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We present a double quantum wire system containing a coupling element in the middle barrier between the
two parallel quantum wires. We explicitly account for the finite length of the double quantum wire with a
time-dependent switching-on potential coupling the double-wire system and the leads. By tuning the magnetic
field and the coupling window between the wires, we analyze the time-dependent current and the charge
distribution of the Coulomb interacting many-electron states in order to explore interwire transfer effects for
developing efficient quantum interference nanoelectronics.
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I. INTRODUCTION

Quantum interference phenomena are essential when de-
veloping mesoscale electronic devices. Quantum-confined
geometries conceived for such studies may consist of two-
path interferometers,1,2 parallel quantum dots,3 coupled
quantum wires,4 side-coupled quantum dots,5,6 or Rashba
double dots in a ring.7 These coupled mesoscopic systems
have captured recent interest due to their potential applica-
tions in electronic spectroscopy tools8 and quantum informa-
tion processing.9 Nevertheless, a study of microscopic mag-
neotransport behavior of the transient current flow in an
interacting window-coupled double quantum wire system is
still lacking.

One of the most important issues of quantum devices con-
cerns the dynamical response of a central system to external
perturbations. In the presence of a magnetic field perpendicu-
lar to the plane of the wires, the energy spectra have been
studied pointing out the complex structure of the evanescent
states of the system in homogeneous10 and inhomogeneous11

double wires �DWs�. It was shown that the stepwise conduc-
tance increasing and decreasing features can be changed by
the applied magnetic field and the height of the barrier be-
tween the wires.12 Moreover, the dynamics of the transfer
processes for single-energy electron spectroscopy in coupled
quantum states has been considered with window coupling
potential experimentally13 and theoretically.14

In a closed time-dependently driven quantum system, the
Jarzynski relation may be derived without quantum correc-
tions by introducing the free-energy difference of the system
between the initial and final equilibrium state.15,16 When the
system is coupled to the reservoirs, the Jarzynski relation can
be derived using a master-equation approach.17,18 Different
approaches were proposed based on the quantum master
equation �QME� to study interaction transport effects.19–21

The time evolution of the system described by the QME
consists of two parts: the Hamiltonian describing the system
induces a unitary evolution of the reduced density matrix and
the dissipative part describing the properties of the environ-
ment or reservoirs.22 On the other hand, the band-structure
effects on the time evolution of noninteracting nanoscale de-
vices have been investigated based on the Keldysh nonequi-
librium Green’s-function formalism that is beyond wideband
limit within the adiabatic approximation.23,24

To study the time-dependent transport properties, the as-
sumption of Markovian dynamics and rotating-wave ap-
proximation lead to different types of master equations of the
density matrix for the study of steady-state currents by ne-
glecting memory effects in the system,25 in which the diag-
onal and off-diagonal elements of the reduced density opera-
tor are decoupled26 or assuming an infinite bias regime.27

However, the transient time-dependent transport, which car-
ries the coherence and relaxation dynamics, cannot be gen-
erally described in the Markovian limit. An accurate numeri-
cal method for the nonequilibrium time-dependent transport
in the interacting nanostructures is desirable, which can
verify various approximation approaches. A non-Markovian
density-matrix formalism involving the coupled elements
should be considered based on the generalized QME
�GQME�.28–32 It has been confirmed that the Markovian limit
not only neglects the coherent oscillations but also the rate at
which the steady state under this limit significantly differs
from the non-Markovian results.32

In this work, we investigate how the interplay of the mag-
netic field and the electron-electron �e-e� interaction affects
the quantum interference of the parallel quantum wires
through a coupling window with a time-dependent
switching-on coupling to the leads. The central finite DW
system is connected to semi-infinite leads of the same width.
To explore the switching-on time-dependent transport behav-
ior through the sandwiched DW system, we shall explicitly
construct a transfer Hamiltonian that is spatially located at
the system-lead contacts and with a certain distribution in the
energy domain. Due to the finite size of the DW system, the
Coulomb correlation could play important role in the trans-
port. Appropriately tuning the above physical parameters, we
obtain the transient as well as the quasisteady-state electric
current using a non-Markovian GQME method. This allows
us to explore quantum interference features of the dynamical
transient currents through the tunable window-coupled DW
system.

The paper is organized as follows: in Sec. II, we present
the model describing the window-coupled DW system based
on the GQME theory. Section III presents our numerical re-
sults and physical discussion. Concluding remarks are ad-
dressed in Sec. IV.
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II. MODEL AND THEORY

Quantum transport in an open system acted upon by
a time-dependent potential has been considered in dif-
ferent systems such as time-dependent quasibound-state
features,33,34 quantum pump in Luttinger liquids,35 photon-
associated transport in nanostructures,36–38 the Kondo effect
in a double quantum dot-quantum wire coupled system,39

ac-field control of spin current,40,41 and transient current dy-
namics in nanoscale junctions.42,43 The rapid progress of na-
noelectronics and information technologies has prompted in-
tense interest in exploiting the quantum interference
transport properties of correlated electrons, in which the cou-
pling between the mesoscopic subsystem could be manipu-
lated by an applied external magnetic field. Furthermore, the
increasing interest in fast dynamics in mesoscale systems
and time-resolved detection of electrons via a nearby detec-
tor strongly motivates investigations of interacting time-
dependent transport. It is thus warranted to explore the mag-
netotransport in a central system that is weakly coupled to
the leads by switching-on time-dependent potentials located
at the system-lead junctions.

A. Single-electron model

One starts from an open quantum system described by a
single-electron time-dependent Hamiltonian

h�t� = h0 + hT�t� . �1�

Therein, the first term

h0 = hS + �
l=L,R

hl �2�

indicates a disconnected single-electron Hamiltonian de-
scribing the central system by hS and the biased leads by hl
with l referring to the left �L� and right �R� leads; and the
second term hT�t� stands for a switching-on time-dependent
transfer Hamiltonian connecting the central system and the
leads. The hS contains a disconnected Hamiltonian h0 and an
envelop potential VDW�r� describing the embedded double
quantum wire subsystem, namely,

hS = hS
0 + VDW�r� . �3�

Here hS
0 =p2 /2m�+Vconf�x ,y� is composed of a kinetic

term with canonical momentum p=p+eA with vector
potential A= �0,−By ,0� and a confining potential Vconf�x ,y�
=Vc�x�+Vc�y�, where Vc�x� denotes a hard-wall confining
potential at x= �Lx /2 with Lx being the length of the DW
system and Vc�y�= 1

2m��0
2y2 is a parabolic confining poten-

tial. It is convenient to rewrite the nonperturbed single-
electron central system Hamiltonian as

hS
0 =

px
2

2m�
+

py
2

2m�
+

1

2
m��w

2 y2 + �cypx �4�

for defining the effective cyclotron frequency �w
2 =�0

2+�c
2

in terms of the two-dimensional cyclotron frequency
�c=eB /m�. The typical length scales of the system along the
x̂ and ŷ directions are characterized by the two-dimensional
magnetic length l= �� /m��c�1/2 and the modified magnetic
length aw= �� /m��w�1/2, respectively.

Utilizing the microscopic single-electron eigenfunctions
of the system �n

S�r� allows us to express the system Hamil-
tonian in the spectral representation44

hS = �
n

En��n
S���n

S� , �5�

where En stands for the eigenvalues of the central system and
the dummy index n refers to the quantum numbers �nx

S , ny
S�.

Considering the parabolically confined semi-infinite leads,
one obtains the single-electron Hamiltonian

hl = �
ny

� dq�ny

l �q���ny,q
l ���ny,q

l � �6�

in which q stands for the continuous wave number along the
transport direction and ny

l denotes the transverse subband in-
dex with l referring to either of the two leads. We assume the
contact is gradually switched on in time and calculate the
time-dependent reduced density operator of the sample using
the GQME. The DW system is coupled to the leads by in-
troducing the off-diagonal time-dependent transfer Hamil-
tonian hT�t�=hT

L�t�+hT
R�t�, where

hT
l �t� = �

n
� dq�l�t��Tqn

l ��n
S���q

l � + H.c.� �7�

with Tqn
l being the coefficients connecting the eigenstates in

the system �n
S and the leads �q

l . Explicitly, we express the
switching-on contact function in the l lead as

�l�t� = 	�t − t0��1 −
2

e
�t−t0� + 1
	 �8�

such that the coupling between the central DW system and
the leads is switched on at t= t0 and the parameter 
 indicates
the switching rate of the coupling. The current will flow
through the system once the switching-on contacts between
the device and the leads have been established.

B. Many-electron model

The Coulomb interacting many-electron states �MESs�
of the isolated sample are derived with the exact-
diagonalization method.45 The chemical potentials of the two
leads create a bias window which determines which MES are
relevant to the charging and discharging of the sample and to
the currents, during the transient or steady states. The many-
electron Hamiltonian

H�t� = H0 + HT�t� �9�

consists of a disconnected many-electron system Hamil-
tonian

H0 = HS + �
l=L,R

Hl �10�

and a time-dependent transfer Hamiltonian HT�t�. The cen-
tral system Hamiltonian HS=HS

0 +HS
I contains a kinetic term

HS
0 =�nEndn

†dn with discrete single-electron energies En and a
Coulomb interaction term
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HS
I = �

n,m
�

n�,m�

Vn,m;n�,m�dn
†dm

† dm�dn�, �11�

where we have introduced the electron creation �annihila-
tion� operators in the system dn

† �dn�. The two-electron matrix
elements

Vn,m;n�,m� =� drdr��n
S�r���m

S �r���V�r − r���n�
S �r���m�

S �r� ,

�12�

expressed by the single-electron state �SES� basis, are de-
rived for the Coulomb interaction potential

V�r − r�� =
e2

4��0�r

1

�x − x��2 + �y − y��2 + 
2

�13�

with �r and 
 being, respectively, the relative dielectric con-
stant of the material and the infinitesimal convergence pa-
rameter. Below we define the dummy index q= �ny

l ,q� and
�dq��ny

�dq for simplicity. The many-electron lead Hamil-
tonian can be expressed in the following form:

Hl =� dq�l�q�cq
l†cq

l . �14�

The second term in Eq. �9� is expressed explicitly as

HT
l �t� = �l�t��

n
� dq
cq

l†Tqn
l dn + dn

†�Tnq
l ��cq

l � �15�

describing the transfer of electrons between SES of the sys-
tem �n� and the leads �q� through the coupling coefficients
Tqn

l , given by

Tqn
l =� drdr��q

l �r���gqn
l �r,r���n

S�r� . �16�

Therein, the coupling function

gqn
l �r,r�� = g0

l exp
− �x
l �x − x��2 − �y

l �y − y��2� � exp


− �n
l �q�/�� �17�

containing the system-lead SES energy spread
�n

l �q�= �En−�l�q�� making the connection of any two SES at
the contact region in the energy domain.31 The spatial cou-
pling range in the leads is governed by �x

l and �y
l . We have

considered the energy interval 
�R−� ,�L+�� to define an
active window in the energy domain �E=��+2� that in-
volves all the possible states in the central system that are
relevant to the transport. It should be mentioned that only the
transverse part of the wave function in the semi-infinite leads
is normalizable. To get rid of all length scales variation with
magnetic field, one needs to fix g0

l aw
3/2 in units of energy and

then calculate g0
l .

C. GQME formalism

In this section, we formulate the time evolution of the
MES when the system contains a number of electrons for the
study of interacting time-dependent transport properties

based on the GQME formalism.46 To take into account the
many electrons in the system, we construct a Fock space by
selecting the number of the NSES lowest single-electron states
and the NMES=2NSES many-electron states within the active
window �E. In the occupation representation basis, the non-
interacting MES,

��� = �i1
�,i2

�, . . . ,in
�, . . . ,iNSES

� � �18�

contains the labels in
�=0,1 indicating the occupation of the

nth SES of the isolated central system within the active win-
dow. The corresponding energy of the noninteracting MES
E�=�nEnin

� can be obtained by summing over the occupied
SES.

The time evolution of the many-electron system under
investigation obeys the Liouville-von Neumann �quantum
Liouville� equation,47

dW�t�
dt

= −
i

�

H�t�,W�t�� , �19�

where the full density operator W�t� can be operated upon by
a projector to yield the reduced density operator �RDO� by
taking trace over the Fock space in the leads
��t�=TrL TrR W�t�, with ��t0�=�S.48 The initial condition
W�t� t0�=�L�R�S is in terms of the equilibrium RDO of the
disconnected lead l with chemical potential �l, given by

�l =
e−��Hl−�lNl�

Trl�e−��Hl−�lNl��
�20�

with l referring to the L and the R leads. This allows us to
find the equation of motion for the RDO of the following
form:49

d��t�
dt

= − iLeff��t� + �
t0

t

dt�K�t,t����t�� , �21�

where Leff stands for the effective Liouvillian and K�t , t��
denotes the integration kernel.49

Using the exact-diagonalization method, we diagonalize
the interacting system Hamiltonian HS in the MES basis of
the noninteracting system ����� in the Fock space. Since we
are dealing with an open system with variable electron num-
ber, one has to include all sectors containing zero to NSES
electrons. This yields a new interacting MES basis ����� with

��� = �
�

U����� �22�

connected by the NMES�NMES unitary transformation matrix
U��. A basis transformation of the interacting many-electron

coupling matrix T̃l�q�=U†Tl�q�U and the insertion of the di-
agonalized matrix representation of the interacting HS allows
us to obtain the RDO in the interacting MES basis
�̃=U†�U. Expressing the interacting many-electron coupling

matrix T̃ in the interacting MES,

T̃l�q� = �
�,�

T̃��
l �q������� �23�

with T̃��
l �q�=�nTnq

l ���dn
†��� in terms of the single-electron

coupling matrix Tnq
l , one can obtain the transformed GQME,
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d�̃�t�
dt

= −
i

�

HS, �̃�t��

−
1

�2 �
l=L,R

�l�t�� dq�
T̃l�q�,�q
l �t�� + H.c.� . �24�

Here we have defined the effective interacting coupling op-
erator

�q
l �t� = US

†�t��
t0

t

ds�l�s��q
l �s�exp�−

i

�
�t − s��l�q�	US�t�

�25�

with

�q
l �s� = US�s�
�T̃l�†�̃�s��1 − f l
��q���

− �̃�s��T̃l�†f l
��q���US
†�s� ,

in which US�t�=eiHS�t−t0�/� denotes the time evolution opera-
tor and f l
��q��= �exp
��q�−�l�+1�−1 indicating the Fermi
function in the l lead at t= t0. In the numerical calculation we
shall select t0=0 for convenience.

Taking the statistical average over the Fock space

�Q̂S�t��=Tr�W�t�Q̂S� of the charge operator Q̂S=e�ndn
†dn in

the coupled central system and using the identity �̃�t�=TrL
TrR�W�t��, one may express the statistical averaged time-
dependent charge as

�Q̂S�t�� = e�
n

�
�

in
�����̃�t���� . �26�

This allows us to define the time-dependent net charge cur-
rent flowing through the central DW system,

IQ�t� =
d�Q̂S�t��

dt
= IL�t� − IR�t� . �27�

The charge current injected from the l lead to the system is
given by

Il�t� = e�
n

�
�

in
�d�̃��

l

dt
, �28�

in which we express the current in terms of the time deriva-
tive of the reduced density matrix elements in the interacting
MES basis,

d�̃��
l

dt
= −

�l�t�
�2 � dq���
T̃l�q�,�q

l �t�� + H.c.��� .

It is straightforward to obtain the interacting many-electron
charge distribution in the DW system,

Q�r,t� = e�
n�,n

�n�
� �r��n�r��

�,�
�̃���t����dn�

† dn��� . �29�

Below we shall show our numerical results of the net time-
dependent charge current IQ�t� through the central DW sys-
tem. It is an algebraic sum of the left current IL�t� �indicating
the charge current from the left lead to the right lead� and the
right current IR�t� �indicating the charge current from the

system to the right lead�. We shed light on the transport
dynamics by analyzing the time-dependent many-electron
charge distribution Q�r , t� in real space.

III. RESULTS AND DISCUSSION

Five SESs have been used to construct the 32 MESs that
are used in the exact diagonalization. The SESs are formed
in a diagonalization of the single-electron Hamiltonian of the
electrons in a finite wire in a magnetic field using a
�128�20� basis of eigenfunctions for the system without a
magnetic field except for the effective confinement in the y
direction.

We numerically solve the GQME to investigate the dy-
namical time-dependent magnetotransport of electrons
through a central finite system of length Lx=300 nm with
magnetic length l= 
h / �eB��1/2=25.67
B �T��−1/2 nm. The
central system is transversely confined by a parabolic poten-
tial with characteristic energy ��0=1.0 meV. This supplies
the modified magnetic length

aw = � �

m��0
�1/2� 1

1 + 
eB/�m��0��2�1/4

=
33.74


4 1 + 2.982
B �T��2
nm, �30�

and the typical width of the confined system for the lowest
subband electron is Ly �67.5 nm. We assume GaAs param-
eters with electron effective mass m�=0.067me and the back-
ground relative dielectric constant �r=12.9.

Figure 1 schematically illustrates the window-coupled
DW system scaled by aw. The embedded DW system is de-
scribed by VDW�r�=VMB�y�+VCW�x ,y� that contains a
middle barrier
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FIG. 1. �Color online� �Upper panel� Schematic of the coupling
of the lateral DWs to the external leads and their internal coupling
through a coupling element. �Lower panel� The potential defining
the window-coupled DW system, ��0=1.0 meV, B=0 T, and
aw=33.74 nm.
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VMB�y� = V0 exp�− �0
2y2� �31�

with V0=18.0 meV and �0=0.3 nm−1, as well as a coupling
window potential

VCW�x,y� = − V0 exp�− �x
2x2 − �y

2y2� . �32�

The coupling constant g0
l aw

3/2=60 meV, and the contact size
parameter �x

l =�y
l =4.4�10−4 nm−2.

In the following calculations, the temperature of the
reservoirs is fixed at T=0.5 K and the states within the
bias window before switching on the coupling are assumed
to be unoccupied. The coupling between the DW system and
the leads is characterized by the switching rate 
=1.0 ps−1,
and the nonlocal coupling strength is fixed as
�l=4g0

l aw
3/2 / ��x

l �y
l �1/2=54.5 meV nm2. The bias voltage is

fixed leading to a bias window eVbias=��=0.9 meV and the
extension parameter �=0.3 meV is selected referring to a
window of relevant states �E=��+2�=1.5 meV.

The energy spectrum of the leads as a function of wave
number q scaled by aw

−1 is shown in the left panel of Fig. 2.
The bias window �� is located in the first subband, whereas
the extended active bias window covers the evanescent
modes below the first subband and the threshold of the sec-
ond subband. The energy spectrum of the window-coupled
DW system as a function of the single-electron number n is
shown in the right panel of Fig. 2 containing five SESs in the
window of relevant states �E; the three lowest states are in
the bias window �� whereas the two highest states are in the
upper extended window 
�L ,�L+��.

In Fig. 3, we show the time-dependent charge current for
the case of magnetic field B=0.5 T with and without e-e
interaction, denoted by IQ,I and IQ,0, respectively. The nonin-
teracting left and the right currents are also presented for
comparison, denoted by IL,0 and IR,0, respectively. We have
selected �x=0.02 nm−1 and �y =�0 such that the length of
the coupling window Lw is 100 nm. In addition, the coupling

constant is g0
l aw

3/2=60 meV and the contact size parameters
are �x

l =�y
l =4.4�10−4 nm−2 such that the coupling strength

�l=54.5 meV nm2 and the effective lengths of the system-
lead coupling potential are Lc,x

l =Lc,y
l �95 nm. Below we

shall show that the time-dependent charge current manifests
different transport mechanisms in the short-time and the
long-time response.

In the short-time response regime, shown in Fig. 3�a�, the
time-dependent charge current is increased and manifests
rapid oscillation with period �s�1.9 ps exhibiting quantum
interference dominant features. In this regime, the noninter-
acting approach could be a good approximation for analyz-
ing the transient time-dependent transport properties. In this
short-time regime, the interacting and the noninteracting cur-
rents are almost the same before 20 ps with negligible right
charge current implying effective charging and quantum in-
terference dominant transport feature. The right charge cur-
rent is significantly increased after 20 ps. At around
t=35 ps, the difference between the interacting and nonin-

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 0.5 1 1.5 2 2.5

E
(m

eV
)

qaw

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 5 10 15 20

E
(m

eV
)

n

µL+∆
µL
µR

µR-∆

FIG. 2. �Color online� Energy spectrum of the leads �solid red�
versus wave number q �left panel� and energy spectrum of the
window-coupled DW system �cross dot� versus the SES number n
�right panel�. The five lowest SESs are used to construct the 32
MESs that are used in the exact diagonalization of the interacting
Hamiltonian �11�. Magnetic field B=0.5 T, and the chemical po-
tentials in the leads are �L=1.65 meV and �R=0.75 meV �dashed
green� such that ��=0.9 meV. The window of relevant states
�E=1.5 meV is defined by the dotted blue lines.
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FIG. 3. �Color online� The interacting net current IQ,I �solid red�,
the noninteracting net current IQ,0 �solid blue�, the noninteracting
left current IL,0 �dashed green�, and the noninteracting right current
IR,0 �dashed light blue� are plotted as a function of time: �a� short-
time response; �b� long-time response. The magnetic field
B=0.5 T, the length of the coupling window Lw=100 nm, the
system-lead coupling constant g0

l aw
3/2=60 meV, and the contact size

parameters �x
l =�y

l =4.4�10−4 nm−2.
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teracting currents becomes 0.1 nA �the Coulomb correction
is �10%�, and the right charge current is increased to
0.18 nA.

We note in passing that the time-dependent current oscil-
lation in Fig. 3�a� is not seen to this extent for one-
dimensional leads with no subband structures. These oscilla-
tions are caused by interference between the transfer of
electrons from the various subbands in the leads to the states
in the sample.44 The period does not change with the cou-
pling strength. In addition, we cannot exclude that the oscil-
lations are also influenced by the geometry of the sample.

That would be a more subtle effect since the portion of the
wave function of a state is reduced when the sample is made
longer. The oscillation period is determined by the subband
structure in the leads together with the discrete states of the
sample and is independent of the applied magnetic field in
the range used here.

In the long-time response shown in Fig. 3�b�, the charge
current displays slow quasiperiodic oscillation with period
�l�39 ps approaching a steady current. The slow oscillation
behavior in the time-dependent current implies that the quan-
tum interference feature is suppressed whereas the Coulomb
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FIG. 4. �Color online� The many-electron charge density for the noninteracting �left panel� and interacting system �right panel� for
B=0.5 T. The other parameters are the same as Fig. 3.
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interaction effect is enhanced. At time t=250 ps, the inter-
acting steady current ��0.17 nA� is much higher than the
noninteracting steady current ��0.015 nA�. The mean
charge of the DW system is monotonically increased in time
�not shown�,50 and the mean charge of the interacting MES
��0.8e� is approximately twice that of the steady mean
charge of the noninteracting MES ��0.4e�. This indicates
that the empty-state initial condition ensures that the Cou-
lomb interaction facilitates to drag the electron dwelling in
the DW system through the window of relevant states and
thus enhances the steady current.

Here we have seen that the interacting system gives a
larger current than the noninteracting system even near
steady state. This is because we are observing transport
through few states at the bottom of the energy spectrum and
some of the states are localized. This is the same situation as
in our previous work considering the ring structure.50 For a
higher bias we always expect Coulomb blocking in this
weak-coupling limit. For a short pure wire we do not gener-
ally see this nonintuitive feature since there are no localized
states.

In order to get better understanding on the transient dy-
namical transport, we present the spatial distribution of the
many-electron charge at t=10, 25.6, 100, and 200 ps in Fig.
4, labeled by a–d in Fig. 3, respectively. When the system-
lead coupling is switched on with forward bias, the electrons
are incident from the left lead into the system with trans-
versely symmetric distribution �not shown�. At around
t�10 ps, the electrons located in the lower wire favorite to
make interwire backward scattering to the upper wire, exhib-
iting a fully quantum-mechanical feature. Later on, the elec-
trons perform an opposite interwire backward scattering fea-
ture to the lower wire at t�25 ps, and this feature is only
slightly enhanced by the Coulomb interaction. However, in
the long-time response regime, the interwire scattering for-
ward and backward effects are both enhanced. At around t
=100–200 ps, the noninteracting window-coupled DW
forms a quasi-isolated four cavities, the window coupling
effect is significantly enhanced by the Coulomb interaction.
It is interesting that the electron can form a quasibound state
in the coupling window at t�200 ps. When the DW system
approaches steady-state transport in the long-time response
regime, the total charge in the system is 0.4e for noninteract-
ing and 0.8e for interacting DW system exhibiting significant
charge accumulation behavior.

In Fig. 5, we show the interacting net charge current as a
function of time for the case of magnetic field B=0.5 T with
different size of coupling window Lw=0 �dotted black�, 50
�dashed blue�, and 100 nm �solid red�. In the short-time re-
sponse regime, shown in Fig. 5�a�, the quantum interference
dominates the time-dependent charge current feature with
rapid oscillation. The oscillation amplitude and frequency of
the time-dependent charge current remain similar for the
cases with different window size, this similarity is because
the quantum interference oscillation behavior is mainly due
to the multiple scattering in the transport direction, and in-
terference of subbands in the semi-infinite leads. In the tran-
sient switching-on regime t�0.5 ps, the charge current for
both the cases of short Lw=50 nm and long window
Lw=100 nm are similar to the case without a window

Lw=0.0 nm exhibiting the response time of the system from
an isolated system to an open system. Later on, the charge
current for the case of short window is suppressed by 0.4 nA
while the charge current is enhanced for the case of long
window by 0.8 nA. It should be noted that this quantitative
feature is different when the e-e interaction effect is ignored,
in which the charge current is almost the same for the
cases without window Lw=0.0 nm and long window
Lw=100 nm, however the charge current is suppressed by 1
nA for the case of short window Lw=50 nm �not shown�.

In the long-time response regime, shown in Fig. 5�b�, the
time-dependent charge current displays slow oscillations and
approaches to a steady current within 0.1–0.2 nA. It is shown
that the steady current is enhanced for the case of long win-
dow Lw=100 nm due to the Coulomb interaction. However,
the Coulomb interaction for the case of short widow is not
significant on the time-dependent charge current in compari-
son with the pure finite length DW system without window
coupling. When the Coulomb interaction is ignored, the
steady currents of the short and the long window are both
suppressed �not shown�. This demonstrates again the dynam-
ics of the time-dependent charge current in the long-time
response regime is significantly affected by the Coulomb in-
teraction.

To investigate how the window size affects the transport
dynamics, in Fig. 6 we present the spatial distribution of the
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FIG. 5. �Color online� The interacting net current IQ,I versus
time for Lw=0 �dotted black�, 50 �dashed blue�, and 100 nm
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B=0.5 T. The other parameters are the same as Fig. 3.
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many-electron charge at t=14, 31.2, 100, and 200 ps, labeled
by a–d in Fig. 5, respectively. It is clearly seen that, for both
short and long window, the electrons perform interwire
backward scattering in the short-time response regime
�say, t=14 and 31.2 ps�, while the electrons are allowed to
perform interwire forward scattering in the long-time re-
sponse regime �say, t=100 and 200 ps�. This means that the
former quantum interference dominant short-time response
regime, the electrons favor the interwire backward scattering;
while the latter Coulomb interaction dominant long-time re-
sponse regime, the electrons favor interwire forward scatter-
ing. The many-electron charge density is monotonically in-
creased in time. Furthermore, it is demonstrated that
increasing window size can enhance not only the interwire
scattering feature but also the local charge accumulation at
the coupling window.

In Fig. 7, we demonstrate how the magnetic field influ-
ences the transient charge current as a function of time. In
the short-time response regime, it is seen that the current

oscillation period is not affected by the magnetic field.
However, the oscillation amplitude of the transient current
is suppressed by increasing applied magnetic field, as is
shown in Fig. 7�a�. Moreover, increasing the magnetic field
implies reducing the cyclotron radius and increase the
backscattering feature through the coupling window.
Therefore, the short-time charge current is strongly
suppressed by the applied magnetic field from 1.0 nA
�B=0.0 T� to 0.1 nA �B=1.0 T�. In the long-time response
regime, shown in Fig. 7�b�, the oscillation feature induced by
the quantum interference has been suppressed. The time-
dependent current for the cases of B=0.0 and 0.5 T exhibits
exponential decay exhibiting competition behavior. This is
because the transient current with no magnetic field is higher
in the short-time response regime while it decays to the
steady state faster than in the case with a magnetic field
B=0.5 T. However, for the case of strong magnetic field
B=1.0 T, the current arrives at the steady state value
0.08 nA before 50 ps.
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FIG. 6. �Color online� The spatial distribution of the interacting many-electron charge density with different coupling window: Lw

=0.0 nm �left�, Lw=50 nm �middle�, and Lw=100 nm �right� at time t=14, 31.2, 100, and 200 ps. B=0.5 T and the other parameters are
the same as Fig. 3.
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IV. CONCLUDING REMARKS

To conclude, we have performed a numerical calculation
of the time-dependent electric current and spatial charge dis-

tribution through a window-coupled parallel double quantum
wire system based on GQME formalism including the
electron-electron Coulomb interaction with the “exact-
diagonalization” method, and without resorting to the com-
monly used Markovian approximation. We have analyzed
transient currents and their dependence on various param-
eters of the system with a certain initial configuration and
time-dependent switching-on coupling to the leads. For a
given coupling window, we have demonstrated time-
dependent transport properties of the noninteracting and the
interacting DW systems. Applying an appropriate magnetic
field, we have found a short-time response regime dominated
by quantum interference and interwire backward scattering.
Moreover, the Coulomb correlation is significantly enhanced
in the long-time response regime,50 and the interwire forward
scattering through the coupling window dominates the dy-
namical transport properties. The conceived mesoscale
window-coupled DW system could serve as an elementary
quantum device for sensitive spectroscopy tools for electrons
and quantum information processing by controlling the cou-
pling window and the applied magnetic field.
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