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A theory of the electronic-structure and excitonic absorption spectra of PbS and PbSe nanowires and
nanorods in the framework of a four-band effective-mass model is presented. Calculations conducted for PbSe
show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods.
However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a
result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe
and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nano-
rods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of
spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.
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I. INTRODUCTION

Solution-based chemical synthesis of semiconductor
nanostructures has allowed tremendous flexibility in crystal
morphology. After much work on zero-dimensional �0D�
nanocrystals �NCs�, attention is shifting to one-dimensional
�1D�, nanorods �NRs�, and nanowires �NWs�,1–4 and the
variation in material properties in the transition from 0D
to 1D. The electronic structure of these crystals is the
foundation for understanding their properties. Previously,
the electronic structure of 1D nanocrystals has been
modeled using a variety of methods, including effective-
mass theories based on k ·p Hamiltonians,5–9 pseudopotential
techniques,10–12 tight-binding models,13–17 and density-
functional theory.9,17–21 The relaxation of confinement in go-
ing from 0D to 1D goes hand-in-hand with an increase in the
importance of Coulomb effects mediated through the nanoc-
rystal’s dielectric environment.22

Lead-salt �PbS, PbSe, and PbTe� nanocrystals offer
unique advantages to study the interplay of these two effects.
Their large exciton Bohr radii places them at the limit of
strong confinement while their large dielectric constants
coupled with their mirrorlike electron and hole spectra sub-
stantially reduce the Coulomb interaction in spherical quan-
tum dots.23,24 However, in a 1D structure the Coulomb inter-
action can act primarily through the host medium so it will
not be screened as effectively as in 0D.7 Thus, the lead salts
provide a unique system to study the transition from strong
confinement to strong Coulomb binding as the length of the
nanocrystal changes.

Within k ·p theory, the general treatment of the optical
properties of NWs and NRs surrounded by media with small
dielectric constant was developed in Refs. 5–7. A type of
adiabatic approximation naturally separates the calculation
into pieces. In recognition of strong confinement perpendicu-
lar to the NR or NW axis, one first calculates the 1D subband
energies and wave functions, while neglecting the Coulomb
interaction. Next, using these wave functions of transverse
electron and hole motion, one can calculate the longitudinal

motion of the exciton, including corrections from image
forces in the surrounding medium. To do that, the three-
dimensional Coulomb potential is averaged to a one-
dimensional Coulomb interaction between the electron and
hole along the NW or NR axis. Using this potential, the
spectra of 1D excitons and their transition oscillator
strengths are found. Finally, in NRs one should find the spec-
trum of the exciton center-of-mass �CM� motion, in order to
include this additional effect of confinement. The main as-
pects of this framework were performed for lead-salt nano-
wires recently by Rupasov25 although approximations to the
simplified band structure used in that paper preclude the de-
scription of real experimental results.

In this paper we present calculations of the 1D subband
energy spectra of lead-salt nanowires with arbitrary axis ori-
entation, taking into account the multivalley structure and
accurate electron and hole energy-level dispersions in these
semiconductors. For PbSe NWs with axis along the �100�
direction, we calculate the spectra of 1D excitons including
self-interaction corrections. Surprisingly, the calculations
show that although the binding energy of excitons in the
smallest NWs reaches 350 meV, the optical transition ener-
gies are not affected by the small dielectric constant of the
surrounding medium and are almost identical to the transi-
tions between noninteracting electron and hole subbands.
The cancellation of the exciton binding energy and the self-
interaction corrections to the electron and hole levels is a
consequence of the almost mirror symmetry of the conduc-
tion and valence bands of PbSe. The theoretical results agree
well with the measured absorption spectra of �100� PbSe
NRs.

