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We present a theoretical model for design and analysis of semiconductor quantum dot �QD� array-based
intermediate-band solar cell �IBSC�. The plane-wave method with periodic boundary conditions is used in
expansion of the k ·p Hamiltonian for calculation of the electronic and optical structures of InAs/GaAs QD
array. Taking into account realistic QD shape, QD periodicity in the array, as well as effects such as band
mixing between states in the conduction and valence band, strain and piezoelectric field, the model reveals the
origin of the intermediate-band formation inside forbidden energy gap of the barrier material. Having estab-
lished the interrelation between QD periodicity and the electronic structure across the QD array Brillouin zone,
conditions are identified for the appearance of pure zero density-of-states regions, that separate intermediate
band from the rest of the conduction band. For one realistic QD array we have estimated all important
absorption coefficients in IBSC, and most important, radiative and nonradiative scattering times. Under
radiative-limit approximation we have estimated efficiency of such IBSC to be 39%.
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I. INTRODUCTION

Conventional single-energy-gap solar cells �SCs� have an
ultimate efficiency limit that was established by Shockley
and Queisser �SQ�1 on the basis of detailed balance argu-
ments. The “balance” in the model comes from the fact that
it quantitatively accounts for two opposing fundamental pro-
cesses that occur in any SC: absorption and emission. For SC
at room temperature the maximum efficiency is further re-
duced to 40.7% with Eg=1.1 eV under maximum concentra-
tion condition and to 31% with a Eg=1.3 eV, at one sun
�i.e., when the solid angle subtended by the sun shining on a
cell at normal incidence is taken into account�. The main
reason underlying those values is that only photons with an
energy close to that of the semiconductor Eg are effectively
converted. Photons with lower energy then Eg are simply lost
�the semiconductor is transparent to them�; and out of the
photons with higher energy ��Eg�, only a part of their en-
ergy, i.e., that equals the Eg energy is at best converted. The
majority of high-energy electrons generated by photons with
�Eg, �hot carriers� decay thermally to the Fermi level of the
conduction band before they can contribute to the current.

The principal aim, to increasing efficiency of SC, must be
to make better use of the solar spectrum.2–4 One such im-
provement is to take advantage of the incident photons with
subband gap energy to be absorbed and contribute to in-
crease photocurrent while in the same time the output volt-
age of device would ideally be preserved at its maximal
value that is determined by the largest Eg that exists in the
system �i.e., host material energy gap�. A possible solution to
that problem emerged in the form of intermediate-band solar
cell �IBSC� scheme.5–7 The limiting efficiency of the IBSC
concept for full concentration and at room temperature is
63.2% with optimized absorption energies at �1.2, �0.7,
and �1.9 eV,5 significantly overcoming the SQ limit of
40.7% for a conventional single-gap SC under the same op-
erating conditions.

Conceptually, an IBSC is manufactured by sandwiching
an intermediate-band �IB� material between two selective

contacts, of p and n types �Fig. 1�. The IB material is char-
acterized by the existence of an electronic energy band of
allowed states within the conventional-energy band gap Eg of
the host material, splitting it into two subgaps, EgL and EgH.
This band allows the creation of additional electron-hole
pairs from the absorption of two subband gap energy pho-
tons. Under this assumption, first photon �1� pumps an elec-
tron from the valence band �VB� to the IB, and a second
photon �2� pumps an electron from the IB to the conduction
band �CB�. To this end, it is necessary that the IB is half
filled with electrons so that it can supply electrons to the CB
as well as receive them from the VB. This two-photon ab-
sorption process is also illustrated in Fig. 1 and has been
experimentally detected in IBSCs based on quantum dots.8

The electron-hole pairs generated in this way add up to the
conventionally generated ones by the absorption of a single
photon �3�, the third one, pumping an electron from the VB
to the CB. Therefore, the photocurrent of the solar cell and
ultimately its efficiency are enhanced since this increment in
photocurrent occurs without degradation of the output volt-
age of the cell. The output voltage is given by the split be-
tween electron and hole quasi-Fermi levels, EFC

and EFV
, that

is still limited by the total band gap Eg.9–12 The robustness of
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FIG. 1. Schematic view of the IBSC band diagram.
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the IBSC concept allows for various energy-gap combina-
tions to be found that provides for very similar efficiency.
This is of particular importance for QD-based designs as it
opens up a much larger design space for IB solar cells.13

So far the maximum conversion efficiency of the IBSC
experimentally measured was 18.3% reported by Blokhin et
al.14 Their device was based on AlGaAs/GaAs single-
junction photovoltaic cells with an array of vertically
coupled InGaAs QDs. Even more fascinating, this results
was for the unconcentrated ground-level solar spectrum.

In this paper we describe theoretical methods for design,
and discuss possibility of using, semiconductor QD as an
absorbing medium in IBSCs. In the QD implementation of
IBSCs the intermediate band is created inside host semicon-
ductor �barrier� material by three-dimensional periodic array
of QDs. In reality, it is rather a one-dimensional array of
vertically aligned QDs.14–24 For each electron-bound energy
level available inside a single QD, a periodic array of such
QDs will produce a miniband. Those minibands will lie in-
side the forbidden energy gap of the barrier material. If there
is only one bound energy level in the CB of QD, this may
become the IB. With proper prefilling or photofilling, the
quasi-Fermi level can be positioned within the IB.25 In this
way, the IB can be half full, providing coexistence of filled
and empty states in the IB, and enhancing the probability of
creating photogenerated carriers.

In the IBSC design based on QD structures the require-
ment for band formation can be relaxed as a single QD level
can be equally as good if the Fermi level is on �or near� it.
Indeed if the IB is enough wide �very close QD packing�
there may be transport along the stacks of QDs. The most of
the desirable transport in the QD-IBSC takes place within the
CB and VB while the IB transport is not as important.26

Throughout this paper all relevant physical properties of the
IBSC were reported for single QD in the isolation �that are
technologically more feasible� and for the QD array made of
the same size QDs.

The paper is organized as follows: after introduction, Sec.
I, in the second part, Sec. II, we review theoretical methods
for the calculation of electronic and optical properties of the
QD array used for IBSCs. In Sec. II A we briefly outline the
k ·p theory and its eight-band implementation, as a method
used for quantum-mechanical treatment of electronic struc-
ture of strained semiconductor QD arrays. In Sec. II B we
discuss advantages of the plane-waves expansion method
combined with periodic boundary conditions for the calcula-
tion of the electronic structure of QD arrays. In Sec. III A,
we introduce the model QD array used throughout this work.
In Sec. III B we discuss the origin of intermediate-band for-
mation in QD arrays which is followed by the analysis of the
electronic structure of QD arrays in Sec. III C. Results pre-
sented in Secs. III B and III C are used then to examine the
absorption characteristics of QD arrays. In Sec. IV, we dis-
cuss dominant radiative and nonradiative processes that
might influence successful operation of QD array-based
IBSC. It includes theory of radiative processes in Sec. IV A,
theory of electron-phonon scattering processes in Sec. IV C,
and theory of the two most important nonradiative Auger
processes: electron cooling and biexitonic recombination dis-
cussed in Sec. IV B. In Sec. V we give concluding remarks.

