are not considered
twice because of the indistinguishability of the particles.
There are in each case ten laterally equivalent states in which
the particles are zero to four lattice sites apart from each
other and five equivalent states in which the particles have
the maximum distance of five sites.

In the analysis of the energy spectrum, we will consider
the probability expansion of a representative state of each
group. For group I, we pick the ground state with energy
E0=−19.1 meV. Its expansion in terms of the 55 basis states
is given in Fig. 1. Maximum occupation is found for states
such as

e6 
 �1000010000� �6�

and the five translational equivalent situations. These corre-
spond to situations in which the particles have the largest
possible distance from each other, namely, five lattice sites.
Hence the atomic positions are correlated over a longer dis-
tance than the actual range of the NN repulsion.

Inspecting the state in Eq. �6�, it is obvious that both
particles can jump to the “right” and to the “left” without
getting in contact with each other. So in the situations in Eq.
�6� the system has four unconditional degrees of freedom.
The same is true for states with the particles being four and
six sites apart from each other which also contribute to the
ground state shown in Fig. 1. This explains the energy value
of EI� �4T but this also means that the correlation length is
less than four lattice sites.

Analogous explanations are also applicable to the other
three energy groups listed in Eq. �4�. Analyzing the first ex-
cited state as a representative of group II reveals that the
highest occupation occurs for states such as

e4 
 �1001000000� . �7�

In states such as Eq. �7�, just one particle can jump without
being influenced by the position of the second particle. The
second particle can directly be affected by the movement of
the first particle. To be specific, just assume that one particle
described in Eq. �7� jumps toward the other. In this case, the
other particle can only jump into one direction without any
energy cost since a jump into the other direction costs the
NN repulsion V. Thus we can identify three unconditional
degrees of freedom reflected in the total energy EII� �3T.

Looking at the remaining two energy groups one can ob-
serve that the members of group III are dominated by basis
states such as

e9 
 �1000000010� �8�

in which the particles have just two unconditional degrees of
freedom; therefore an total energy of EIII� �2T results. Fi-
nally, group IV states consists mainly of basis states given by
Eq. �5� corresponding to a situation in which two hydrogen
atoms are located at the same adsorption site associated with
the high energy cost U of the OS repulsion.

This discussion shows that in spite of the fact that Hamil-
tonian �1� only includes on-site and nearest-neighbor repul-
sions, the position of the particles is correlated over much
larger distances.

IV. PHASES OF THE BOSE-HUBBARD MODEL

In contrast to the surface science studies performed so
far,13,19 we do not want to restrict ourselves to one-particle
quantum effects but rather address many-particle quantum
effects, in particular, quantum phase transitions as a function
of the coverage. To denote the phases and make contact to
previous work, we will use the terminology commonly used
to characterize quantum many-particle states although they
do not really make sense for the systems considered by us,
hydrogen atoms adsorbed on metal surfaces in linear troughs.
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FIG. 1. �Color online� Probability distribution of finding one of
the 55 basis states in the expansion of the ground state. See the text
for an explanation of the ordering of the basis states.
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For the Bose-Hubbard model with NN interaction, three pos-
sible phases can be expected.22 For coverages lower than �
=1 there is the opportunity to find either a suprafluid phase
�SF phase� or a charge-density-wave phase �CDW�. If we
consider coverages � or filling factors corresponding to posi-
tive integers, we have the additional possibility of finding a
Mott-insulator phase �MI phase�.

In the context of the delocalization problem of bosons the
MI and CDW phases are just interpreted as localized phases
and the SF phase stands for a delocalized state. To distin-
guish between them we introduce the local density in Eq. �9�

�i 
 �n̂i� . �9�

Qualitatively, the following trends in the quantum delo-
calization as a function of the parameters entering the model
can be expected. Increasing the kinetic energy T increases
the mobility and thus the delocalization of the phases leading
eventually to a SF Phase. A higher NN repulsion V, on the
other hand, keeps the particles apart from each other favoring
a CDW. Likewise, a higher coverage � increases the atom-
atom interaction and hence restricts the mobility. Conse-
quently, enlarging � should also lead to localization effects in
a similar manner as described in Ref. 13. The possible phases
are characterized in Table I.