The paper is organized as follows. In Sec. II we will de-
scribe the Hamiltonian governing the 1D nanowire system
with solutions in Sec. III. In Sec. IV we present the effects of
dielectric confinement and Coulomb forces on the 1D exci-
ton with 1D wave function solutions in Sec. V. Experimental
data and comparison with theory are presented in Sec. VI,
followed by discussion and conclusion.
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II. FOUR-BAND EFFECTIVE-MASS MODEL

PbS, PbSe, and PbTe are direct-gap semiconductors with
extrema of the conduction and valence bands at the L points
in the Brillouin zone. The energy bands near the L point can
be well described within the four-band k ·p model.26,27 This
model takes into account the direct interaction between the
nearest conduction and valence bands, as well as the contri-
butions of the remote bands to the electron and hole effective
masses. Following Ref. 24, we use the multiband effective
mass approximation and expand the full wave functions in-
side the nanorod as

��r� = �
�=�1/2

��
c �r��L6,�

− � + �
�=�1/2

��
v �r��L6,�

+ � , �1�

where �L6,�
− � and �L6,�

+ � are the Bloch functions of the
conduction-band and valence-band edges, respectively, at the
L point. The upper sign “�” in the notation reflects the in-
variance of these functions with respect to the operation of
spatial inversion. The smooth functions ��1/2

c �r� and
��1/2

v �r� are the components of the conduction-band and
valence-band spinor envelopes, respectively,

�c = � �1/2
c

�−1/2
c �, �v = � �1/2

v

�−1/2
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The bispinor envelope function �= � �c

�v � is the solution of the

Schrödinger equation Ĥ�p̂��=E�, where p̂=�k̂=−i�� is

the momentum operator, and the Hamiltonian Ĥ�p̂� of Ref.
24 can be written in compact form as
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−�Û2

Pl

m0
p̂z�̂z +

Pt

m0
�p̂��̂��

Pl

m0
p̂z�̂z +

Pt

m0
�p̂��̂�� − �Eg

2
+

p̂z
2

2ml
+ +

p̂�
2

2mt
+�Û2


 .

�3�

In Eq. �3� Û2 is the 2�2 unit matrix, �̂= ��̂x , �̂y , �̂z� are the
Pauli matrices that act on the spinor components of the wave
functions ��= �1 /2�, Eg is the bulk energy gap, E is the
electron or hole energy measured from the middle of the gap,
m0 is the free electron mass, p̂�

2 = p̂x
2+ p̂y

2, �p̂��̂��= p̂x�̂x
+ p̂y�̂y, Pt and Pl are the transverse and longitudinal momen-
tum matrix elements taken between the conduction- and
valence-band-edge Bloch functions,24 and mt

� and ml
� are

the remote-band contribution to the transverse- and
longitudinal-band-edge effective masses, respectively. For
electrons and holes, these band-edge effective masses can be
expressed as ml,t

e = 
1 /ml,t
− +2Pl,t

2 /m0
2Eg�−1 and ml,t

h = 
1 /ml,t
+

+2Pl,t
2 /m0

2Eg�−1, respectively. In each valley, the z axis in Eq.
�3� is directed toward the L point of the Brillouin zone, e.g.,
along the �111� direction of the cubic lattice. As a result, for
each of the four valleys, the z axis will point in different
directions.

Although the Hamiltonian of Eq. �3� has cylindrical sym-
metry with respect to, e.g., the �111� crystallographic direc-
tion, this direction may not coincide with the NR growth

direction. For a description of NR electronic and optical
properties it is convenient to use coordinates connected with
the latter direction instead, even though the cylindrical sym-
metry of the Hamiltonian is generally broken. In PbS and
PbSe, the small anisotropy of conduction and valence bands
allows us to treat deviations from cylindrical symmetry per-

turbatively. Hamiltonian �3� can be written Ĥ= Ĥ0+ Ĥan,

where the cylindrically symmetric part Ĥ0 is
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The modified band parameters are

P� =
Pt

2
�1 + cos2 �� +

Pl

2
sin2 � ,

Pz = Pt sin2 � + Pl cos2 � , �5�

1
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where � is the angle between the growth axis and the �111�
direction. The anisotropic part of the Hamiltonian is given in
Appendix A. Note that Eq. �4� has a form identical to Eq. �3�
but the z axis is now directed along the growth axis. For
arbitrary orientation of the growth direction, there will be
four different angles � for each of the four valleys, and there-
fore four different sets of modified band parameters defined
in Eq. �5�. As a result, each valley will have unique elec-
tronic structure.