II. THEORY OF QD ARRAY ELECTRONIC STRUCTURE

A. k·p theory

The quantum-mechanical description of electrons in IBSC
requires detailed knowledge of their wave functions, �n,k�r�,
which are found by solving the Schrödinger equation �in the
single-electron approximation�

H0�n,k�r� = En,k�n,k�r� . �1�

The Hamiltonian in Eq. �1�, H0= p2 /2m0+V�r�, is the func-
tion of the quantum-mechanical momentum operator, p=
−i��, and the crystal potential experienced by electrons,
V�r�=V�r+R�, which is a periodic function, with the period-
icity of the crystal lattice, R. According to Bloch’s theorem,
the solutions to this Schrödinger equation can be written as:
�n,k�r�=eik·run,k�r�, where k is electron wave vector, n is the
band index, and un,k is the cell-periodic function with the
same periodicity as the crystal lattice. The cell-periodic func-
tion, un,k, satisfies equation

Hkun,k = En,kun,k, �2�

where the Hamiltonian

Hk = H0 + Hk� =
p2

2m0
+ V +

�2k2

2m0
+

�k · p

m0
�3�

is given as a sum of two terms: the unperturbed, H0, which,
in fact, equals the exact Hamiltonian at k=0 �i.e., at the �
point in the Brillouin zone� and the “perturbation,” Hk�.
Equation �3� is called the k ·p Hamiltonian.27–29 The pertur-
bation term Hk� gets progressively smaller as k approaches
zero. Therefore, the k ·p perturbation theory is most accurate
for small values of k. However, if enough terms are included
in the perturbative expansion, then the theory can, in fact, be
reasonably accurate for any value of k in the entire Brillouin
zone.30–34 The parameters required to do these calculations,
are the band edge energies, En,0, and the optical matrix ele-
ments, �un,0�p�un�,0�, are typically inferred from experimental
data and detailed atomistic-based theories.35

A particular strength of the k ·p theory is straightforward
inclusion of the spin-orbit �SO� interaction and of strain ef-
fects on the band structure via deformation potential theory.36

Relativistic effects in the k ·p method are included perturba-
tively via the SO interaction Hamiltonian, HSO
= �2� /3�2�L ·S, where L is the orbital angular momentum
operator and S is the spin operator, and � is the spin-orbit
split energy. In a strained system the coordinate axes are
stretched or compressed.36 Therefore, the coordinates are
transformed as: r�= �1+��−1 ·r, where r is the unstrained co-
ordinate, assuming only effects up to the first order in strain
tensor �. Consequently the translational symmetry of the
new, strained cell-periodic functions, ũn,k��r��=un,k��1
+��−1 ·r�, is associated with the wave vector, k�= �1+�� ·k.
By solving the k ·p equation in the new coordinate system

defined by �k� ,r��, and using modified Bloch �̃n,k��r��, and
cell-periodic ũn,k��r��, functions, and neglecting all second-
order effects due to strain tensor, �, the strained k ·p Hamil-
tonian becomes
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Hk =
p2

2m0
+ V +

�2k2

2m0
+

�k · p

m0
+

1

4m0
2c2 ��� � �V� · �k + p�

+ D� · � , �4�

where the D� is the deformation potential operator and ��
= ��x ,�y ,�z� is a vector consisting of the three Pauli spin
matrices.37

The theoretical model of the QD array electronic struc-
ture, used in this paper, is based on the eight-band k ·p
implementation38 of Hamiltonian �4� adapted for QD
nanostructures.39,40 This Hamiltonian takes into account band
mixing between the lower conduction band s-antibonding
and top three valence-band p-bonding states, all spin degen-
erate, in the underlying QD and barrier materials, and in-
cludes the strain and piezoelectric field. It is established that
such Hamiltonian once implemented for periodic structures
�see Sec. II B� gives excellent agreement with the experi-
mental results on the confined energies in the InAs/GaAs QD
array system obtained by photoreflectance and electrolumi-
nescence measurements.7,41–43

B. Plane-waves implementation of QD array electronic
structure solver

The QD as a three-dimensional �3D� object breaks the
translational symmetry of the bulk material along all three
Cartesian directions implying operator replacement k	→
−i� /�	 in Eq. �4�, where 	= �x ,y ,z�. To solve the multiband
system of Schrödinger equations, Eq. �4�, the plane-wave
�PW� methodology is employed as an expansion
method.44–47 In the PW representation the eigenvalues �En�
and coefficients �An,k� of the nth eigenvector, ��n�r�
=	kAn,keikr�, are linked by the relation

	
m,k�

hm,n�k�,k�An,k = En	
k

An,k, �5�

where hm,n�k� ,k� are the Fourier transform of the Hamil-
tonian matrix elements, and m ,n� 
1, . . . ,8� are the band
indexes of the eight-band k ·p Hamiltonian. All the elements
in the Hamiltonian matrix, Eq. �5�, can be expressed as a
linear combination of different kinetic and strain-related
terms and its convolution with the characteristic function of
the actual QD shape, 
qd�k�.47,48 The whole k space is dis-
cretized by embedding the QD in a rectangular box of di-
mensions Lx, Ly, and Lz and volume �=Lx�Ly �Lz and
choosing the k vectors in the form of k
=2��nx /Lx ,ny /Ly ,nz /Lz�, where nx, ny, and nz are integers
whose change controls the convergence of the method.

The PW-based k ·p method inherently assumes periodic
Born-von Karman boundary conditions and is particularly
suited for analysis of the QD array structures. The electronic
structure of such an array is characterized by a Brillouin zone
�BZ� determined by the QD array dimensions.41,49–52 To cal-
culate the electronic structure the only modification to the
basis set is to replace the reciprocal lattice vectors in the PW
expansion with those shifted due to the QD-superlattice
�QD-SL�

k	 → k	 + K	, �6�

where 0
K	
� /L	 and the L	 are the superlattice vectors
in the 	= �x ,y ,z� directions and corresponds to those forming
the volume �. This allows sampling along the K points of a
QD-SL Brillouin zone to be done at several points at the cost
of the single QD calculation at each point K, avoiding labo-
rious calculations of the large QD clusters. All the results
presented here were obtained by using the KPPW code.46,47

III. ELECTRONIC AND ABSORPTION
CHARACTERISTICS OF QD ARRAY

A. Model QD arrays

The model QD arrays considered here consists of InAs/
GaAs QDs with truncated pyramidal shape. The size and
shape of the QD is controlled by the pyramid base length, b,
its height h, and truncation factor, t, defined as a ratio be-
tween length of the pyramid side at h and length of the
pyramid base b. The QDs are embedded in the tetragonal-
like unit cell, �=Lx�Ly �Lz. The vertical periodicity of the
QD array is controlled by Lz=dz+h+LWL, where dz is the
vertical separation of the QDs in subsequent layers, i.e., the
distance between the top of the QDs and the bottom of the
wetting layer �WL� in the following layer. The dz is varied
with Lx=Ly chosen to be large enough to prevent lateral elec-
tronic coupling. All the results present in this paper are ob-
tained at the single-particle level of theory.

B. Wave-function delocalization and intermediate-band
formation in QD arrays

The origin of the intermediate-band formation in the QD
arrays lays in the electronic coupling of states in neighboring
QDs. When QDs are put close enough, the QD states even-
tually become delocalized over QDs in an array. By varying
the QD size and vertical spacing between them it is possible
to control electronic properties of the QD array. In Fig. 2, the
evolution of QD states delocalization, “bonding,” is shown.
In Fig. 2�a� the charge densities of the electron ground �e0�
and first excited �e1� states in CB and the hole ground �h0�
and first excited �h1� states in VB of a single isolated InAs/
GaAs QD with b=10 nm, h=2.5 nm, and truncation factor
t=0.5 �which means that the side of the pyramidal shaped
QD at h=2.5 nm is 5 nm� is shown. It can be seen that for
such a QD all considered states are well-localized inside the
QD. Once QDs are put in an array structure, the wave func-
tions start to delocalize. In Figs. 2�b� and 2�c� the same size
QD as in Fig. 2�a� are used and put in an infinite periodic
array with vertical spacing between the QDs of dz=3 nm
and dz=2 nm, respectively. It is clear that closer packing of
QDs enhances the wave-function delocalization. This wave-
function delocalization is the main cause of intermediate-
band formation in QD array.