V. PERIODIC SYSTEMS

In a first step, we determine the quantum phases as a
function of the tunneling parameter T, the NN repulsion V
and the hydrogen coverage in periodic chains with a rela-
tively short length L of the periodic region so that the solu-
tions of the Bose-Hubbard Hamiltonian �1� can still be ob-
tained by direct diagonalization. The parameters entering the
Hamiltonian are chosen in such a way that they reflect prop-
erties of hydrogen atoms adsorbed on single-crystal surfaces.
For any particular hydrogen/metal system, these parameters
are given and can be derived from first-principles calcula-
tions. However, there is a wide range of possible surface
structures and compositions, all with their own characteristic
hydrogen-metal interaction. Therefore we have decided to
consider a certain realistic range of parameters found in total
energy calculations.

The nearest-neighbor repulsion V can be derived from
first-principles studies based on DFT in which the adsorption
energy of hydrogen on metal surfaces as a function of cov-
erage was determined.34–39 For example, for H/Pd�210� a
value of V=25 meV can be derived.37 Hence, a range
10 meV�V�200 meV seems to be reasonable.

The overlap parameter T can be related to the width W of
hydrogen vibronic bands. Here we will assume W=8T where
W is the width of the band. This is only strictly valid for the
case of a two-dimensional square lattice in the tight-binding
approximation with only next-nearest-neighbor interaction,
however, this should be sufficient as an estimate.

The width W has been derived for several hydrogen ad-
sorption systems based on potential-energy surface calcu-
lated using DFT. On �100� surfaces, the corresponding tunnel
parameters are extremely small. Tunnel amplitudes of T=2
�10−7 meV �H/Ni�100� �Ref. 40�� and T=5�10−11 meV
�H/Cu�100� �Ref. 41�� have thus been obtained. At the �100�
surface, the hydrogen atoms are adsorbed on fourfold hollow
sites which are relatively far away from each other. On the
close-packed �111� surfaces, the first-principles derived tun-
nel parameter are much larger, namely T=0.5 meV for
H/Ni�111� �Ref. 8� and H/Rh�111�,42 T�0.01 meV for
H/Pt�111� at fcc sites and T=0.2 meV for H/Pt�111� at hcp
sites.12 Since we are considering one-dimensional rows of
adsorption sites along some close-packed directions, we have
assumed the parameter T to be in the range 0.01 meV�T
�0.1 meV.

Usually every adsorption site on metal surfaces hosts only
one hydrogen atom. Additional hydrogen either does not
stick or enters subsurface absorption sites.4,43,44 These obser-
vations should be reflected by a large OS-repulsion term U
and coverages with ��1. In order to estimate a typical value
for U, we performed periodic DFT calculations45 for two
hydrogen atoms on Pd�100� modeled by a five-layer slab
within a 4�4 surface unit cell using the generalized gradient
approximation46 to describe the exchange-correlation effects.
Two hydrogen atoms ontop of each other at the fourfold-
hollow site are 880 meV more costly than at their maximum
distance within the 4�4 surface unit cell. Hence we have
selected a value of U= 1000 meV to represent this large
on-site repulsion. Note that the chosen parameter range lead
to ratios of T /V�10−2 and T /U�10−4, much smaller than
those typically considered in studies based on one-
dimensional Bose-Hubbard Hamiltonians.22–24

In passing we note that because of this large OS repulsion
the hydrogen atoms behave effectively as fermions, i.e., we
obtain practically identical results independent of whether
we treat the hydrogen atoms as fermions or as bosons. This
can for example be understood by considering the fact that in
the limit of U→� corresponding to hardcore bosons the
Bose-Hubbard Hamiltonian �1� becomes equivalent to the
spin-1

2 XXZ chain47 so that some of the results for this
model48,49 can be transferred to the system considered in this
study. Still it is important to realize that there are qualitative

TABLE I. Characterization of the three possible quantum phases of a one-dimensional bosonic system
described by a Bose-Hubbard model for infinite and finite chain length L.

Phases SF CDW MI

Local density �i�Q and �i=
N
L �i�R and �i�const. �i�N and �i=

N
L

Ground state L=� Degenerate Degenerate Not degenerate

Ground state L�� Not degenerate Degenerate Not degenerate

Interpretation Delocalized Localized Localized
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differences between considering hardcore bosons and having
a large but finite U since in the latter case the double occu-
pancy of one site is still possible.

Experimentally, at half coverage an ordered phase of ad-
sorbed hydrogen at low temperatures has been observed.20,21

To model this coverage, we considered a chain of length L
=8 filled with N=4 hydrogen atoms. In order to characterize
the specific phases we focus on renormalized local densities

�i
0 


�i

N/L
. �10�

These renormalized local densities are plotted as a function
of the tunneling parameter T and the NN repulsion V in Fig.
2 for the first three sites i=1,2 ,3. For a charge density wave,
we expect a varying local density whereas it should be con-
stant for the suprafluid phase. Indeed we find a region where
the renormalized local densities are not constant. Note, how-
ever, that in the considered parameter range the renormalized
local densities only vary between 0.85 and 1.15, i.e., there is
still a rather small corrugation amplitude. The phase bound-
ary between the phases is indicated by the black line.

The nonuniform densities plotted in Fig. 2 are based on
one of the two degenerate ground-state solutions which exist
because of the translational invariance of the Hamiltonian.
This means that there is a spontaneous symmetry breaking.
While also an uniform solution as a superposition of the two
degenerate states is possible, when we sample the system,
the system is cast on one of the two nonuniform eigenstates.

Another way to look at the structure of the solutions is to
consider the normalized density-density correlation function

�i =
�n1ni� − �n1��ni�

���n1 − �n1��2���ni − �ni��2�
. �11�

It corresponds to the conditional probability to find a particle
at site i if there is a particle a site 1. In Fig. 3, we have

plotted this normalized density-density correlation function
for L=8, N=2,3 ,4, U=1000 meV, T=0.02 meV, and V
=70 meV. Because of symmetry reasons, the correlation
functions are symmetric with respect to site 5. It is obvious
that for N=4, the occupation of even and odd sites is strictly
anticorrelated without any change in the magnitude of the
correlation indicating the ordered solution.

To discuss the quantum phase transitions, we have plotted
the phase diagram in Fig. 4. For small T�0.04 meV and V
sufficiently large we find charge-density waves correspond-
ing to an ordered adsorbate structure with an unit-cell length
of two sites. It is obvious that T has to be rather small to-
gether with a sizable nearest-neighbor repulsion in order to
allow the existence of a CDW. Otherwise one obtains an
uniform density. Note that this CDW at half-filling has been
found before,23 however, in an entirely different parameter
regime �U=1, T=0.1, and V=0.4 in dimensionless units�.
Obviously, the high value of the on-site repulsion U used in
our application already leads to an effective delocalization of
the particles. Then, only a rather small value of the tunnel
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parameter is needed to stabilize the delocalized suprafluid
phase.

The renormalized local densities as a function of T and V
for L=8 and N=3, i.e., for a filling of �=3 /8, are shown in
Fig. 5. Only for vanishing T, a CDW results with the local-
ized densities being either 0 or 1 while for any T	0 the
uniform SF phase is stable. In fact, we obtain the same re-
sults for all particle numbers N�4. This means that obvi-
ously only for half-filling a localized phase is possible. For
all other fillings or coverages, a delocalized uniform phase is
formed when the atoms are allowed to hop or tunnel �T
	0�. These findings seem to be consistent with the experi-
mental observation20,21 of the existence of a localized hydro-
gen phase only in a sharp coverage window around half cov-
erage.

With respect to the delocalized phase at lower coverages
we note that it is constructed from the translationally sym-
metric superposition of states as described in Eq. �6� result-
ing in a uniform density. Still, in each of the single states the
distance between the particles is maximized but this is only
relevant for conditional distributions or pair correlation func-
tions describing, e.g., the probability of finding a particle
given that another particle is already located at a specific site.
This is reflected in the density-density correlation functions
�i plotted in Fig. 3 for N=2,3. The result for N=2 is equiva-
lent to the one obtained by Kühner et al.23 for a filling of
�=1 /4.

In order to study the influence of lattice imperfections on
the resulting hydrogen phases, we introduced a lattice defect
into our model by adding the term

Hval 
 − 
 · n̂1 �12�

to the Hamiltonian �1�. We considered a very weak perturba-
tion making the site 1 energetically more favorable by 

=0.0005 meV. The resulting renormalized local densities as
a function of V and T for a filling of �=3 /8 are plotted in
Fig. 6. With the defect we now find nonuniform local densi-

ties for small T. For larger T, however, the density becomes
constant which means that for mobile particles the effect of
the defect is washed out.

In order to see the detailed influence of the defect on the
distribution of the particles, we plot in Fig. 7 the correspond-
ing local densities �i , i=1, . . . ,8 without renormalization for
coverages �=1 /4 and 3/8 for one particular set of parameters
�T=0.02 meV, V=70 meV, and U=1000 meV� for which
for half coverage a CDW occurs �see Fig. 4�. Note that be-
cause of the periodic boundary conditions with chain length
L=8 the local densities have to be symmetric with respect to
site 1 and also site 5. Since site 1 has been made energeti-
cally slightly more favorable, the densities show a maximum
at this particular site. However, for both coverages there is
only a small corrugation in the local densities which is a little
bit larger for the higher coverage, though. This can be ex-
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=3, and U=1000 meV.
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crosses, �2
squares, and �3
circles as a function of the tunnel
parameter T and the nearest-neighbor repulsion V for L=8 and N
=3 with a perturbation 
=0.0005 meV at site 1.
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of length L=8 occupied by N=2 and N=3 particles �T
=0.02 meV, V=70 meV, and U=1000 meV� with a perturbation

=0.0005 meV at site 1.
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plained by the fact that because of the nearest-neighbor re-
pulsion a higher coverage leads to a larger degree of local-
ization. This was already observed on the one-particle level
as a decrease in the vibronic band width with increasing
coverage.13

So far, we have not considered any coverages larger than
1/2. In fact, there is no need to do so because for our par-
ticular setup there is effectively a particle-hole symmetry.
As already mentioned, because of the high value U
=1000 meV for the on-site repulsion, a double occupancy of
the adsorption sites is very unlikely. Consequently, there is a
close relation between bosonic spin and chargeless atoms
and holes or vacancies on the chain. However, there are still
small deviations from a perfect particle-hole symmetry due
to the large but finite value of U.

In order to show this explicitly, we considered chains �L
=8� with coverages 3/8 and 5/8. For the less than half-filled
chain we again introduced the perturbation Eq. �13� with 

=0.0005 meV. For the more than half-filled chain we intro-
duced the defect with 
=−0.0005 meV. This means that we
made site i slightly less favorable for atoms which also
means that site i is slightly more favorable for holes.

In Fig. 8, the deviation

�i 
 �i −
N

L
�13�

from the mean density is plotted in both cases. In fact, there
is almost a perfect mirror symmetry in the deviations dem-
onstrating that hydrogen atoms and vacancies are analo-
gously distributed.

VI. LONG FINITE CHAINS

With respect to the findings of the last section, there still
remains the question whether some of the results are artifacts
of the periodic boundary conditions with a rather small unit

cell. However, as mentioned above, the quickly growing di-
mension of the relevant Hilbert space prevents a direct di-
agonalization for periodic systems with a larger unit cell.
Therefore some approximate but computationally less de-
manding method is required. In recent years, the density ma-
trix renormalization-group �DMRG� method22,23,28–30 has be-
come very popular for simulating ground-state properties of
one-dimensional quantum systems. Since this method has
hardly been used for surface science problems yet, we will
briefly recall its basics and then show applications of the
treatment for longer chains with various hydrogen coverages.

The pioneering work with respect to the DMRG method
was done by White.28,29 As in other quantum renormalization
algorithms, the basic idea of this method is to start with a
small system and then enlarge this system iteratively to the
desired size. In each step, the set of basis functions is kept
small by restricting it to the “most-relevant” states. Before
deciding about what are the most relevant states, DMRG
embeds the system into a thermodynamic bath called the
environment. The system and the environment together form
the so-called superblock. The actual decision about the im-
portance of the states for the system is made after tracing out
the environment. The remaining reduced density matrix de-
scribing the system is then diagonalized and the dS most
probable states are kept as the relevant basis.

From its construction, DMRG introduces two different
kinds of numerical errors. First, there is the natural trunca-
tion error which arises from the reduced basis transforma-
tions in each renormalization step. This error can be reduced
by increasing dS. The second error cannot be described in a
clear mathematical way. In the corresponding literature,30 it
is often referred to as the error through incorrectly “simulat-
ing the final system size.” It has its origin in the fact that
through the enlargement steps of the system wrong particle
densities are realized on the chain since one is not able to add
fractional bosons. To overcome this problem, one applies an
additional algorithm after the system has grown to any de-
sired size. This extra procedure is called the finite-length
algorithm. The idea is to take the chain of the desired length
and to apply the steps of the infinite-system DMRG but to
keep the superblock-size constant by growing the size of one
block at the expense of the other. One loop of the finite-
length algorithm is called a sweep.

We have implemented our own version of the DMRG
algorithm which follows in large parts the description in Ref.
30. However, there is one important difference to former
DMRG applications. Since the on-site repulsion U is much
larger than the other energy parameters, it has a decisive
influence on the particle distribution. The states with more
than one particle at a particular site that are in principle ac-
cessible are in practice impossible to realize. The contribu-
tion of these states to the ground state is therefore negligible.
Since these states represent in fact the majority, it is suffi-
cient within the DMRG algorithm to renormalize the system
to a surprisingly small Hilbert space. Technically, this gave
us the possibility to carry out a full diagonalization of the
superblocks.

In order to validate our implementation, we compared its
results with those obtained with the open source package
ALPS.50 Running ALPS with dS=128 kept states and four finite
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FIG. 8. �Color online� Deviation �i of a chain of length L=8
with particle densities �=3 /8 and 5/8 and perturbations according
to Eq. �12� with 
=0.0005 meV and 
=−0.0005 meV, respec-
tively. The remaining parameters are U=1000 meV, T
=0.02 meV, and V=70 meV.
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length sweeps yielded ground-state energies that differed
only by less than 2% from the results obtained with our
implementation with 15 states and three sweeps.

As far as the boundaries of the chains are concerned, it
would be desirable to use periodic boundary conditions. Un-
fortunately, the DMRG results are much less reliable for pe-
riodic boundary conditions.30 Therefore we have chosen
open boundary conditions. One has to be aware that this also
means that boundary effects are introduced which have been
observed before to be quite significant23 and which also in-
fluence the results in the parameter regime considered by us,
as will become obvious in the following.

First we focus on half-filled chains where we expect the
formation of a CDW. Tests showed that a chain length of L
=100 is sufficient, for longer chains no qualitative changes
occur, as was also found in a previous study.23 In Fig. 9, the
local densities for U=1000 meV, T=0.01 meV, and V
=70 meV are plotted. Indeed we find an ordered localized
structure. Note, however, that the amplitude of the local-
density fluctuations is much larger compared to the calcula-
tions for L=8 with periodic boundary conditions. While now
the densities alternate practically between zero and one, for
periodic boundary conditions the deviation from the mean
value 0.5 is below 10% in this parameter regime �see Fig. 2�.

This is obviously a boundary effect. At the edge sites, the
nearest-neighbor repulsion is only active from one side. This
leads to a high probability for the occupation of the edge
sites by the hydrogen atoms which induces the large ampli-
tude local-density fluctuations. There is another consequence
of this preferential occupation of the edge site. From either
site of the chain a CDW builds up. However, since we have
an even number of sites in order to realize a coverage of �
=1 /2, these two CDWs are phase shifted by �. Conse-
quently, an antiphase boundary has to occur where these two
CDWs meet. In Fig. 9 it is not visible since it occurs at the
very left edge. Interestingly enough, the antiphase boundary
moves toward the middle of the chain when the tunnel pa-

rameter is increased. For T=0.05 meV, there is an extended
region of the antiphase boundary between sites 65 and 92, as
Fig. 10 demonstrates. Using the ALPS code, such antiphase
boundaries were obtained as well. Note that with periodic
boundary conditions, we did not obtain a CDW for such a
larger value of T �see Fig. 4� indicating that the boundary
effects extend the stability range of the localized CDW
phase.

In Fig. 9, results for the parameters used by Astaldi et
al.13 �U=80 meV, V=1 meV, and T=5 meV� are also in-
cluded. For such a small on-site repulsion and a large T /V
ratio, a delocalized SF phase results. It is important to realize
that the parameters chosen by Astaldi et al. were meant to
describe a hydrogen atom in a higher vibrationally excited
state in which the dispersion of the corresponding vibronic
band and consequently also the relevant tunnel parameter T
is much larger11,40 so that it is not surprising that a delocal-
ized phase results.

In the next step, the particle density is lowered to �
=1 /3. In order to simulate this density within the DMRG
formalism on a finite chain, the chain length is set to L
=102. According to Fig. 11, for an on-site repulsion of U
=1000 meV and small tunnel parameters T we now obtain a
CDW with periodicity 3, in contrast to the chain with peri-
odic boundary conditions where no CDW at such a coverage
was observed. However, the fluctuations around the mean
value �=1 /3 are smaller than for �=1 /2. Interestingly
enough, when the tunnel parameter is increased from T
=0.01 meV to T=0.05 meV, the amplitude of the density
oscillations is even increased. For the conditions considered
by Astaldi et al.,13 the local densities become more uniform
again. Still, there is some oscillatory structure left with am-
plitudes that are larger than for a coverage of �=1 /2. Note
that also for the system considered by Kühner et al.23 �U
=1, T=0.1 and V=0.4 in dimensionless units� a CDW has
only been found for half-filling but not for other fillings.

Finally, we have considered a coverage of �=1 /4 on a
finite chain with length L=120 �Fig. 12�. Again we obtain a

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Site

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

ld
en

si
ty

ρ i

U = 1000 meV; T = 0.01 meV; V = 70 meV
U = 80 meV; T = 5 meV; V = 1 meV

FIG. 9. �Color online� Local densities �i of a chain with length
L=100 and a coverage of �= 1

2 obtained from DMRG calculations
for two different sets of parameters given in the legend. 15 states
and three sweeps were used.
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localized CDW phase, here with periodicity 4, again in con-
trast to the situation with periodic boundary conditions. This
shows that strong perturbations or defects can induce an or-
dered structure that would not be stable in a perfectly trans-
lationally invariant system. Still, the amplitude of the oscil-
lations for U=1000 meV is further reduced. As already
discussed in the context of Fig. 7, the effect of the nearest-
neighbor repulsion that leads to a higher degree of localiza-
tion for the larger coverages is reduced at lower coverages.

Furthermore, as in Fig. 11 for a coverage of �=1 /3 we
observe first a stabilization of the ordered structure with in-
creasing tunnel parameter T and then a reduction in the os-
cillations toward a delocalized SF phase for a higher T /V
ratio. Obviously, a larger tunnel parameter T first increases
the influence of the nearest-neighbor repulsion before it leads
to a delocalization. But again, for the conditions of vibra-
tionally excited hydrogen atoms considered by Astaldi et
al.,13 the remaining amplitude of the oscillations is even
larger than for coverage �=1 /3. Apparently, the effect of
increasing the T /V ratio is less strong for smaller coverages.
This strong influence of boundary effects on the resulting

phase also means that one has to be cautious in this particular
parameter regime in applying results for finite chains, as ob-
tained in DMRG calculations, to infinite periodic chains.

VII. CONCLUDING REMARKS

Employing a Bose-Hubbard Hamiltonian, we have ad-
dressed the quantum delocalization and quantum phase tran-
sitions of hydrogen atoms adsorbed in one-dimensional
chains on metal surfaces. These systems are characterized by
a large on-site repulsion U, a very small overlap or tunnel
parameter T, and a sizable nearest-neighbor repulsion V. Us-
ing periodic boundary conditions and a direct diagonalization
scheme, we find, as other groups before, that an ordered
localized structure can only be obtained for a coverage of
�=1 /2 which is consistent with experimental observations of
hydrogen adsorption phases at low temperatures. Apparently,
for ��1, ��1 /2, quantum particles are always uniformly
delocalized in a periodic translationally invariant chain if
there is a nonvanishing overlap between adjacent sites
�T	0�.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Site
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ca

ld
en

si
ty

ρ i

U = 1000 meV; T = 0.1 meV; V = 70 meV
U = 80 meV; T = 5 meV; V = 1 meV

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Site
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ca

ld
en

si
ty

ρ i

U = 1000 meV; T = 0.05 meV; V = 70 meV

FIG. 11. �Color online� Local densities �i of a chain with length
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3 obtained from DMRG calculations
for two different sets of parameters given in the legend.
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For the particular systems considered in this study, some
properties result that were not found in one-dimensional
bosonic systems with generic parameters studied before.
First of all, the large on-site repulsion makes a double occu-
pancy of the adsorption sites energetically very costly having
an effective particle-hole symmetry as a consequence. Sec-
ond, there is a rather strong influence of perturbations or
defects on the resulting quantum phases. If the perturbations
are sufficiently strong, they can induce ordered structures at

other coverages than �=1 /2 in an extended region. This also
means that in this parameter regime the results for finite
chains cannot be applied to infinite systems without caution.
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