The energy spectra associated with the different valleys
become degenerate when the growth direction leads to iden-
tical values of � for them. The highest degree of degeneracy
is reached when the growth direction is along the �100� crys-
tal axis. In this case all four valleys have the same �;
cos2 �=1 /3, which results in P�= Pz and m�=mz in Eq. �4�.
All of the spectra are degenerate.

The anisotropic part Ĥan of the full Hamiltonian can
be considered as a perturbation if �Pl− Pt�	 Pl+ Pt and
�1 /ml

�−1 /mt
��	1 /ml

�+1 /mt
�. The first-order corrections to

the solutions of Ĥ0 caused by Ĥan vanish in the twofold
Kramers-degenerate subspace at each energy level. As a re-
sult, only second-order perturbation theory gives corrections
to the energy levels. We will neglect these corrections from
this point on, although an example higher order calculation
appears in Appendix A.
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III. ENERGY SPECTRA OF ELECTRONS AND HOLES
IN PbSe NANOWIRES

The first step in our modeling process is to find the energy
spectra of 1D subbands of infinitely long cylindrical nano-
wires, temporarily ignoring the Coulomb interaction. The cy-
lindrical symmetry of the Hamiltonian of Eq. �4� allows the
solutions to take the form

�n�kz� = �
R1

n�
�exp
i�n − 1/2���

iR2
n�
�exp
i�n + 1/2���

R3
n�
�exp
i�n − 1/2���

iR4
n�
�exp
i�n + 1/2���

�exp�ikzz� , �7�

where � is the azimuthal angle, n= �1 /2,
�3 /2, �5 /2, . . . is the total angular momentum projection

on the nanowire axes defined by the operator Ĵz=−i� /��

+ Ŝz, �kz is the momentum along the nanowire z axis, and

=�x2+y2 is the radial coordinate in the plane perpendicular
to the NW axis. The chosen phase of each component of the
function �n�kz� allows the radial functions Ri

n�
� to be pure
real. Substitution of Eq. �7� into Eq. �4� yields the system of
differential equations that defines these functions
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where ��=Eg /2�E+�2kz
2 / �2mz

��. The differential operators
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are the raising and lowering operators D̂m
�Jm�k
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� operators that the radial eigenfunctions of Eqs.
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Substitution of this into Eq. �8� yields a 4�4 system of
linear equations for the coefficients C1,2,3,4. Setting the deter-
minant of this system to zero produces the relation between
the quasimomentum k
 and the energy of electrons or holes E

�2k

2 = − ��E� � ���E�2 + ��E� , �11�
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From Eq. �11� it is clear that k

2 can be positive or negative.

The negative value of k

2 results in an imaginary k
= i�
 with

�
 defined by Eq. �11� as �2�

2=��E�+���E�2+��E�. The

complex arguments in Eq. �10� are then simplified by replac-
ing the Bessel functions Jm�i�

� with the modified Bessel
functions Im��

� using the relationship Jm�i�

�= imIm��

�.
For each value of k


2, there are two independent solutions of
the 4�4 linear system for the coefficients C1,2,3,4. These two
solutions can be chosen such that either C3=0 or C4=0,
which allows the remaining coefficients Ci to be found. Tak-
ing into account the positive and negative value of k


2, there
are four independent solutions for each energy E.

The energy spectrum is determined by the boundary con-
ditions at the NW surface. The boundary conditions are de-
fined on all four components of the wave function, which
inside of the NW can be always written as a linear combina-
tion of the four degenerate solutions discussed above
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and a, b, c, and d are determined by the boundary conditions.
For NWs with an impenetrable surface, the standard

boundary conditions require each component of the wave
function defined in Eq. �13� to vanish, leading to Ri

n�R ,kz�
=0, where i=1,2 ,3 ,4 and R is the NW radius. These four
equations define the 4�4 system for the a ,b ,c ,d coeffi-
cients. Requiring the determinant of this system to be zero
yields the following implicit equation for the 1D energy
bands for angular momentum n, and as a function of the
parameter kz:

k
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where we use the notation J�
n =Jn�1/2�k
R� and I�

n

= In�1/2��
R�.
After determining the energy from Eq. �15�, the wave

functions can be constructed from Eq. �13�, with only the
normalization undetermined. We will use the following no-
tation for normalized eigenfunctions: �e

n,k and �h
n,k for the

electron and hole levels given by Eq. �15�, correspondingly,
where k=1,2 ,3. . . is the index of the 1D subband with an-
gular momentum n, and

�0
R��e

n,k�2
ed
e2� = �0
R��h

n,k�2
hd
h2� = 1.

