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Chiral topological excitonic insulator in semiconductor quantum wells
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We present a scheme to realize the chiral topological excitonic insulator in semiconductor heterostructures
which can be experimentally fabricated with a coupled quantum well adjacent to two ferromagnetic insulating
films. The different mean-field chiral topological orders, which are due to the change in the directions of the
magnetization of the ferromagnetic films, can be characterized by the Thouless, Kohmoto, Nightingale, and
Nijs numbers in the bulk system as well as by the winding numbers of the gapless states in the edged system.
Furthermore, we propose an experimental scheme to detect the emergence of the chiral gapless edge state and
distinguish different chiral topological orders by measuring the thermal conductance.
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I. INTRODUCTION

The search for new phases of quantum matter is one of
the essential topics in condensed-matter physics. Chiral to-
pological band insulators (TBIs) are such a type that has
been attracting a lot of interest both theoretically and experi-
mentally. Although like trivial insulators in the sense that
TBIs have a band gap in the bulk, they are fundamentally
distinguished from trivial ones by their having gapless
modes on the boundaries. These gapless modes are robust
under perturbations and cannot be gapped without going
through a quantum phase transition. In the case of time-
reversal symmetry (TRS) breaking, a well-known TBI sys-
tem is the Haldane’s model which is a minimal model to
illustrate quantum anomalous Hall effect (QAHE).! The
QAHE topological phase is characterized by the Thouless,
Kohmoto, Nightingale, and Nijs (TKNN) number? of the first
Chern class of a U(1) principal fiber bundle on a torus in the
bulk system or the winding number of Halperin’s edge-state
theory>* on the boundary of the system. The coherence of
the two different kinds of numbers is guaranteed by the bulk-
edge correspondence. Since the rigorously prerequisite mag-
netic field in Haldane’s model is difficult to realize in experi-
ment, recently, there are some new proposals® to realize
QAHE based on single-particle picture.

In analogy with QAHE in single-particle picture, the su-
perconductors in TRS broken (p,+ip,) weak pairing state in
two dimensions with a fully stable bulk gap opened by
electron-electron interaction can also have chiral topological
order.® The edge states of the chiral superconductor have half
of the degrees of freedom compared to QAHE states due to
the particle-hole symmetry (PHS) and are called Majorana
edge sates. In the spirit of analogy with superconductor, a
natural and important issue is how to get chiral topological
excitonic insulator (TEI), which is addressed in this paper.

In this paper, we consider an independently gated double-
quantum-well structure separated by a spacer as shown in
Fig. 1(a). The ferromagnetic insulating films are introduced
to break TRS by inducing an effective Zeeman splitting in
the two-dimensional electron (hole) gas [2DE(H)G]. The
magnetization is perpendicular to the two-dimensional layer.

1098-0121/2010/82(19)/195324(6)

195324-1

PACS number(s): 03.65.Vf, 73.21.Fg, 73.43.Lp

Note that the orbital effect of the ferromagnetic films to the
2DE(H)G can be neglected due to the local exchange inter-
action on the interface. An electron-hole fluid is created by
modulating the voltages so that the Zeeman-split upper
branch of the heavy-hole bands in 2DHG layer can move
above the Zeeman-split lower branch of the electron bands in
2DEG layer. This procedure results in spatially separated but
strongly interacting electron and hole fluids if the two layers
are close enough. The external electric field produced by the
bias voltages and the intrinsic electric field due to doping in
the process of fabricating quantum wells can enhance the
structural inversion asymmetry and induce the tunable
Rashba spin-orbit (SO) interaction.” ! Recall that due to the
strong SO coupling and noncentrosymmeytic property,'' the
broken parity of the order parameter is the prerequisite con-
dition of the chiral superconductor. In analogy with chiral
superconductor, we demonstrate that the chiral TEI can occur
when the Rashba SO interaction is strong enough with re-
spect to the amplitude of the excitonic order parameter
(EOP). Generally the Rashba SO interaction strength can be
influenced by carrier density, gated voltages, material of
quantum wells, etc.'>'* In InAs heterostructures, for in-
stance, this quantity can be electrically tuned to be as large as
a~50 meV A.'5 Due to the missing PHS, the edge states of
chiral TEI in the present system are not Majorana fermions.
The implication of these gapless edge states for experimental
observations is also discussed in this paper.

II. MODEL AND HAMILTONIAN

We start with an effective electron/hole semiconductor bi-
layer system confined in the x-y plane. Here for the hole
layer only the heavy-hole bands are occupied as in typical
experiments while the light-hole bands are empty and are
therefore not taken into account in our model. With keeping
in mind that around the I" point, the Rashba SO interaction in
conventional semiconductor heterostructures has the familiar
expression a(k,o,—k,0,) for electrons and Bk o,~k o)
for heavy holes, the resultant tight-binding Hamiltonian for
the present bilayer system is H=EP(H,((’I?,),+H(,§’))+H,(-Z;/')
=Ho+Hs;"

mnt

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.82.195324

HAO et al.

(a) L (b)
y

15 0y 15

FIG. 1. (Color online) (a) Schematic structure of semiconductor
quantum wells system that holds chiral TEI. The external gates
(Vge(n)) can independently tune the chemical potential i, ;) to ob-
tain the electron and heavy-hole layer. The ferromagnetic insulating
films support effective exchange fields (V,,V,). (b) The energy
spectrum of the electron/hole bilayer system near the Fermi energy
Er=0. Here the solid lines denote noninteracting single-particle
energy spectrum E,;)+ while the dashed lines denote the exciton
energy spectrum with an obvious mean-field gap opened. We take
to=tp=1, po=p,=—4, (V,,V,)=(1,1), a=0.5, and B=0.5.
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Here 1, denotes the nearest-neighbor hopping amplitude
while w, represents the chemical potential in electron (p
=e) or heavy-hole (p=h) layer. s, is the z component of the
Pauli matrices and V,7, is the effectlve Zeeman splitting
(7,=1 for electron 1ayer and 7,=-1 for hole layer). p; , is the
fermion annihilation operator at lattice site j with spin
+1/2(1,]) for p=e and spin +3/2 (T, 1) for p=h. a(p) is
the Rashba SO interaction strength in the electron (heavy-
hole) layer. dx(dy) is the square-lattice spacing along the

x(y) direction. In the interaction term, Ugfjh)(d)
=¢?/eV|R,; ,—R;,[*+d*, where ¢ is the dielectric constant of
the spacer and d is the interlayer distance. We only consider
the interaction correlative to exciton formation and ignore
the electron-hole exchange interaction. The lattice Hamil-
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tonian can be transformed into the momentum space with the
Fourier transformation (ej,,hi,) =1/ VO3, ki (e 5N
The result reads

km(k) E [( ](;p) - /J’p) ot Vp7-17(sz)o-,zr’]p£gplz,o" ’

!
koo’ p

Hgf)(lz) = ia(sin k,—isin ky)e%e,gl +H.c.,
k
HW(K) = 2 iBlay — ib)highiy + Hee.,
k

1
'H(é‘ h) _
nt ZQ . 2

kk'(ioa

U(Lh)(q)€k+ 5 rhz’—qlr h,;rgfe,;m (2)

where U(e’l)(q)=2f—;e‘qd, 5{ =-21,(cos k,+cos k), a;
=2(3 cos ky sin k,—sin k, cos k,—2 sin k s and by=2
(-3 cos k, sm ky+sin k, cos k,+2 sin k,). In the above
Hamiltonian, the 1nter1ayer tunnehng is neglected because
the insulating spacer can supply a high barrier to stop the
direct interlayer hopping. We also neglect the intralayer
electron-electron and hole-hole interactions since they are
expected to renormalize the single-particle energy of each
layer and have no essential influence on the topological prop-
erties of the system. In the mean-field approximation, the
above Hamiltonian can be written as
HMFz E [(é«/ﬁzp) - /U'p) 50,0" + Vpr(Sz)O',a"]p]Egplg,o"
k,o’,a",p
+ H%’) - % > [Awr(lg)ez-ahi,;(r, +H.c.]
p kao'
1
"20 kq%

where the EOPs are defined as

Apor(R)A] (k= §)
U'“h(q) ’

3)

|
Aao’(k) = 52 U<eh)(¢])<h-12+qa’el?—qa>- (4)
q

In the Nambu notation with combined e-# field operator ba-
sis ¢=[e,gTe,thimhiEU]T, the mean-field Hamiltonian is ex-
pressed as H =y Hypif+const with

2,(:) — e+ Vs, A(K)

Hyp= . (5)
" NG R TR A/
where E(L);: + g“(i’])gl + 'H(,f)(ilg) and
- | Apk) Ay(k)
A(k)=——[ e (©)
A (k) Apyk)

with A, (k) defined in Eq. (4).

The complex EOPs A,,.(k) can be self-consistently ob-
tained from exact numerical calculation of Egs. (3) and (4)
with respect to minimizing the ground-state energy. In our
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FIG. 2. (Color online) The left (middle, right) panels, respec-
tively, show our calculated magnitudes (real parts, imaginary parts)
of the EOPs Am(lz), Aw(lz), Alﬂ(l?), and Alu(/z), at a typical setup of
magnetization parameters (V,,V,)=(1,1).

numerical calculation of A,.(k), we set the lattice size 81
X 81 and take t,=t,=1, pu,=p,=—4, «=0.5, and B=0.5.
There are four different kinds of choices for the perpendicu-
lar magnetization in the two magnetic films adjacent to the
bilayer system. For the parallel configurations, in our nu-
merical simulations we choose (V,,V,)=(1,1) and (V,,V,)
=(=1,-1) while for the antiparallel configurations we choose
(v,,V,)=(-1,1) and (V,,V,)=(1,-1). From our extensive
numerical results, we find that only one spin channel of
EOPs is dominated for each of the four choices of (V,,V,).
Furthermore, we find that the EOPs will obtain k-dependent
phases due to the Rashba SO coupling. For convenience of
discussion, we define x,=arctan(sin k,/sin k,) and 7
=arctan(b;/a;). As a typical example, the numerical results
of EOPs for (V,,V,)=(1,1) are shown in Fig. 2. In this case,
one can find from Fig. 2 that the component A lﬂ(]g) in EOP
matrix Eq. (6) is dominant while the amplitudes of the other
three components (Aq,Ay,A ) are negligibly small. With
keeping in mind that the k-dependent phases of EOPs are
obviously due to the Rashba SO interaction, we have analyti-
cally constructed various possible SO interaction-induced
phases in EOPs and turned to compare these analytic ap-
proximate expressions with our exact numerical results.
Table I summarizes the most optimal approximate phases for
the four magnetic configurations. As an illustration, we plot

TABLE 1. Dominant spin channel and approximate analytical
EOP phase factors for different magnetization configurations.

Dominant EOP

V., V) component Phases of (An, Ay, A0, A y)
(1,1) A (k) (1,—ie'™, ie'Xk, it 7))
(-1,1) Aq(k) (e~ Xk, = Xitime 1 jelr)
(-1,-1) Ay(k) (et _je~iXk je~7, 1)
(1,-1) Ay(k) (—ie™, =1, eim, —je'X)
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in Fig. 3 our derived approximate condensate phases for the
case of (V,,V,)=(1,1) and compare them with the exact
numerical result shown in Fig. 2. The agreement is clear.
Note that usually, in semiconductor materials the electron
effective mass m, near the bottom of the conduction band is
different from the heavy-hole effective mass m,, near the top
of the valence band and we know that 7, is proportional to
the 1/m,. Hence, generally, ¢, is not equal to #,. For a more
realistic case, we have set 7,=1.0 and #,=0.5 with unchanged
|V,|=|V,|=1. Thanks to the fact that a and B can be influ-
enced by doping, gated voltages, material of quantum wells,
etc., we can assume a=0.5 and B=0.25. Then, we have
found that u,=-4.0 and w,=-2.45 can also give the nearly
identical Fermi surfaces of the electron and heavy hole. This
guaranteed Fermi-surface nesting enables our conclusions in
this paper to be valid in a wide range of realistic parameter
regime. For simpleness of discussion, we assumed the pa-
rameter values t,=t,=1.0.

With the help of Table I, we expect that the k-dependent
phases in the EOPs may lead to the nontrivially chiral topo-
logical orders. For instance, let us consider the case of
(V,,V,)=(1,1). In the continuum limit, ¢t~ “*%
A lﬂ(]g) ~ilA lﬂ(]g) k“:k”. That means the (p,+ip,)-like pairing
emerges.

Moreover, an explicit picture of chiral TEI can be well
understood in the two-band approximation. To reveal this
fact, first the noninteracting part in the total Hamiltonian is
rewritten in the single-particle eigenstate space as

HO = Z Eex(lg) ‘//Zv(]g) wev(lg) + Ehv(]g) l//hs(_ ]g) l//;f”(_ ]g) s (7)
ks

, and thus

where E, = (,%e) — pe+s\a(sin® k+sin? k) +V2  and  Ej,

=_§(_]/;Z)+,u'h+s\” B (ai+b})+Vi(s=+,-) are, respectively,
electron and heavy-hole band energies, and ,; denotes the
relevant annihilation field operators. Here the single-particle
eigenstates are given by

@ (k) = &% —[if (k)e™ ™ f_(k),0,0]7,
@ (k) = U f_(K),~ if, (k)eX:,0,0]",

@n_(k) = €{0,0,ig,(k)e™,g_(k)]",

@pe(K) = €40,0,g_(K), ig,(k)e ™ ]", (8)
where
F=lb = i krsin? ) 2 i 2= Ve
and
g=(k) = fu

NBatb)+ [z A= Vil

Note that 6, and 1, are k-dependent phases and are in prin-
cipal determined, during exciton formation, by exactly solv-
ing the ground state of the system through our above self-
consistent calculation. The single-particle bands Epi(lg) are
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FIG. 3. (Color online) (From left to right) Phases factors of the
EOPs Ay(k), Ajq(k), and Ajy(k) that are listed in Table I with
(V,,V,)=(1,1). The imaginary part of the component Am(lg) is
negligibly small [see Fig. 2(a) and 2]. Here the upper and lower
panels, respectively, plot the real and imaginary parts of these three
phase factors. The black cirques denote Fermi surface.

shown in Fig. 1(b) (solid curves), from which it is easy to
find that the excitons are preferably formed between the
lower electron band E,_ and the upper hole band E,,,. More-
over, the pairing relates to the Fermi surface of the bilayer
system. With the values of the tunable parameters shown in
the caption of the Fig. 1, the band E,_ and band E,, have the
nearly perfect nesting Fermi surface with the Fermi energy
Ep being nearly zero, (namely, w,=-4t,). Hence, we can
deal with pairing in BCS picture in this situation. Now, we
consider the electron-hole interaction part in Eq. (2) in terms
of the filled electron band E,_ and hole band E,,. In order
to obtain an explicit picture, we use a rough approximation
by assuming a short-range interaction potential U“"(q)
=U&(q). Then, after mean-field treatment, the resultant two-
band Hamiltonian for our exciton system is given by

Hyp =~ E E, (k) !_(k) () + 2 Ep (B (= B g, (= )
k k

~ U

1 _ . . . 1< |A>R)?
- 52 [AK) y,_(k) (- k) + He.] + 52 AW
k k

9)
where A(K)= 2 U (k) g} (k) (=R) ho_(K)). (s,s"=+) The

’
5,8

straightforward calculation can prove

S 2 k)gl (k) ~ 1

’
5,8

near the Fermi wave vector k. So A(K)=A, is almost k
independent and only nonzero around kr in BCS-type
picture. In practice we can introduce a factor (k)
=e~k=kpgio (¢ and @ are real constants) to fit our exact
multiband self-consistent numerical results (say, Fig. 2) in
the whole Brillouin zone (BZ). The gaped energy spectrum
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of Hy is shown in Fig. 1(b) (dashed lines). Now, in the
two-band approximation, the EOPs in Eq. (6) have the ex-
pressions as follows:

2
if+(k)g_(k)e‘iXk f+(k)g+(k)€_i)(k+”k
g (k) if-(kg, (ke |’

where the phases /(% ?*¢) are confirmed through our self-
consistent calculation. It turns out that Eq. (10) gives a nice
description of the numerical results.

A(k) =

(10)

III. CHIRAL TOPOLOGICAL ORDER

In the presence of exchange fields (V,,V,) induced by the
ferromagnetic films, the TRS of the system is broken. No
less than the AQHE, the nonzero TKNN number can un-
doubtedly characterize the topological nature of the system if
a stable bulk gap separates the ground state and excited
states. That means the topological property of the system will
not be changed without bulk gap closing in spite of adiabati-
cally deforming |A,, (k)| at the given exchange fields.
Hence, y(k) in Eq. (10) is inessential for the system’s topo-
logical property. Moreover, only the dominant component of
EOPs decides the system’s topological property at the given
(V,,V,,). The straightforward calculation of Itgny in Eg.
(11) can prove the above two arguments.

In the following discussion, we use Eq. (10) to consider
the system’s topological properties. In general, in the spin-
dependent Nambu space (e,;Te,;ihimhi ;1)> the EOPs in differ-
ent spin channels are affected by the effective exchange
fields. Additionally, the strong Rashba SO interaction flaws
the spin polarization of the carries along the z direction.
The total effect leads the factors f.(k)g.(k) to emerge in
different spin channels of EOPs and which decide the
dominant one at given (V,,V),,). For convenience of the fol-
lowing discussion, we use (AS“,Agd,Agu,Agd) to denote
Aol (Bg_(K). £ (kg (k). f-(K)g_(K)..f(K)g,(K)]. The topo-
logical nature of the ground state can be characterized by
nonzero Itgnn, Which reads

Iknn= 2 C,
n=1,2

LS

d’kQ,, (k). (11)
27,15 Jez

where C, is the Chern number for the nth mean-field
energy band calculated via the Berry curvature Q,,(/E):
-2 Im(% %‘:). Here |u,) is the eigenstate of the mean-
field Hamiltonian of Eq. (5) with A(k) being the form
of Eq. (10). The general analytic process is too compli-
cated. If we consider one special case for (V,,V,,)=(1,1)
with Am:iAOe"XkQ and Ap=A;y=Ay=0, the specific
forms of |u,) are that |u;)=[1,0,0,0]" and |u,)=[0,
—i\'/l+A(I€)eiXk,\/1 —A(k),0]" in the basis of energy bands,
where
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TABLE II. The TKNN numbers for effective exchange fields
and corresponding EOP amplitudes.

Ve, Vi) 4 (MG AL AG AT ITrnNN

(1,1) 0.5 0.5(0,0,1,0) 1

(-1,1) 0.5 0.5(1,0,0,0) -1

(=1,-1) 0.5 0.5(0,1,0,0) -1

(1,-1) 0.5 0.5(0,0,0,1) 1
A (lg) _ Eh+(k)_Ep—(k)

T ELB-E (DT+AY

The straightforward calculation of Eq. (11) can give Itgnn-
For definiteness, we give the numerical calculations for gen-
eral cases and summarize the results in Table II, which
clearly shows chiral topological order with its winding be-
havior depending on the choice of exchange-field param-
eters. From the bulk-edge correspondence, the nontrivial
bulk topological number implies gapless edge states in the
system with finite size.

In order to confirm the existence of the gapless edge
states, we assume that the square-lattice system has two
edges in y direction and is boundless in x direction. Corre-
spondingly, we choose open boundary condition in y direc-
tion and periodic boundary condition in x direction of the
lattice Hamiltonian in Eq. (1) in mean-field approximation.
The calculated energy spectrum at a typical case of
(v,,V,)=(1,1) is illustrated in Fig. 4(a). The red-solid and
blue-dashed lines correspond to the different edge states with
contrary chirality. It is easy to find that the number of the
gapless edge states is consistent with the bulk theory charac-
terized by Itgnn-

IV. TRANSPORT PROPERTY OF EDGE STATES

The nontrivial transport phenomena can be predicted due
to the emergence of the edge states in our system. From Fig.
4(a), we can find that the edge sates in different chiral topo-
logical order propagate on each boundary with opposite ve-
locities and can be described by the following Hamiltonian:

H. o= = 20 Nk (ko) 1, (k). (12)
k=0
where * represents different edges and n=1,...,4 labels

four different kinds of magnetic configurations, namely, A\,
=N\4=1 and Ny=N3=—1,v is the Fermi velocity and k, is the
momentum measured from the Fermi surface. The quasipar-
ticle operators for case (V,,V,)=(1,1) read

nl(kmy)
:ul(kx’y)eT(y)+U1(kx’y)hﬁ(y)~ (13)

The other cases have the similar forms. Due to the missing of
the PHS, the quasiparticles are not Majorana fermions.

The edge states in the AQHE systems can be usually
detected through the Hall conductance responding to the

PHYSICAL REVIEW B 82, 195324 (2010)

FIG. 4. (Color online) (a) The energy spectrum of the bilayer
square-lattice system with two edges at the y direction. k, denotes
the momentum in the x direction. The magnetization parameters are
set at (V,,V,)=(1,1). The red-solid and blue-dashed lines denote
the edge states locating on different edges. (b), Six-terminal Hall
bar for detection of the edge states. The red-solid and blue-dashed
lines with arrows represent the edge modes propagating in opposite
direction.

external electromagnetic field.'®!” However, the edge states
in our system are excitons which are charge neutral. A simple
approach is to use thermal transport measurement which is
often used to judge the pair properties in high-T.
superconductors.'®!® The six-terminal Hall bar showed in
Fig. 4(b) for detecting the edge states of quantum (spin) Hall
effect can be used to detect the thermal conductance. The
same setup has been used by Sato et al.?’ to detect the edge
state in topological superconductor. We give the similar con-
siderations with that in Ref. 20 as follows. The temperature
must be sufficiently lower than the exciton gap (T<<A;) in
order to suppress the contributions from the fermionic exci-
tations (electrons and holes) in the bulk and bosonic
(phonons) excitations. The thermal conductance is defined by
G(T)=1,4(T)/(AT)4, where I;(T) is a thermal current be-
tween contacts i and j, and (AT);; is the temperature differ-
ence between these contacts. In the low-temperature limit,
the T dependence of G(T) have three origins: the linear law
«T from edge states for phase 7, the exponentially low
~e 2T from bulk quasiparticles and the power law 73
from phonons. Furthermore, in analogy with the quantum
spin Hall current discussed in Ref. 21, there is no tempera-
ture difference between contacts 2 and 3 (5 and 6) because
the edge current is dissipationless.

V. DISCUSSION AND CONCLUSION

More recently, some proposals’*?>2* have investigated
the similar chiral topological order, for which the spin-orbit
interaction and Zeeman field have also played an important
role. Compared to those proposals, the excitonic insulator in
the present paper is due to the attractive coulomb interaction
between electrons and heavy holes, and the remarkable
forms of the excitonic order parameters are confirmed with
self-consistent calculations in our proposal.

In conclusion, we have presented a scheme to realize the
chiral topological excitonic insulator in the double quantum
wells adjacent to two ferromagnetic films. We have predicted
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different topologically nontrivial orders emergent along with
changes in the magnetization orientations in the ferromag-
netic films. The topologically nontrivial orders can be char-
acterized by the chiral topological numbers defined with
TKNN numbers in bulk system or chiral edge states in edged
system. Furthermore, we have given an experimental scheme
to detect the excitonic gapless edge states.
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