In analogy with solid-state physics, from Fig. 2�b�, one
can quantify the character of bonding of QD states in an
InAs/GaAs QD array as covalent rather than metallic. The
wave functions are delocalized only to some degree with
charge density in the barrier region between QDs hardly ex-
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ceeding 20% of its maximal value and are far from being
completely delocalized to result in nearly free-electron mo-
tion in z direction, unlike the situation in quantum wires
�QWRs�. This is mainly due to strong carrier confinement
imposed by InAs/GaAs QDs potentials in CB and VB.

C. Electronic structure of QD arrays

When a large number of identical QDs are brought to-
gether to form a QD array, the number of wave functions
becomes exceedingly large �infinite for an infinite array�, and

(a) Single QD (b) Array: dz = 3 nm (c) Array: dz = 2 nm
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FIG. 2. �Color online� Evolution of the QD wave-functions delocalization in QD array as a function of the vertical proximity of QD in
an array. The InAs/GaAs QD is with b=10 nm, h=2.5 nm, and truncation factor is t=0.5. �a� Single QD structure, �b� QD array with
vertical spacer distance dz=3 nm, and �c� QD array with vertical spacer distance dz=2 nm.
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the difference in energy between them becomes very small
�infinitesimal�, so the levels may be considered to form con-
tinuous bands of energy rather than the discrete energy levels
of the QD in isolation.53 New normalized solution inside
continuous bands of an QD array can be rewritten in the
form of QD array Bloch states, �eiKzz, where the QD array
wave number, Kz, is chosen within range −� /Lz
Kz

� /Lz. This range of the QD array wave numbers form the
QD array BZ. However, some intervals of energy contain no
wave functions, no matter how many QD are aggregated,
forming energy gaps. Those energy gaps are between inter-
mediate bands and not to be confused with energy gap of the
underlying QD or barrier constituent materials. They will be
referred later as a region of pure zero density of states �DOS�
inside CB that fundamentally distinguishes the properties of
a QD array structure from those of QWRs and are one of key
factors for successful operation of the IBSC. Those regions
�gaps� of pure zero DOS can prevent rapid thermal depopu-
lation of carriers from higher states in QD array’s CB to IB
originated from delocalized ground states �e0�.

To estimate the variation in the first few minibands �i.e.,
intermediate bands� with the vertical periodicity of the QD
array, in Fig. 3, we have changed the vertical spacing, dz
between QD array layers in the range from 1 to 10 nm �note
that this is the distance between bottom of the WL in �i
+1�th and top of the QDs in the ith growth layer�. The lower
and upper boundaries of an IB correspond to Kz=0 and Kz
=� /Lz, respectively. The width of the e0 miniband at the
close spacing of dz=2 nm is: 156 meV, at dz=3 nm is: 86
meV, at dz=5 nm is: 29 meV, and almost vanishes by dz
=10 nm. At the technologically feasible distance of dz

=10 nm the width of the e0 miniband is �10−6 eV. While
the energy gap between VB and CB states exists both in bulk
and nanostructured semiconductor materials �like in quantum
wells, quantum wires, and quantum dots�, one of the main
reasons for using QD arrays for IBSC is to open another
energy gap, the gap between e0 miniband induced by QD
array, i.e., IB, and the rest of the CB spectra. In the QD
arrays consisting of small size QDs, suggested as desirable
combination for the IBSC,41 the e1 and e2 minibands are very
close to or even overlap with the CB edge of the barrier
material. In this case the IB-CB energy gap can be quantified
as the energy difference between the lower boundary of the
e1 miniband that corresponds to Kz=0 and the upper bound-
ary of e0 miniband that corresponds to Kz=� /Lz. The IB-CB
energy gap does not exists for the QDs closely spaced below
some critical vertical distance dz

�c�. This distance can be de-
termined from the crossing point between the lower e1 mini-
band and the upper e0 miniband boundaries, i.e., from the
condition Ee1

�Kz=0�=Ee0
�Kz=� /Lz�. In our case the region

of zero IB-CB energy gap occurs for dz�2.4 nm. In this
region the QD arrays effectively exhibit electronic properties
of a QWR structure with electron-free motion allowed in the
z direction. As can be seen in Fig. 2�c� at dz=2 nm the
wave-function delocalization is substantial and form almost
“metallic” like bonds. For larger vertical distances, e.g., dz
=3 nm, the IB-CB energy gap is 35 meV, while for dz
=5 nm this gap increases to 88 meV. Although this value is
much lower than optimal one, of �700 meV, obtained under
idealized assumptions,5 it still proves the concept of realizing
IB using QD arrays. The evolution of minibands broadening
in the CB together with profile of the CB edge of strained
InAs QDs inside GaAs barrier material along z direction and
for �x ,y�= �0,0� is shown in Fig. 4. Due to the choice of QD
�that has discrete � function like nature of the DOS as an
artificial atom54� as a building block of the QD array, the
energy gaps between IBs in the conduction band are also
characterized by pure zero DOS. To distinguish the regions
where QD array behaves effectively as a QWR from the one
suitable for IBSC application, in Fig. 5 the DOS of QD ar-
rays is presented for two vertical spacer distances: �a� dz
=2 nm and �b� dz=5 nm. In Fig. 5�b� one can clearly rec-
ognize pure zero DOS regions between minibands while
such regions do not exist in Fig. 5�a�. Furthermore, sharp
peaks at the edges of minibands correspond to van Hove
singularities of the DOS at the critical points of the QD-array
Brillouin zone, i.e., at � and X points.

An alternative way of designing the electronic structure of
the QD arrays for IBSC is to change QD sizes in the arrays.41

D. Absorption characteristics of QD arrays

As shown schematically in Fig. 1, the rationale for using
IBSCs as absorbing material is to create a partially occupied
IB, thus affording subband-gap absorption VB→ IB into the
empty states of the IB �process 2� and IB→CB from the
occupied states of IB �process 3� in addition to the VB
→CB of the host absorbing material �process 1�. A few con-
ditions have to be met for achieving good efficiency within
such a concept.55 �i� The VB→ IB and IB→CB absorption
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FIG. 3. �Color online� Variation in the first four, optically stron-
gest, minibands width in the CB with the QDs vertical spacing. The
two vertical lines correspond to values of the vertical spacing of
dz=2 nm and dz=3 nm. Two horizontal lines corresponds to: the
fully relaxed CB edge of the barrier GaAs material away for the QD
�solid line� and highest point in the strain-induced CB “wing” at the
interface between QD and barrier material �dotted line�. Reference
zero energy is taken at the top of the unstrained valence band of the
QD material.
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spectra should ideally have no spectral overlap. As we have
shown in Sec. III C this condition can be achieved by design-
ing the QD array with pure zero DOS between IB band and
the rest of the CB electronic structure. This “photon-sorting”
condition ensures maximum quantum efficiency for given
positions of the CB-IB energy gap EgL and IB-VB energy
gap EgH in Fig. 1. �ii� The VB→ IB and IB→CB excitations
must be optically allowed and strong. Thus, the quantum
objects creating the IB must have significant concentration
and oscillator strength.

The optical matrix element required for description of ab-
sorption and radiative related processes is defined as �ê ·pif�2,
where ê is the unity light polarization vector and pif�k�
= �m0 /���i��Hk /�k�f� is the electron-hole momentum opera-
tor of the quantum structure, where �i� and �f� are initial and
final states involved in the process. In the QD array structure
k→k+K. From the K-dependent electronic structure, de-
fined in Sec. III C, and momentum matrix element pij�K� the
absorption coefficient, of the QD array were calculated �de-
fined as a number of photons absorbed per unit volume per
second divided by a total number of photons injected per unit
area per second; and given in the units of cm−1�, in the dipole
approximation

����� =
�e2

c�0m0
2n̄�b2 	

i,f ,K
f if���,K��f i − f f� , �7�

where we define the transition strength as

f if���,K� = �ê · pif�K��2��Ei�K� − Ef�K� − ��� �8�

and e is the electron charge, c is the speed of light in
vacuum, m0 is the rest electron mass, n̄ is the refractive index
of the GaAs, �0 is the vacuum permittivity, � is the light
frequency, b2 is the area of the QDs base, and f i and f f are
the Fermi distributions for the initial and final miniband, re-
spectively. The delta function, ��x�, is replaced with a Gauss-
ian function exp�−�x /�2��2� / ��2���, defined by the phe-
nomenological broadening �, to take into account random
fluctuations in the structure of the QD array. Finally, the
summation is replaced by integration over the wave vector
Kz. The choice of the absorbing area in Eq. �7� is somewhat
arbitrary. Although we have chosen this area to be equal to
the base of QDs in the array, �1 /b2�, it would probably be
closer to experimentally observed values if this factor is cho-
sen to be proportional to the surface density of QDs, �1 /A�,
i.e., QD coverage fraction. The value of QD array absorption
coefficient, that would take the QD coverage fraction in-
stead, can be easily obtained for the Eq. �7� by simple mul-
tiplication with the factor b2 /A. Absorption coefficient given
in terms of the QD coverage fraction is always smaller than
that obtained by Eq. �7�.

Assuming the IB formed by the QD-array miniband origi-
nated from the ground state e0 and separated by zero DOS
from the rest of the CB spectra, the IB→CB and VB→ IB
involve e0 as initial and final miniband, respectively. Due to
a finite width of the e0 miniband, in our IBSC absorption
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FIG. 4. �Color online� Conduction-band edge profile, along the z direction and �x ,y�= �0,0�, of the QD/QD array, for: �a� single QD; �b�
QD array made of the same QD as in �a� vertically spaced by dz=3 nm; and �c� QD array made of the same QD as in �a� vertically spaced
by dz=2 nm. For QD arrays in �b� and �c� the dispersion of the first four, optically strongest, states in CB in the direction of the QD array
is also shown. For QD array in �b� the energy gap between intermediate band e0 and intermediate band e1 can be identified while this gap
disappears for closely spaced QD in array �c�.
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model, we can introduce an approximation that the final
miniband states involved in the particular absorption process
are always empty, i.e., f f =0. The corresponding absorption
coefficients �VB→IB����, �IB→CB����, and �VB→CB���� are
then calculated taking into account 1000 hole minibands in
the VB and the e0 miniband as the IB, the e0 miniband as the
IB and the next 100 minbands in the CB starting from e1
miniband, and using 1000 hole minibands in the VB and 100
minbands in the CB starting from e1 miniband, respectively.

Figure 6 shows all relevant absorption coefficients of the
QD array made of truncated pyramidal InAs/GaAs QDs with
b=10 nm, h=2.5 nm, and t=0.5, and with vertical spacing
between the dots in the array of dz=5 nm. First in Fig. 6�a�
the transitions from QD array CB ground-state e0 miniband
to all other electron minibands higher in energy are pre-
sented. A sharp double peak that appears at 0.117 and 0.125
eV �full width at half maximum=14 meV� corresponds to
all the momentum-allowed transitions between e0 and e1, e2
minibands. This IB→CB absorption peak is completely TE
polarized56 due to S symmetry of the QD states forming e0
miniband and Px,y symmetry of the QD states forming e1 and
e2 minibands. It should be emphasized that e1 and e2 mini-
bands are already overlapped with the conduction-band
minima �CBM� of the barrier material. Existence of the pro-
nounced peaks at �0.117–0.124 eV suggests that the con-
dition �ii� that IB→CB excitations must be optically allowed
and strong, can be fulfilled by relatively small b=10 nm,
InAs/GaAs QDs vertically stacked with dz=5 nm in the QD
array. Further above the barrier CBM, in the energy range of
0.2–0.4 eV, a spectra of weak TE-polarized transitions can be
seen. This part of the IB→CB absorption spectra corre-
sponds to transitions between e0 miniband and largely delo-
calized states between QDs. The second absorption process
relevant for IBSC operation is associated to the VB→ IB
transitions. This absorption coefficient has been calculated
again using Eq. �7� with the first electron miniband e0 taken
now as final and unoccupied. As initial minibands we con-
sidered the first 1000 hole minibands starting from h0 mini-
band. The lowest energy of the 1000th hole miniband goes
well below the valence-band maximum �VBM� in the barrier

material. The calculated absorption coefficient of VB→ IB
process is shown in Fig. 6�b�. The absorption peak is at
�1.2 eV and again of the TE polarization. This time the TE
polarization originates from heavy-hole QDs states that have
no admixture of the orbital of the underlying bulk material
with Pz symmetry. Due to highly strained InAs QD material
in GaAs matrix, the biaxial component of the compressive
strain splits the heavy from light hole states in the VB while
hydrostatic component of the strain pushes heavy-hole states
upward on the absolute energy scale making h0 miniband of
heavy-hole character. The shoulder in the absorption spectra
between 1.23 and 1.35 eV corresponds to transitions between
deep VB minibands and e0 miniband. The third absorption
process, VB→CB, is shown in Fig. 6�c�. This absorption
spectra was obtained using first 1000 minibands in the VB as
initial states and 100 empty minibands in the CB starting
from e1 miniband as final states. The absorption edge for this
process is at 1.33 eV and is determined by energy distance
between h0 and e1 minibands.

As mentioned in Sec. III A, all the presented results are
obtained at the single-particle level of theory. In the presence
of Coulomb interaction, however, in GaAs bulk there exists a
continuum of “free-carrier” excitons where Coulomb inter-
action enhances the joint electron-hole density of states. The
measure of this enhancement is given by the Sommerfeld
factor,57,58 which for allowed transitions in the bulk material
was obtained as S=��3e��3 /sinh ��3, where �3= �Ry� / �E
−Eg

GaAs��1/2 and Ry*= ��� /m0�r�Ry is the effective Rydberg
constant, 1 /��=1 /me

�+1 /mh
� is the reduced effective mass of

the electron-hole pair, �r is the dielectric constant of GaAs,
and Ry=13.6 eV. Although the Sommerfeld factor, S, is al-
ways larger than unity, indicating that the Coulomb attraction
between an electron and a hole enhances the optical absorp-
tion in the bulk material, it should also be noticed that S is
large near the band edge but tends to unity at higher energies.
In bulk GaAs, Ry�
5 meV, which means that the excitons
are nearly always ionized at the room temperature, and hence
are not important in the barrier bulk material. At low tem-
peratures, however, they can contribute to the absorption
spectra with near edge peak of ��104 1 /cm,59 that would
be comparable to the first peak �at �1.35 eV� in the VB
→CB spectra in Fig. 6�c�.

The intensity of the VB→ IB and VB→CB absorption
peaks are roughly the same, �104 cm−1, while IB→CB
peak is four times larger despite the fact that the large portion
of e1 and e2 minibands being above the GaAs barrier CBM.
It suggests a strong, by QD periodicity induced, Bragg-type
confinement of states in e1 and e2 minibands that are pre-
dominantly confined above the barrier in the continuum.60,61

Those states partly overlap with CBM while the rest of those
minibands are above CBM as can be seen in Fig. 4�c�.

It has been shown previously that using larger QDs �b
�20 nm� in the QD array the bulklike absorption spectra
can only be “redshifted” by almost continuum spectra of
electron and hole minibands while distinct absorption peak
associated with IB cannot be identified.41,62

IV. RADIATIVE AND NONRADIATIVE PROCESSES
IN QD ARRAY

Apart from the requirements related to photon-sorting,
strong absorption, and request to design suitable material that
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FIG. 6. �Color online� Absorption spectra of QD array with
vertical periodicity dz=5 nm. �a� IB→CB absorption, �b� VB
→ IB absorption, and �c� VB→CB absorption. Both the TE �solid
line� and TM �dashed line� polarizations are presented.
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can provide EgL=0.7 eV, EgH=1.2 eV, and Eg=1.9 eV,
that will ultimately lead to maximal efficiency of the IBSC
under concentrated light, there are a number of possible del-
eterious effects related to carrier lifetimes, that can affect
carrier transport in IBSC, and need to be minimized. In the
following sections we will discuss radiative relaxation times
between CB→ IB and IB→VB in QD array and only those
nonradiative times that perhaps might compete with radiative
once: �i� longitudinal-optical phonon scattering between the
CB and IB states and �ii� Auger-related nonradiative scatter-
ing times between states in CB and IB, electron cooling pro-
cess, and Auger biexcitonic recombination that occurs be-
tween carriers in IB and VB.

A. Radiative processes in QD arrays

The radiative recombination is an unavoidable process in
direct gap semiconductor materials that causes loss of free
electrons and holes from the transport process. It is a spon-
taneous process defined as the transition probability of an
electron from initial state �i� to the final state �f� that is fol-
lowed by photon emission of frequency �= �Ei−Ef� /�. The
radiative recombination defines the ultimate efficiency of the
SC which is also referred to as radiative limit efficiency.

Starting from Fermi’s golden rule and assuming the wave-
length of the sunlight much larger than the size of the QD
array with which it interacts �i.e., in the dipole
approximation�,63–65 the expression for the radiative recom-
bination in the QD array is

1

�if
rad�K�

=
4

3

n̄�Ei�K� − Ef�K��
��2c3�0

��êx · pif�K��2 + �êy · pif�K��2

+ �êz · pif�K��2� , �9�

where, c is the speed of light in vacuum, n̄ is the refractive
index of the GaAs, and �0 is the vacuum permittivity. Since
the radiative lifetime, �if

rad, is determined mainly by the mo-
mentum matrix element pif�K� and energy difference be-
tween initial and finale states, Ei�K�−Ef�K�, the quantum
nanostructures design can offer extra degree of freedom in
modifying the value of this scattering time.

In Fig. 7 the variation in the radiative transition time
across the BZ of QD array, between e1, e2 minibands �CB�
and e0 miniband �IB� and between e0 miniband �IB� and h0
miniband �VB� is shown. In a single InAs/GaAs QD, �b ,h�
= �10,2.5� nm, the radiative lifetime between electron and
hole ground state is �e0,h0

rad =1.59 ns. When the same size QD
form an array, at the Kz=0 edge, the radiative time is
�IB�e0�,VB�h0�

rad �Kz=0�=2.1 ns. The increase in the radiative re-
laxation time of 32% in QD array when compared to single
QD is explained in terms of e0 and h0 wave-function delo-
calization in QD array due to electronic states coupling from
neighboring QDs. Wave-function delocalization reduces the
value of the momentum matrix element which, in turn, in-
creases the value of �rad.

In the single QD structure the �e1,e0

rad =149 ns and �e2,e0

rad

=129 ns. Although, one might expect that e0 miniband
states, already shown to be delocalized by close proximity of
QDs in the QD array, will further increase the values of

radiative times �CB�e1�,IB�e0�
rad and �CB�e2�,IB�e0�

rad , in the QD array
structure the trend is indeed opposite. The radiative transition
times between states in two minibands e1 and e2 that overlap
with the CBM edge of barrier material and the e0 miniband
regarded as an IB, at the Kz=0 edge, are �CB�e1�,IB�e0�

rad �Kz

=0�=109 ns and �CB�e1�,IB�e0�
rad �Kz=0�=98 ns and are smaller

than for the equivalent radiative transitions in single QD.
This trend supports the idea of the QD array-induced Bragg-
type confinement of e1 and e2 miniband states. Those states
overlap or are only just above the CBM edge of the barrier
material and should not be confused with the strain-induced
confinement at the QD/barrier surfaces of the QD.66

It should be mentioned that �CB�e1,e2�,IB�e0�
rad are intersub-

band transitions inside CB with energy difference in the
range of �100 meV while �IB�e0�,VB�h0�

rad is intraband transi-
tion between states in CB and VB with energy difference of
�1 eV. This discrepancy in transition energies causes the
big difference in radiative relaxation times, �CB,IB

rad /�IB,VB
rad

�52, between CB→ IB and IB→VB transitions.
The radiative recombination is the detailed balance coun-

terpart of the corresponding rate of electron-hole pair gen-
eration by thermal radiation.67 Therefore, if the transition
strength is large the radiative recombination is strong and the
radiative lifetime small. To compare the radiative recombi-
nation between different transitions, �a�→ �b� and �c�→ �d�,
not only the transition strength but the transition energy too
needs to be taken into account. In the Appendix A we have
shown that radiative lifetime follows the trend of the transi-
tion strength as defined in Eq. �8� and relate this to the ab-
sorption coefficient of the QD array.

B. Auger-related nonradiative times in QD arrays

Nonradiative Auger-related scattering processes play an
important role in carrier dynamics in semiconductor nano-
structures when both types of carriers �electrons and holes�
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FIG. 7. �Color online� Variation in the radiative transition times
between CB�e2� and IB�e0�; CB�e1� and IB�e0� that can be regarded
as CB to IB radiative processes, and between IB�e0� and VB�h0�
that can be regarded as IB to VB radiative process. Horizontal ar-
rows mark the equivalent single QD radiative times.
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are present. They become significant particularly in QDs
which have discrete electronic levels, which implies that the
other nonradiative competing processes �like phonon scatter-
ing� could be strongly suppressed.68 We consider two main
Auger-related nonradiative processes: electron cooling and
biexciton recombination �Fig. 8� as they might compete on
the time scale with its radiative recombination counterparts,
�CB,IB

rad and �IB,VB
rad , respectively. We adopt a phenomenological

formula for the Auger rate derived under the standard time-
dependent perturbation theory and using Fermi’s golden
rule69,70

1

�ifn

A =
2�

�
	

n

�J�i, j ;k,l��2���E + Efn
− Ei� , �10�

where the Coulomb integral is defined as

J�i, j ;k,l�

=
1

4��0�r
� dr1� dr2

�i
��r1,s1�� j

��r2,s2��k�r1,s1��l�r2,s2�
�r1 − r2�

�11�

and 
�i� are the single-particle wave functions and s1,2 are
the electron-spin state �up or down�. In Eq. �10� the i and fn
are initial and final electronic configurations involved in a
particular Auger process, Ei and Efn

are their energies, and
�E is the energy transfer between initial and final configu-
rations. In Eq. �10�, we have used multiple final states fn
�where n includes spin as well�, since each final state might
have some contributions to the Auger rate. As in the case of
absorption spectra, � function is replaced by a Gaussian
function exp�−�x /�2��2� / ��2���, defined by the phenom-
enological broadening �, to take into account inhomoge-
neous line broadening due to size-distribution effects as well
as homogeneous line broadening. To achieve convergence of
our results, the number of final states used, in particular,
Auger process is determined from the condition that
�max
Efn

�−min
Efn
�� /2�2�, i.e., to be inside two standard

deviations and �=5 meV.
In the electron-cooling process, in which one electron is

initially in e1 state and hole is in its ground state h0, the
energy transfer occurs when electron relaxes to its ground
state e0 to transfer excess energy �E=Ee1

−Ee0
to the hole in

order to excite it by �E deeper into VB. The Coulomb inte-
gral in Eq. �10� reads as J�h0 ,e1 ;hn ,e0�. We have estimated
that the Auger electron cooling in single InAs/GaAs QD is
�e-cool

A =1.37 ps �excitonic gap 1.13 eV� which is in very
good agreement with other theoretical and experimental

results.70–72 In QD array the electron cooling time is in-
creased to �e-cool

A =2.05 ps, despite further decrease in the
excitonic gap to 1.09 eV. The main reason for this increase is
delocalization of states involved in the process and long-
range Coulomb interaction between charges in neighboring
QDs in the array that was compensated in a single QD struc-
ture by Makov-Payne correction.47,73

In the biexiciton Auger relaxation one exciton, composed
of electron and hole in their ground states, recombines while
the energy, �E=EX, released in this process is transferred to
the other electron �hole� in the ground state �with opposite
spin� to be excited to the states higher �lower� in CB �VB� by
�E. These two processes are denoted as �e,ex

A and �h,ex
A while

Coulomb integrals in Eq. �10� takes the form
J�e0,� ,e0,� ;en ,h0�−J�e0,� ,e0,� ;en ,h0� and J�h0,� ,h0,� ;hn ,e0�
−J�h0,� ,h0,� ;hn ,e0�, respectively, where � and � stands for
opposite spins. The biexciton recombination time is then:
1 /�bx

A =2 /�e,ex
A +2 /�h,ex

A . Unlike in colloidal QD structures,69

in our InAs/GaAs QD array system the final configuration
involves highly delocalized electron �hole� states located
above �below� conduction- �valence-� band edge of the bar-
rier GaAs material, Fig. 8. In a single InAs/GaAs QD con-
sidered here we estimated: �e,ex

A =209 ns, �h,ex
A =6.15 ns, and

�bx
A =3 ns while for InAs/GaAs QD array made of the same

size QDs: �e,ex
A =266 ns, �h,ex

A =18 ns, and �bx
A =8.4 ns. A

similar Auger times ���10 nm�, related to e0-h0 transition,
were reported in the literature for the InAs QDs.74,75 The
trend that �e,ex

A ��h,ex
A was already observed in semiconductor

quantum-well structures both experimentally and
theoretically.76–78

The results concerning Auger lifetimes are presented at
the single particles level of theory without full treatment of
any other existing electrons or holes, “spectators,” in the
system.69 Due to the presence of other electrons or holes, and
after proper configuration interaction �CI� treatment of the
correlation and exchange interaction with already existing
particles involved in the Auger cooling process, the Auger
cooling time is likely to increase. For the colloidal CdSe QD,
which have very high offsets in the conduction and valence
bands that can provide a very good confinement of many
electron and hole states, it was shown that this increase is
about �1–2 orders of magnitude, compared to Auger cool-
ing time estimated at the single-electron level of theory.69

However, in InAs/GaAs QDs system, with much weaker
state confinement than in CdSe QDs, the effect of correlation
and exchange can only be less pronounced. If we compare
the magnitude of the excitonic shift �i.e., e0-h0 Coulomb in-
teraction energy� in the two cases: few hundreds of millielec-
tron volt in the case of CdSe QD,69 vs few tens of millielec-
tron volt in InAs/GaAs QDs;39,40,47 one cannot expect that
the presence of a spectator exciton has an effect of the same
magnitude in the two systems. We expect the increase in
InAs/GaAs QDs to be of the same order of magnitude as
single-particle lifetime, i.e., on the order of 1–2 ps.79 Even if
Auger cooling time, between e1 and e0, in the presence of
other charged particles in the system increases by 2 orders of
magnitude, it will still be �1000 times faster than radiative
transition time between those two states.

In the Auger biexciton recombination process, although
the carriers are excited to levels in the continuum, above the
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FIG. 8. �Color online� Illustration of two different Auger pro-
cesses: electron cooling �left� and biexciton recombination �right�.
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potential well of the QD, the localized QD levels must each,
because of quantization, be described using a range of wave
vectors. This leads to a breakdown in all three directions of
the strict k-selection rule which restricts Auger recombina-
tion in bulk semiconductors. This process can also be af-
fected by the presence of other charges in the system and
correlations between them. As mentioned above, the Cou-
lomb interaction between charges in the InAs/GaAs QD con-
fined states are on the order of few tens of millielectron volt
and from this argument alone it is unlikely that this will
change Auger biexciton recombination dramatically. The cor-
relation effects will tend to reduce the excitonic energy gap
Ee0,h0

X ��Ee0,h0
=Ee0

−Eh0
. After energy transfer of �E

=Ee0,h0

X to another electron �hole�, they will be promoted into
the GaAs continuum, in the region with smaller density of
states than if no correlations were included, i.e., if �E
=�Ee0,h0

.80 This, in turn, will slightly increase �bx
A . However,

it is quite tricky to guess what may happen, as the final states
would all be different from the single-particles case, due to
the energy shift one would get with full many-body treat-
ment. As discussed above the Coulomb interaction enhances
the joint electron-hole “free-carrier” exciton density of states.
It is still an open question how much this joint density of
states is increased at the energy �1 eV above the GaAs
band gap at temperatures relevant for the operation of the
IBSC?

Certainly, to safely resolve the issues of the many-body
effects and their influence on the Auger recombination, a
more elaborate theory is required. Such theory should be
based either on the large CI method or Feynman path-
integral formulations.81

C. Electron-phonon interaction in QD arrays

At finite temperatures atoms in crystal can vibrate around
their equilibrium positions. These lattice vibrations are quan-
tized and are called phonons. Phonons create additional po-
tential that perturbs otherwise stationary electronic states and
causes transitions between them. Here, only the polar cou-
pling to optical phonons will be considered because other
types of phonon interactions are much weaker or irrelevant
in the QD-based systems.82 The Frölich interaction Hamil-
tonian describing polar coupling to optical phonons is given
by83

Ĥe-ph = 	
i,f ,q

��q�Fif�q�âi
†âf�b̂q + b̂−q

† � , �12�

where q is the phonon wave vector, b̂q and b̂−q
† are phonon

annihilation and creation operators, âi
† and âf are annihilation

and creation operators for electrons. The factor ��q�
�q−1���LO, and the form factor Fif�q�= �i�eiq·r�f� /�N, where
N is the number of sampling points in the Kz space. It is
assumed that an electron in initial state is always at the band
edge while momentum conservation is achieved with q=k
+Kzẑ, i.e., phonon wave vector equals electron momentum in
the final state. Optical phonons are nearly dispersionless, and
for simplicity a constant LO phonon energy ��LO
=36 meV is assumed.

In a single QD structure, due to the discrete nature of
energy levels together with very weak-energy dispersion of
the longitudinal-optical �LO� phonons, a simple consider-
ation based on energy conservation only and Fermi’s golden
rule predicted that scattering rates are zero unless the elec-
tron level spacing equals the LO-phonon energy.83 This
largely reduced relaxation rate from the inefficient phonon
scattering in QDs is referred in literature to as phonon bottle-
neck. This condition can be relaxed in QD array structures
due to finite widths of minibands. Even so, such an approach
treats the electron and phonon systems separately with their
interaction being only a perturbation. It is currently known
that electrons and phonons in quantum dots form coupled
entities, polarons, and that the polaron lifetime is determined
by anharmonic decay of an LO phonon into two low-energy
bulk LA phonons.84–87

To describe that scattering mechanism, we follow a
Wigner-Weisskopf description for the carrier relaxation in
QD through LO-phonon scattering. If the electron couples
directly to the LO-phonon modes, quantum transition would
result in a repeated energy exchange between the electron
and phonon modes, known also as Rabi oscillation. How-
ever, due to the decay of the confined LO phonons, this
oscillation will decay rapidly, thus the electron energy is dis-
sipated away through the LO phonons. With such assump-
tions, the polaron lifetime is given by85

1

�if
LO = Wph − �2�R − X� , �13�

where R=�X2+Y2 with X= �g /��2+ ��if
2 −Wph

2 � /4 and Y
=Wph�if /2. Detuning from the phonon energy is �if =Ei
−Ef ���LO while Wph is the phenomenological phonon de-
cay rate due to LO phonon decay into two LA phonons and
g is the coupling strength of an electron to all LO modes,
which under the assumption of bulk LO-phonon modes and
the Frölich interaction Hamiltonian reads

g2 = 	
Kz�

	
k
�nLO +

1

2
�

1

2
����k��2�Fif�k��2, �14�

where nLO is the phonon occupation number, and Kz� is the
final state, �f� wave vector due to QD superlattice effect.85,88

Since for the QD arrays with dz=5 nm the wave-function
delocalization, due to effects of the array, is even weaker
than in Fig. 2�b�, we believe that the strong electron-phonon-
coupling regime still holds. The above theoretical consider-
ations have been verified by experimental results on intra-
band carrier dynamics in InAs/GaAs QDs vertically spaced
for 50 nm.87,89

In Fig. 9, the LO phonon absorption �open dots� and emis-
sion �solid dots� scattering rates are presented between the
first 100 states in the CB. It is clear that both processes
exhibit sharp peaks for electron transitions energy in the vi-
cinity of �36 meV which is the LO phonon energy. In this
region electron-phonon scattering is on the order
10−9–10−12 s. This energy region is not particularly impor-
tant for operation of the IBSC. Indeed the fast phonon relax-
ation processes can help to prepare system in the state where
electrons are in e1 or e2 miniband. At Kz=0 the energy spac-
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ing between e1 miniband and IB originated from e0 states is
�117 meV. The LO phonon emission scattering time for
this transition is �CB�e1�,IB�e0�

LO�e� =56 ns, and it is increased for
the QD array when compared to the same transition in the
single QD which is �e1,e0

LO�e�=19 ns. Increase in this scattering
time is attributed to decrease in both F�q� form factor and
�e1,e0

energy detuning factor in QD array. Compared to the
radiative time �CB�e1�,IB�e0�

rad =109 ns, the �CB�e1�,IB�e0�
LO�e� is some-

what smaller but still significantly larger than �IB,VB
rad

=2.1 ns, suggesting that nonradiative phonon-scattering-
related processes between CB and IB might not be critical
for operation of the IBSC based on QD array. Possible dete-
riorating effect of losing electrons from the IB, minband e0,
to the CB, miniband e1 or e2, is even less likely since phonon
absorption process takes �IB�e0�,CB�e1�

LO�a� =650 ns.
Acoustic phonon scattering is only significant when the

states are closely spaced in energy ��10 meV�. That is the
case between higher miniband states in CB. For larger en-
ergy separation, like that between e1 miniband and IB
formed by e0 state which is of the order �100 meV, the
interaction with LO phonons is dominant.63

V. CONCLUSIONS

We have presented the comprehensive theoretical model
for design and modeling of IBSC based on arrays of InAs/
GaAs QDs. For one realistic QD array �b=10 nm, h
=2.5 nm, t=0.5, and dz=5 nm� we have estimated EgH
=1.2 eV and EgL=0.124 eV. For these energies and absorp-
tion spectra found in Sec. III D we have estimated ultimate
efficiency of the IBSC in the radiative limit to be �
39%

for undoped structure for sunlight concentration factor of
1000.25 This is increase in 56% compared to simple QD solar
cell.90 Our finding suggests that with appropriate design of
the QD array structural parameters: �i� it is possible to
achieve the regions of pure zero DOS between IB and the
rest of the CB states, that is desirable for photon sorting and
increased efficiency of the device and �ii� it is possible to
achieve the strong optically allowed excitation between IB
and CB. Analysis of various radiative and nonradiative times
summarized in Table I and schematically presented in Fig. 10
indicates that: �i� the ratio between CB→ IB and IB→VB
radiative times is �50, , �ii� nonradiative phonon absorption
process that promotes electrons from IB to CB is very slow
and probably would not significantly affect the transport
properties of the IBSC, �iii� nonradiative phonon emission
process that relax electrons from the CB to IB is about half
time of the same radiative, CB→ IB, counterpart, and al-
though faster it is still one order of magnitude slower than
radiative IB→VB process, and probably would not signifi-
cantly affect transport either, �iv� nonradiative Auger biexci-
ton relaxation time is longer then radiative IB to VB relax-
ation time, indicating that this process will still be
predominantly radiative. This, however, needs to be taken
with caution since other effects such as Coulomb correla-
tions, QD shape variations, or size inhomogeneity can over-
come this difference. �v� The most detrimental effect on
transport properties can originate from nonradiatve Auger
electron cooling process, that is in the picosecond timescale
and is three orders of magnitude faster that any other relax-
ation process in the IBSC. Special attention needs to be paid
in the design of the IBSC structures in order to suppress the
effects of electron cooling and to provide an increased effi-
ciency of the IBSCs. Possible material combination, that will
reduce fast electron cooling, should consider Sb containing
alloys for the barrier region in order to induce the type-II
alignment and spatial electron/hole separation.
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TABLE I. Radiative, LO-phonon emission/absorption, and Au-
ger scattering times of InAs/GaAs QD array IBSC considered in the
main text.

Type Minibands
Radiative

�ns�
Phonons �e/a�

�ns�
Auger
�ns�

CB→ IB e1→e0 109 56/650 2�10−3

IB→VB e0→h0 2.1 8.4

�

�
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�
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VB

FIG. 10. �Color online� Schematic representation of radiative
and nonradiative relaxation times in IBSC: �1� radiative recombina-
tion between CB and IB, �2� radiative recombination between IB
and VB, �3� phonon-emission-assisted CB to IB relaxation, �4� pho-
non absorption assisted IB to CB scattering, �5� Auger electron
cooling relaxation between CB and IB, and �6� Auger biexciton
relaxation between IB and VB.
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APPENDIX A: ABSORPTION COEFFICIENT AND
RADIATIVE TRANSITION TIMES

According to the Fermi’s Golden rule, the transition time,
�if, from an initial state �i� to a final state �f� due to the
spontaneous emission of photons �radiative lifetime� of an-
gular frequency � is given by

1

�if
=

2�

�
	
k

��i�Hk��f��2��Ei − Ef − ��� , �A1�

where Ei and Ef are the energies of the initial and final state,
respectively. The Hamiltonian, Hk�, of electron interaction
with electromagnetic field is obtained by replacing k with
k+ �q /��A in the kinetic part of the Hamiltonian, Eq. �4�,
�where A=A0ê is the magnetic vector potential�, i.e., Hk�
=Hk�k+ �q /��A�−Hk�k�. In the dipole approximation A is
considered constant in space, and all the terms quadratic in A
are neglected. By substituting the expressions for Hk� and A
into Eq. �A1�, and after replacing summation over k vector
with integration, i.e., 	k→ �� / �2��3��dk one gets

1

�if
=

�

�2��3� dk
�

���
��êxpif�2 + �êypif�2 + �êzpif�2�

���Ei − Ef − ��� , �A2�

where �=�0�r; or, using Eq. �8� for the transition strength

1

�if
=

�

�2��3� dk
�

���
f if���� . �A3�

After integration �dk→4�k2dk�, using �=ck / n̄ and n̄2=�r
the final result reads

1

�if
=

4

3

n̄�Ei − Ef�
��2c3�0

��êx · pif�2 + �êy · pif�2 + �êz · pif�2� ,

�A4�

where factor �4/3� comes from averaging over all possible
light directions and spin degenerate transitions between i and
f . In Figs. 11�a�–11�c� the momentum matrix elements, �d�–
�f� the transition strength taking into account only the states
at the Kz=0, and �g�–�i� the transition strength summed over
all Kz states are given. The momentum matrix elements cor-
responding to CB→ IB and IB→VB are �êxpe1,e0

�2 / P0
2

=0.044 and �êxpe0,h0
�2 / P0

2=0.223 �in units of bulk interband
momentum matrix element, equal to P0=9.37 eV Å for
InAs�. Those intensities corresponds to transition energies:
Ee1

−Ee0
=117.3 meV and Ee0

−Eh0
=1.192 eV, respectively.

As can be seen from Figs. 11�a� and 11�b�, for both transi-
tions the �êzpif�2 is negligible, and due to symmetry reasons
�êypif�2= �êxpif�2. Next we express the radiative transition
times in terms of the value of transition strength at energy
that corresponds to the transition energy between states i and

f , i.e., ��=Ei−Ef. According Eq. �8�, we can write: f̄ i f���
=Ei−Ef�=��ê ·pif�2��Ei−Ef −���d��= �ê ·pif�2 ·1. The ratio

between CB→ IB and IB→VB radiative transition times, af-
ter noting from Figs. 11�a� and 11�b� that for these transitions
�êzpif�2� �êxpif�2 can be expressed in terms of the transition
strength as

�e1,e0

�e0,h0

=
Ee0

− Eh0

Ee1
− Ee0

� f̄ e0,h0

f̄ e1,e0

� 

Ee0

− Eh0

Ee1
− Ee0

� �êxpe0,h0
�2

�êxpe1,e0
�2� 
 52.

�A5�

In Figs. 11�a� and 11�d� the additional peak due to �êzpij�2
momentum matrix element �TM polarization� can be identi-
fied at the energy �0.25 eV above the double peak that
corresponds to e1→e0 and e2→e0 transitions. All these
peaks in the intraband spectra have been previously observed
in the single InAs/GaAs QD structures, both theoretically
and experimentally.91–93 The peak in the intraband spectra at
�0.37 eV also enables to identify the fist few, optically
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FIG. 11. �Color online� Momentum matrix elements of the QD
array with vertical periodicity dz=5 nm at Kz=0: �a� IB→CB tran-
sitions, �b� VB→ IB transitions, �c� VB→CB transitions; the tran-
sition strength for the same array at the band edge Kz=0: �d� IB
→CB transitions, �e� VB→ IB transitions, �f� VB→CB transitions;
and the transition strength for the same array summed over all Kz

states: �g� IB→CB transitions, �h� VB→ IB transitions, �j� VB
→CB transitions. Both the TE �solid symbol or solid line� and TM
�open symbol or dashed line� polarizations are shown.
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strongest, minibands as depicted in Fig. 3. It is interesting to
note that, after summation over Kz in the first Brillouin zone
of the QD array, this peak disappears, Fig. 11�g�. This sug-
gests its very strong variation with Kz inside the miniband.
The momentum matrix elements �êxpe1,e0

�2 and �êxpe2,e0
�2 are

much less sensitive on Kz. Strong variation in the momentum
matrix elements inside the QD array minibands has already
been reported.41,62 This indicates the importance of the inte-
gration over Kz in calculation of the absorption spectra of
QD arrays.

The relation between the absorption coefficient, Eq. �7�,
and radiative transition time given by Eq. �A4� can be estab-
lished via the transition strength as

����if� �
1

�if
f if���if� �

1

�if�if�Ei − Ef�
. �A6�

Using values at the Kz=0 as �VB�h0�→IB�e0�
10
��IB�e0�→CB�e1�, �EVB�h0�−EIB�e0��
10� �EIB�e0�−ECB�e1��,
and �CB�e1�,IB�e0�
50��IB�e0�,VB�h0� it follows: �IB�e0�→CB�e1�


2��VB�h0�→IB�e0�. As can be seen comparing Figs. 11�d�,
11�e�, 11�g�, and 11�h�, the relative change in the ration be-
tween transition strengths, f IB�e0�,CB�e1� / fVB�h0�,IB�e0�, at the
Kz=0 and after summation over all Kz values, another factor
of �2 can be extracted. Finally one gets �IB�e0�→CB�e1�
4
��VB�h0�→IB�e0�, assuming integration over all Kz states
which correspond to results shown in Fig. 6.

APPENDIX B: DERIVATION OF THE COULOMB
INTEGRALS IN QD ARRAY

Detailed description of how the Coulomb integrals are
evaluated in the system with periodic boundary conditions is
given in Ref. 47. Here we present just the final results. By
grouping the corresponding wave functions appearing in Eq.
�11� as

Bij�r� = �i
��r�� j�r� �B1�

and expressing the Coulomb potential as V�u�=e2 /4��u,
where u is the distance and � is the static dielectric constant,

the Coulomb integral Eq. �11�, can be rewritten as

J�i, j ;k,l� =� dr1� dr2Bik�r1�V��r1 − r2��Bjl�r2� . �B2�

Introducing the plane-wave expansion of Bij�r� as

Bij�r� = 	
k

Bij�k�eik·r �B3�

and after using the Fourier transform of the Coulomb poten-
tial F�V�u��=e2 /�k2, the expression for the Coulomb integral
in inverse space becomes

J�i, j ;k,l� = �� e2

�
�	

k

Bik�k�Bjl�− k�
k2 , �B4�

where Bij�k� can be expressed in terms of the coefficients,
Ai,k, in the plane-wave expansion of the envelope functions
�see Sec. II B� as

Bij�k� = 	
k1

Ai,k1

� Aj,k1+k, �B5�

and �=Lx�Ly �Lz is the volume of the supercell as defined
in Sec. II B.

In order to understand the difference between two expres-
sions, Eqs. �B2� and �B4�, one can interpret the initial ex-
pression, Eq. �B2�, if calculated in direct space, as energy of
the electrostatic interaction between the complex charges
Bik�r� and Bjl�r�, both being located in volume �. On the
other hand, the expression Eq. �B4�, is the energy of electro-
static interaction between Bik�r� located in volume � and
Bjl�r�, located in the whole space with periodicity of the box
�. Therefore, the Coulomb integrals J�i , j ;k , l� calculated
according to Eq. �B4� represent the interactions between the
charge Bik�r� of a single quantum dot and periodically repli-
cated charges Bjl�r� of neighboring periodically replicated
dots in the array.

To avoid the undesired interaction of replicas in the non-
periodic �x and y� directions,94 we performed the Coulomb
integral calculations on the box size with those two dimen-
sions extended as explained in Ref. 47.
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