Using Eq. �15� we calculated the energy levels for a 4 nm
PbSe NW with various growth directions. The energy band
parameters of PbSe which we used in this calculation will be
described in a later section. The effective energy gap of the

NW, which is the energy distance between the top of the
highest 1D subband of the valence band and the bottom of
the lowest 1D subband of the conduction band, impacts
many material properties. Figure 1 shows the effective en-
ergy gap for all four valleys as a function of the growth
direction of the nanowire. Because the plot is calculated
along high-symmetry directions in the Brillouin zone, the
degeneracy of the four valleys is never completely lifted.
Without any intervalley coupling, each of these energy gaps
would have separate optical absorption and emission peaks
associated with it.

Figures 2�a� and 2�b� show the dispersion of the several
lowest 1D subbands of the conduction and valence bands in
NWs grown along the �111� and �100� directions, respec-
tively. NWs grown along �111� have one valley oriented par-
allel to the growth direction and the other three valleys ori-
ented at the equal angles �=71° from it. For the �100� NW,
all four valleys are at the same angle �=55° from the growth
direction. It is clear that both the band-edge energies and the
effective masses of the 1D subbands depend strongly on the
growth direction.

IV. DIELECTRIC CONFINEMENT

The optical properties of all semiconductor nanostructures
are controlled by the strength of the Coulomb interaction
between the electron-hole pair participating in the emission
and absorption of photons.28 Compared to the screened Cou-
lomb interaction in a bulk crystal, the interaction is usually
enhanced because the electric field of the electron and hole
localized inside the nanostructure penetrates into the sur-
rounding medium, which commonly has a dielectric constant
smaller than that of the semiconductor. In addition, any
charge in the vicinity of this interface polarizes it. In the case
of a flat interface, for example, this polarization can be de-
scribed easily using an image charge that interacts with the
primary charge.29 In the case of small external dielectric con-
stant the interaction is repulsive. This repulsive potential in
nanostructures of any shape leads to an additional confine-

FIG. 1. �Color online� Energy gaps of a 4 nm diameter PbSe
NW at each of the four valleys as a function of the growth direction
of the NW �red lines�. The numbers indicate the valley degeneracy
of the energy gaps. Dashed gray lines are the same energy gaps
after accounting for the self-Coulomb interaction, described later in
the text.

BARTNIK et al. PHYSICAL REVIEW B 82, 195313 �2010�

195313-4



ment of carriers, which is referred to as dielectric confine-
ment.

To model these effects in NRs and NWs, the analytic
potential for two charges in an infinite dielectric cylinder
U�re ,rh� �Ref. 30� is used. It was shown previously7 that this
approximation works well as long as the rod length is larger
than the size of the exciton. The potential naturally divides
into four terms:31 the unscreened direct interaction of the two
charges Ud, the modification of this interaction due to the

image effects of the solvent Us, and the two self-interactions
of each charge with its own image Ue and Uh

U�re,rh� =
− e2

�s�re − rh�
− eVs�re,rh� +

eVs�re,re�
2

+
eVs�rh,rh�

2

� Ud��re − rh�� + Us�re,rh� + Ue�re� + Uh�rh� , �16�

where the function Vs has the form

Vs�re,rh� =
e

2�2�s
�

0

�

du�
m=0

�

cos
u�ze − zh��cos
m��e − �h���2 − �m0�

�
��s − �m�Im�u
e�Im�u
h�Km�Ru�
Km−1�Ru� + Km+1�Ru��

�sKm�Ru�
Im−1�Ru� + Im+1�Ru�� + �mIm�Ru�
Km−1�Ru� + Km+1�Ru��
�17�

and where �s and �m are the optical dielectric constants of
the bulk semiconductor and the surrounding medium, respec-
tively. Im and Km are the modified Bessel functions of the
first and second kind. For PbSe we will use �s=23, and for
the medium, if not explicitly stated otherwise, �m=2
throughout this work.

The self-interaction terms Ue�re� and Uh�rh� always con-
tribute to the energy of each electron and hole subband cal-
culated in Sec. III. In narrow NWs and NRs, where the self-
interaction energy is smaller than the confined energies, this
contribution can be calculated perturbatively for electron and
hole levels, respectively,

Eself,e
n,k =� 
ed
ed�e��e

n,k�2Ue�re� ,

Eself,h
n�,k� =� 
hd
hd�h��h

n�,k��2Uh�rh� . �18�

The self-interaction terms Eself,e
n,k and Eself,h

n�,k� increase the en-
ergy of all electron and hole 1D subbands and consequently
the effective energy gap in nanowires. The perturbed electron
and hole subbands with n=n�=1 /2 and k=k�=1 are shown
in Fig. 1.

In addition, in narrow NWs and NRs one can used an
adiabatic approximation of the Coulomb interaction,32,33

which replaces the three-dimensional potential of electrons
and holes of Eq. �16� by a one-dimensional Coulomb poten-
tial that describes their interaction along the NW/NR axis.
The adiabatic potential is obtained by averaging the potential

FIG. 2. �Color online� 1D band structure of a 4 nm PbSe NW for the cases of the axis along the directions �a� �111� and �b� �100�. The
bands are labeled by the angle � between the considered valley and the rod growth axis and also by their multiple valley degeneracy, up to
a maximum of ��4�. In �b�, the individual subbands are labeled using notation adopted from molecular physics: kX�n�

e,h for the kth electron
or hole level of certain symmetry with total z angular momentum n, where X=�, �, 
 , . . ., is used for �m�=0,1 ,2 , . . ., respectively, where
m is the angular momentum projection of the conduction �valence� band component of the wave function of the electron, “e,” �hole, “h”�
state. In �a�, the order of the levels is the same, and the labeling is suppressed for clarity.
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over wave functions �e
n,k and �h

n�,k� of the corresponding
electron and hole subband. Averaging the first two terms of
Eq. �16� results in the 1D adiabatic potential

Vn,k
n�k���ze − zh�� =� 
ed
ed�e� 
hd
hd�h��e

n,k�2��h
n�,k��2

�
Ud��re − rh�� + Us�re,rh�� , �19�

which describes the interaction of electrons and holes occu-
pying different subbands. This adiabatic potential is a func-
tion of the electron and hole separation, �ze−zh�, only. One
can show that at large distances �ze−zh��R it takes the
form of a one-dimensional Coulomb potential with the

dielectric constant of the surrounding medium, Vn,k
n�k��−e2 /

��m�ze−zh��. The adiabatic potential for the ground electron
and hole subbands with n=n�=1 /2 and k=k�=1 is shown in
Fig. 3.

V. 1D EXCITONS IN PbSe NANOWIRES AND NANORODS

The attractive 1D potential described by Eq. �19� creates a
series of one-dimensional exciton states for each pair of elec-
tron and hole subbands �n ,k� and �n� ,k��. The effective
masses of electrons and holes along the NW axis me

n,k and

me
n�,k� at the bottom and the top of each subband, correspond-

ingly, are determined by Eq. �15�. This allows us to write a

one-dimensional Schrödinger equation for these 1D excitons

−
�2

2�n,k
n�k�

�2

�z2�1D −
�2

2Mn,k
n�k�

�2

�Z2�1D + Un,k
n�k��z��1D

= �n,k
n�k��1D, �20�

where we introduce the electron-hole separation, z=ze−zh

and the exciton center-of-mass coordinate Z= �me
n,kze

+mh
n�,k�zh� / �me

n,k+mh
n�,k��. �n,k

n�k�=me
n,kmh

n�,k� / �me
n,k+mh

n�,k�� is

the reduced mass and Mn,k
n�k�=me

n,k+mh
n�,k� is the total effec-

tive mass of the 1D exciton. Importantly, the exciton binding

energy �n,k
n�k� in this equation is calculated relative to the dis-

tance between the bottom of the �n ,k� conduction subband
and the top of the �n� ,k�� valence subband, assuming the

self-interaction energy terms Eself,e
n,k and Eself,h

n�,k� are already
taken into account. The solution of Eq. �20� can be separated
into �1D�z ,Z�=�1D�z��cm�Z�. The wave function �1D�z� de-
scribes relative electron-hole motion and gives the spectrum
of 1D excitons. The second component, �cm�Z�, describes
the exciton center of mass motion, and in the case of an
infinite NW �cm�Z��exp�iKZ�, where �K is the exciton
momentum along the NW axis. This replaces the second

term in Eq. �20� by the exciton kinetic energy, �2K2 /2Mn,k
n�k�.

Equation �20� allows us to numerically calculate the en-
ergy spectrum of 1D excitons created from any pair of elec-
tron and hole subbands. In this paper, we will be interested
primarily in the spectrum that arises from the lowest electron
and hole subbands 1�1/2

e and 1�1/2
h , and we will use the ap-

proach suggested by Elliott and Loudon33 to describe the
spectrum of one-dimensional excitons in a strong magnetic
field. They suggest approximation of the one-dimensional
adiabatic potential by an effective one-dimensional potential,
which has well-known Schrödinger equation solutions

Ueff�z� = −
e2

�m��z� + 
eff�
−

A
effe
2

�m��z� + 
eff�2 , �21�

where 
eff and A are the two fitting parameters. The medium
dielectric constant �m is used in Eq. �21� so that the correct
asymptotic form of the potential is maintained. For a 4 nm
PbSe NW immersed in a medium with �m=2, the numeri-
cally calculated effective potential is described very well by
the potential Ueff with 
eff=5.49R and A=2.73, as seen in
Fig. 3. The slight dependence of these fit parameters on NW
size is shown in Fig. 4�a� and the much stronger dependence
on �m is shown in Fig. 4�b�.

FIG. 3. �Color online� Points show the effective binding poten-
tial, V1/2,1

1/2,1, between an electron and a hole occupying the ground
one-dimensional subband n=n�=1 /2 and k=k�=1 as a function of
their separation, calculated for a 4 nm radius PbSe NW. The solid
line shows the approximation of this dependence by the Elliott and
Loudon effective potential described by Eq. �21�.

FIG. 4. �Color online� Fitting
parameters used in the effective
potential described by Eq. �21�
in PbSe NWs of various radius
and medium dielectric constant.
The parameter is plotted vs �a�
nanowire diameter with �m=2 �b�
medium dielectric constant with
R=2 nm.
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The energy spectrum and eigenfunctions of Eq. �20� with
effective attractive potential Ueff�z� can be obtained analyti-
cally. The eigenfunctions of each 1D exciton level, ���z�,
can be written as32,33

���z � 0� = a1W�,−1/2�1−4A�
̃�z̃ + 
̃� + a2M�,−1/2�1−4A�
̃�z̃ + 
̃� ,

�22�

���z � 0� = � ����z�� , �23�

where W�,��x� and M�,��x� are the Whittaker functions, z̃
=2z / �a0��, 
̃=2
eff / �a0��, a0=�2�m / ��1/2,1

1/2,1e2� is the effec-
tive Bohr radius of a 1D exciton, and a1 and a2 are arbitrary
coefficients. The sign of Eq. �23� is “+” for an even eigen-
function and “−” for an odd one. The coefficients a1, a2, and
parameter � in Eq. �22� as well as the exciton binding energy

�� = −
�2

2�1/2,1
1/2,1a0

2�2 �24�

are determined by the boundary conditions.
There are two boundary conditions to impose on the so-

lution in Eq. �22�: one at z=ze−zh= �L and one at z=0. We
first consider infinite nanowires; the effects of finite length
will be treated in the following section. In this case, the first
boundary condition is satisfied by letting a2=0 because
M�,−1/2�1−4A�
̃��z̃�+ 
̃� diverges as �z̃�→�. The second bound-
ary condition, requiring ���z� to be either an even or odd
function of z, determines � and the energy spectrum of the
exciton. It was shown in Refs. 32 and 33 that for excited
doubly degenerate exciton states, � takes almost-exactly in-
teger values �=1,2 ,3 , . . . and that �→0 for ground states
with decreasing exciton transverse radius. Following Refs.
32 and 33 we use �0 for the ground exciton binding energy.

Figure 5 shows the calculated binding energy of the
ground exciton state �0 and the Coulomb self-interaction en-
ergies Eself,e

1/2,1 and Eself,h
1/2,1 of electrons and holes from the

ground 1D subbands 1�1/2
e,h. The binding energy decreases

dramatically with NW radius or external dielectric constant.
The exciton binding energy in the narrowest NW surrounded
with �m�2–3 reaches values �300 meV.

Surprisingly, however, the binding energy is almost ex-
actly compensated by the electron and hole self-interaction
terms, which leads to practical cancellation of most effects
connected with the small dielectric constant of the surround-
ing medium. Because of this cancellation, the optical transi-
tions between 1D subbands will be determined primarily by

the energies calculated in Sec. III. This result has important
practical consequences. For example, the linear optical spec-
tra of PbSe NWs will not be sensitive to the dielectric con-
stant of the surrounding medium.

This cancellation is well known in spherical semiconduc-
tor NCs. The exact cancellation of these three terms was
shown for parabolic valence and conduction bands in Ref.
34. This is because in a parabolic-band approximation the
wave function of electrons and holes are identical and de-
pend only on the NC radius. As a result the electron and hole
charge distributions exactly compensate each other at each
point in the NC. If there is no local charge in the NC, there is
no electric field outside of the NC, and the external medium
does not affect the optical properties. This cancellation is
nearly exact even when the electron and hole masses are
different.35

The cancellation of the Coulomb energies in the ground
exciton of PbSE NWs can be attributed to a similar charge
compensation. The mirror symmetry of the conduction and
valence bands in PbSe makes the wave functions of the elec-
tron and hole transverse motion nearly identical. The similar
values of effective masses along the NW axes also makes the
electron and hole contributions to the 1D exciton wave func-
tion identical. It is interesting to note here that because of the
large binding energy, the electron and hole in the exciton are
remarkably tightly bound, with average separation only
slightly larger than the NW radius. Figure 6 shows the aver-
age separation, calculated as ���z− z̄�2�, as a function of ra-

FIG. 5. �Color online� Cou-
lomb energies calculated for �a�
�m=2 with varying R and �b� R
=2 nm with varying �m. Lines are
the sum of the electron Eself,e

1/2,1 and
hole Eself,h

1/2,1 self-interaction ener-
gies �red circles�; the electron-
hole binding energy �0 �blue tri-
angles�; and their total �black
squares�.

FIG. 6. �Color online� Dependence on PbSe NW radius of the
average �rms� separation of the electron and hole in the 1D exciton.
Inset shows the square of the ground-exciton wave function ��1D�2
for a NW with 2 nm radius.
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dius, with inset showing the wave function �1D for the case
of R=2 nm. One can see that the average electron-hole sepa-
ration in the exciton is an order of magnitude smaller than
the 46 nm Bohr radius in bulk PbSe. Further calculations
show that this unusual increase in the strength of the binding
is due entirely to the 1D shape of the NR and is only weakly
affected by the dielectric contrast. For the weakest dielectric
contrast when �m=�s=23, the average separation increases
slightly to �4 nm, still much closer to the 4 nm diameter
than to the Bohr radius.

A. Finite-length effects

For a nanorod, which has finite length, the relative and
CM motions of the electron and hole can never be com-
pletely separated. If the NR is much longer than the radius of
the 1D exciton, one can still approximately separate vari-
ables to create effective boundary conditions for the exciton
CM motion. No other boundary condition �BC� is needed for
the exciton separation coordinate because the assumption is
that the tightly bound wave function is already zero well
before any additional confinement is felt. On the other hand,
the CM motion can be considered as the motion of a free
particle confined in a 1D box of length L. If the box is much
larger than the exciton radius one can apply the standard
boundary conditions on �cm to obtain the well-known spec-
trum Ecm�l�=�2�2l2 / �2M1/2,1

1/2,1L2�, where l is the level num-
ber.

Even though this CM boundary condition makes intuitive
sense, it is difficult to justify, because the true BCs are for the
electron and hole individually. To test our assumption, we
calculated the CM energies numerically by solving the two-
particle Schrödinger equation with the correct impenetrable
boundary conditions on the electron and hole individually.
Details of the calculation are in Appendix C. The numeri-
cally calculated wave functions and energies were best
matched to those obtained for a free particle with an effective
mass of the exciton which is confined in the 1D box of
length Lcm=L−R. The existence of such a simple expression
is probably connected with the approximately equal effective
masses of the electrons and holes and their small separation
in PbSe NRs. The first few numerically calculated energy
levels are shown in Fig. 7 along with the analytic energies
Ecm=�2l2�2 / �2M1/2,1

1/2,1Lcm
2 � for various confinement lengths

Lcm. This modified CM length works well for all rod sizes
studied, as long as the NR aspect ratio is �2.

B. Oscillator strength of the interband optical transitions

The decrease of the electron-hole separation within a 1D
exciton leads to a dramatic increase of the optical transition
strength. It was shown by Elliott and Loudon33 that the os-
cillator strength of practically the entire spectrum of 1D ex-
citons becomes concentrated in the ground exciton state. The
expression for the transition strength in PbSe NRs can be
obtained by combining the results derived for PbSe NCs
�Ref. 24� and CdSe NRs.7 The total oscillator strength Ototal
can be written as a product Ototal=O�O�, where the trans-
verse oscillator strength is24

O� =
2Pl

2

9m0��
��

0

R


d
�
0

2�

d�
�h
1/2,1�†� 0 �z

�z 0
�
�e

1/2,1��2

�25�

with �� the total energy of the optical transition. We have
neglected the second term from Ref. 24, as it is negligible
except for very small NRs, where the envelope function ap-
proximation likely breaks down anyway. The oscillator
strength of the 1D exciton7 is

O� = ��1D�z = 0��2��
0

L

dZ�cm�Z��2

, �26�

where we normalize the 1D exciton wave function such that
�−L

L dz�0
LdZ��1D�z��cm�Z��2=1.

The transverse oscillator strength provides the selection
rule that there is no change in the z component of the angular
momentum, 
n=0, while the longitudinal component fo-
cuses the oscillator strength into the ground exciton state.
This is because optical transitions are only allowed to the
even states of the exciton CM motion with l=1,3 ,5. . ., and
the oscillator strength decreases as 1 / l2. Even the second
allowed transition will be nine times weaker than the lowest
transition. This has practical implications for the optical ab-
sorption spectra. Even though the density of allowed transi-
tions increases dramatically with energy in NRs, most of the
oscillator strength is concentrated in the lowest energy tran-
sition for each pair of NR subbands. Thus, isolated peaks
should still be observable in experimental spectra.

VI. EXPERIMENT

A. Synthesis and characterization of colloidal PbSe nanorods

Although the synthesis of lead salt nanowires was re-
ported several years ago,36,37 the fabrication of high-quality
lead-salt nanorods with small diameter has proved challeng-
ing. PbSe NRs were synthesized with noble metals as seeds38

but the resulting NRs did not have good optical spectra.
Some high-quality NRs have been reported but the syntheses
were too challenging for us to reproduce.39–41 A simple syn-
thesis for high-optical-quality PbSe NRs was recently

FIG. 7. �Color online� Numerically calculated energies for the
lowest few exciton states in a 4�20 nm2 PbSe NR �black circles�.
The lines are the energies from the analytic model using two dif-
ferent confinement lengths for the center of mass.

BARTNIK et al. PHYSICAL REVIEW B 82, 195313 �2010�

195313-8



demonstrated42 and the properties of these NRs will be com-
pared to the theoretical results.

Following Ref. 42, the NR synthesis was carried out using
standard Schlenk-line techniques under dry nitrogen. Tris�di-
ethylamino�phosphine �TDP, Aldrich, 97%�, oleic acid �OA,
Aldrich, 90%�, 1-octadecene �ODE, