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Collective excitations of coupled electron-phonon systems are calculated for both monolayer and bilayer
graphenes, taking into account the nonperturbative Coulomb coupling between electronic excitations in
graphene and the substrate longitudinal-optical phonon modes. We find that the plasmon-phonon coupling in
monolayer graphene is strong at all densities but in bilayer graphene the coupling is significant only at high
densities satisfying the resonant condition �pl��ph. The difference arises from the peculiar screening prop-
erties associated with chirality of graphene. Plasmon-phonon coupling explains the measured quasilinear plas-
mon dispersion in the long-wavelength limit, thus resolving a puzzle in the experimental observations.
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I. INTRODUCTION

A plasmon is a collective mode of charge-density oscilla-
tion in the free-carrier system, which is present both in clas-
sical and quantum plasmas. Studying the collective plasmon
excitation in the electron gas has been among the very first
theoretical quantum mechanical many-body problems stud-
ied in solid-state physics. The collective plasmon modes of
monolayer graphene �MLG� have been extensively studied
theoretically1–7 and experimentally.8–13 Recent discovery of
bilayer graphene �BLG� has also led to a number of theoret-
ical descriptions of plasmon modes in BLG.14,15 Even though
the long-wavelength plasmon frequency of MLG is explicitly
nonclassical �i.e., the plasmon frequency is necessarily quan-
tum with � appearing manifestly in the long-wavelength
plasma frequency3�, its wave-vector dispersion is given by
classical electrodynamics, i.e., �p�q���q. Note that the qua-
dratic band dispersion of BLG makes the leading order long-
wavelength plasmon dispersion explicitly classical with the
same ��q dependence. However, at finite q, away from the
long-wavelength limit, there are several corrections to the
plasmon dispersion ��q� arising from nonlocal finite wave-
vector response, finite-temperature thermal corrections,
many-body effects, local-field corrections, and other mecha-
nisms relevant to the specific electron system.

Since the plasmon dispersion relation is exactly known at
long wavelengths �q→0� where the f-sum rule arising from
particle conservation fixes the plasma frequency, it is surpris-
ing that the measured graphene plasmon dispersion in the
long-wavelength limit deviates from the classical dispersion
��q��q� and shows a rather linear dispersion.9,12 In a recent
experiment,10 the strongly coupled plasmon-phonon mode
dispersion has been measured by the angle-resolved reflec-
tion electron energy-loss spectroscopy and it is found that the
discrepancy arises from electron-phonon coupling. In epitax-
ial graphene the substrate �i.e., SiC� is a highly polar mate-
rial. In general, carriers in polar materials couple with the
longitudinal-optical phonons of the system via the long-
range Fröhlich interaction. However, the surface optical �SO�
phonon is a well-characterized surface property of polar
semiconductors, and it is possible that carriers in graphene
layer couple to the SO phonons of the underlying substrate
lattice via the long-range polar Fröhlich coupling.16,17 For

isotropic media the frequency of SO phonons �SO is related
to the transverse-optical �TO� bulk phonon �TO as
�SO /�TO=���0+1� / ���+1�,16–18 where �0 ���� is the static
�high-frequency� dielectric constant. Note that the bulk lon-
gitudinal optical phonons �LO and �TO are connected with
the dielectric constants by the Lyddane-Sachs-Teller relation
�LO /�TO=��0 /��.

The electron-phonon coupling is the macroscopic cou-
pling of the electronic collective modes �plasmons� to the
optical phonons. The mode-coupling phenomenon, which
hybridizes the collective plasmon modes of the electron gas
with the optical-phonon modes of the lattice, gives rise to the
coupled plasmon-phonon modes �the hybrid modes� which
have been extensively studied19–22 both experimentally and
theoretically in bulk and two-dimensional �2D� electron sys-
tems. The electron-phonon interaction leads to many-body
renormalization of the single-particle free-carrier
properties23,24 and also affects the transport properties.25,26 A
good understanding of electron-phonon coupling is thus im-
portant in developing quantitative theories for many different
experimental studies in graphene.

In this paper we calculate the coupled plasmon-SO pho-
non modes of epitaxial graphene �or graphene on a polar
substrate such as SiO2, SiC, or HfO2�. Our most significant
finding is that in MLG plasmon-phonon mode-coupling ef-
fect is strong at all electronic densities due to the singular
behavior in the screening function arising from chirality.1 By
contrast, for BLG, the plasmon-phonon coupling is signifi-
cant only at high carrier densities. We also find that at low
densities, when the coupling is weak and the coupled
phononlike mode �gapped mode� lies in the interband
electron-hole continuum, the energy of phononlike mode de-
creases in the long-wavelength limit due to the coupling of
the phonon mode to the interband single-particle excitation
�SPE�, which arises from the enhanced BLG
backscattering.27 However, at high densities, when the
plasmon-phonon mode coupling is strong, the phononlike
mode frequency increases linearly with wavevector, as in
MLG.

The paper is organized as follows. In Sec. II the general-
ized theory is presented to calculate the total dielectric func-
tion of a coupled system within the random-phase approxi-
mation �RPA�. Section III presents the results of electron-
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phonon couplings in both MLG and BLG. We summarize in
Sec. IV with a discussion.

II. THEORY

We first present our model for plasmon-phonon coupling,
which consists of a two-dimensional electron gas coupled to
dispersionless SO phonons at zero temperature. For MLG,
we have a system of Dirac fermions with linear dispersion
while BLG have a parabolic dispersion around the Dirac
point. Due to the presence of the long-range electron-phonon
coupling, electrons interact among themselves through the
Coulomb interaction and through virtual-SO-phonon ex-
change via the Fröhlich interaction. The electron-SO phonon
interaction is given by

He-ph = �
kq

�
ss�

Mkq
ss�ck+qs�

† cks�bq + b−q
† � , �1�

where cks
† is the electron �s=+1� or hole �s=−1� creation

operator, bq
† and bq are creation and destruction operators of

surface phonon, and the interaction matrix element Ms
ss� is

defined by

Mkq
ss� = M0�q�Fsk+q

† Fs�k, �2�

where Fsk is the chiral spinor and given by

Fsk =
1
�2

� s

ei�k
� �3�

with s= �1, �k=tan−1�ky /kx� for MLG �Ref. 28� and
�k=2 tan−1�ky /kx� for BLG.29,30 We also have

	M0�q�
2 =
2	e2

q
e−2qd�SO

2
� 1

�� + 1
−

1

�0 + 1
� , �4�

where d is the separation distance between graphene layer
and substrate. The matrix elements of for electron-electron
Coulomb interaction shown in Fig. 1�a� is given by

vc
ss��q� =

2	q2

��q
Gkk�

ss� , �5�

where k�=k+q and

Gkk�
ss� = 
Fsk

† Fs�k+q
2 = 	1 + ss� cos��kk��
/2, �6�

where �kk� is the angle between k and k�. The SO-phonon
mediated electron-electron interaction 	Fig. 1�b�
 is given by

vph
ss��q,�� = 	M0�q�
2D0���Gkk�

ss� , �7�

which is dependent on both wave vector and frequency. In
Eq. �7� D0��� is the unperturbed SO-phonon propagator and
given by

D0��� =
2�SO

�2 − �SO
2 . �8�

The total effective electron-electron interaction is ob-
tained in RPA �Ref. 21� by summing all the bare bubble
diagrams 	see Fig. 1�c�
,

vef f�q,�� =
vc�q� + vph�q,��

1 − 	vc�q� + vph�q,��

0�q,��
=

vc�q�
�t�q,��

,

�9�

where vc�q�=2	e2 /��q is the electron-electron Coulomb in-
teraction and 
0�q ,�� is the complex irreducible polarizabil-
ity given by the bare bubble diagram


�q,�� = −
gsgv

L2 �
kss�

fsk − fs�k�

� + �sk − �s�k� + i�
Gkk�

ss� , �10�

where �sk=svF
k
, fsk is the Fermi distribution function,
fsk= 	exp����sk−
��+1
−1, with �=1 /kBT and 
 the chemi-
cal potential. The irreducible polarizability for the monolayer
and the bilayer system is calculated in Refs. 1 and 15, re-
spectively. Then the total dielectric function within RPA con-
tains contributions both from electrons and SO phonons and
given by

�t�q,�� = 1 −
2	e2

��q

0�q,�� +

�e−2qd

1 − �e−2qd − �2/�SO
2 ,

�11�

where

� = ��� 1

�� + 1
−

1

�0 + 1
� . �12�

The collective mode dispersion is given by the zeros of the
complex total dielectric function: �t�q ,��=0.

In the case where several surface modes are present, as in
SiO2, carriers couple with each phonon mode through the
long-range Fröhlich interaction weighted by the correspond-
ing matrix elements M0

��q�. Then the total electron-electron
interaction mediated by phonons is given by

vph�q,�� = �
�

	M0
��q�
2D0

��q,�� , �13�

where D0
� is the unperturbed phonon propagator for �-kind

phonon. The total dielectric function of a system with several
phonons is well approximated by the summing all bare
bubble diagrams of the independent contributions. This pro-
vides a description of the coupling and interference between
phonon modes and plasmon because all these various modes
have longitudinal electric fields which cause the mutual cou-
pling. In the following section we provide details of
plasmon-phonon coupling effects.

FIG. 1. �a� Electron-electron Coulomb interaction. �b� Phonon
mediated electron-electron interaction. �c� Effective dynamical in-
teraction Vef f calculated in RPA. Dashed �wiggly� lines represent
the SO-phonon mediated �Coulomb� electron-electron interaction
Vph �vc�, and the bubble the irreducible polarizability 
0�q ,��.
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III. RESULTS AND DISCUSSION

A. Monolayer graphene

Let us first focus on the collective modes of MLG. In the
long-wavelength limit �q→0� we get the following coupled
�� collective modes:

�+�q� = �SO +
�e−2qd

�SO

�q
2

2
, �14a�

�−�q� = �1 − �e−2qd��q, �14b�

where �q
2=2e2EFq /�� �EF=Fermi energy� is the plasmon

mode dispersion of an uncoupled system in the long-
wavelength limit. As q→0 the phononlike mode �+ is lo-
cated above �SO. It increases linearly with q and with a slope
which is proportional to the Fermi energy. This linear plas-
mon dispersion as q→0 is not related to the finite wave-
vector quasilinear dispersion observed in experiments.9,12

However, our prediction of Eq. �14a� can be observed at low
densities where the coupling is weak. The plasmonlike �− is
slightly lower in energy than the corresponding uncoupled
monolayer graphene plasmon mode, �q.

In Fig. 2 we show the calculated coupled plasmon-phonon
collective modes in MLG for two different densities. The
following parameters are used throughout this paper:31

�TO=95.0 meV, �SO=116.7 meV, ��=6.4, �0=10.0, and
d=5 Å. As shown in Fig. 2 the mode coupling in MLG is
strong for all electron densities. In ordinary 2D systems or
three-dimensional systems the plasmon-phonon mode cou-
pling is only significant at densities satisfying the resonant
condition �q��SO. However, in MLG the plasmon mode
exists for all wave vectors due to the singular behavior in the
polarizability, which leads to strong plasmon-phonon cou-
pling. Since the singular behavior of the polarizability arise
from the suppression of the back scattering due to the chiral-
ity of MLG the strong plasmon-phonon coupling is a direct
consequence of its unique chiral property of MLG. Note that
the plasmonlike mode �− in Fig. 2 vanishes at a finite critical

wave vector, qc��SO�1−�� /vF, and for q�qc we find only
the phononlike mode ��+� which approaches �q for large q.
Figure 2�a� also shows that the phononlike mode �+ in-
creases linearly at finite q, which is observed in the recent
experiments.9,12 This quasilinear dispersion at finite q occurs
at high densities for EF��SO and arises from corrections
such as finite wave-vector nonlocal effects and many-body
effects1,10 in addition to the plasmon-phonon coupling con-
sidered in the current work. We note that the experimentally
observed quasilinear dispersion9,12 is not related the coupling
of surface mode to the bulk plasmon mode found in metals32

because the substrates in experiments are insulators and the
coupling to the bulk plasmon mode does not occur.

The dynamical structure factor, S�q ,��, which gives the
spectral weight of the collective modes, is proportional to the
imaginary part of the inverse dielectric function �loss func-
tion� and given by

S�q,�� = −
1

n0vc�q�
Im� 1

�t�q,��� . �15�

For a true collective mode with zero Landau damping both
Im	�t�q ,��
 and Re	�t�q ,��
 vanish, and the inverse dielec-
tric function becomes a delta function with weight

W�q� = 	� �

��
Re �t�q,��
�=�i�q��−1

, �16�

where �i�q� is the collective mode frequency at wave vector
q. In the long-wavelength limit the weight of plasmonlike
mode can be calculated as

W�q�
�−
=

	

2
�1 − ��3/2�q �17�

and the weight of phononlike mode as

W�q�
�+
= 	��SO/2. �18�

The spectral weight of �− mode vanishes as �q in the long-
wavelength limit but the weight of �+ mode is finite. Thus in
the long-wavelength limit all spectral weight is carried by the
phononlike mode. In Fig. 3 the calculated loss function
−Im	1 /��q ,��
 is shown in �q ,�� space for two different
densities �a� n=1013 cm−2 and �b� n=1012 cm−2. In the
long-wavelength limit the phononlike mode has most of the
weight. In the intermediate wave-vector range, however, the
plasmonlike mode becomes stronger. The weight of the �−
mode vanishes again when the plasmonlike mode merges
with the electron-hole continuum at a critical wave vector
and �− mode becomes overdamped by Landau damping.

B. Bilayer graphene

Let us now turn our attention to BLG. Just like MLG, we
again get two hybridized plasmon-phonon modes, one ��−�
having a ��q dispersion and the other ��+� exhibiting a gap
equal to the SO phonon frequency ��SO� in the long-
wavelength limit. The �− mode has the same dispersion as in
MLG, �−�q�= �1−�e−2qd��q, which lies in the gap between
the intraband and interband continua and has a spectral
weight which goes as ��q. Thus, in the long-wavelength

(a) (b)

FIG. 2. �Color online� Calculated plasmon-phonon coupled
mode �� dispersions in MLG as a function of the wave vector q for
two different densities �a� n=1013 cm−2 and �b� n=1012 cm−2. The
plasmon dispersion ��q� without the electron-phonon coupling is
shown by the dashed line. Two dotted horizontal lines represent the
frequencies of the uncoupled SO �top� and TO �bottom� phonon
modes, respectively. The colored region represents the intraband
single-particle excitation �SPEintra� continuum in which the plasmon
is damped by producing electron-hole pairs.
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limit, all the oscillator strength lies in the gapped mode �+.
However, there are two main differences from MLG, i.e.,

the quadratic energy dispersion and the enhanced back-
scattering due to chirality in BLG,27 which lead to nontrivial
differences in the collective mode spectrum. These two ef-
fects lead to very different behavior in the low- and high-
density limits. To illustrate these effects, we plot the collec-
tive mode spectrum of bilayer graphene at two different
densities, �a� n=1013 cm−2 �high density, EF��SO� and �b�
n=1012 cm−2 �low density, EF��SO� in Fig. 4. Here, �q is
the uncoupled plasmon frequency and the shaded regions
represent the intraband and interband particle-hole continua.
The corresponding loss functions are plotted in Fig. 5.

In the high-density limit where wq��SO, there is a strong
plasmon-phonon coupling as evidenced by the deviations of
�+ from �SO and of �− from �q, which gives rise to the
gapped mode �+ having a linear dispersion with a positive
slope in the low q limit. At larger q values, it approaches the
uncoupled plasmon dispersion, as seen in Fig. 4�a�. The �−
mode merges into the continuum at a critical wave vector qc,
which is much smaller than that of the uncoupled mode in-
dicating strong electron-phonon coupling. Furthermore, as
seen from Fig. 5�a�, the phononlike mode �+ carries a much
larger spectral weight than �−.

In the low-density limit where �q��SO, the plasmon-
phonon coupling is weak and the gapped mode �+ is barely
affected by the coupling. In addition, the mode energy de-
creases linearly in the long-wavelength limit, as seen in Fig.
4�b�. The small negative slope is a consequence of the cou-
pling of the phonon mode to the interband SPE �Ref. 15�
arising from the enhanced backscattering in the system and is
a distinct difference between the MLG and BLG. Note that
when the SO phonon mode is pushed into the interband
electron-hole continuum, the coupled �+ mode is always
Landau damped due to the presence of the interband con-
tinuum and carries little spectral weight beyond a very small
range of low q values. The deviation of the plasmonlike
mode �− from the uncoupled dispersion is much smaller than
in the high-density limit, further showing that the plasmon-
phonon coupling is weak in this limit. From Fig. 5�b�, we
find that beyond a small range of low q values, the plasmon-
like mode carries much more spectral weight than the
phononlike mode and hence, at low densities, the plasmon
mode should be easier to detect in BLG.

IV. SUMMARY

In summary, we have calculated the dispersion and the
spectral weight of the coupled plasmon-phonon mode of 2D
graphene. We find that the mode-coupling effect is strong in
monolayer graphene at all densities in contrast to the corre-
sponding bilayer graphene, where the coupling is only sig-
nificant at high densities. The role of substrate phonons could
be easily discerned by looking at the plasmon dispersion,
showing conclusively that the substrate phonons would show
up directly in the graphene plasmon dispersion. Since the
carriers in graphene are strongly coupled to the surface op-
tical phonon of a polar substrate it is important to include
electron-SO phonon interaction in the many-body renormal-
ization of the single-particle properties, which has been only
considered in the presence of electron-electron interaction33

and electron-graphene phonon interaction.23,24,34 The issue of
substrate phonons in graphene is also important for experi-
mental transport properties.26 Finally, we emphasize a defini-
tive prediction of our theory would be a rather variable ex-
perimental plasmon dispersion for graphene on different
substrates since the plasmon-phonon coupling would depend
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on the details of the substrate phonons—in particular, there
would be no plasmon-phonon coupling for suspended
graphene whereas the coupling effects predicted in this work
will be very strong for graphene on SiC or HfO2.
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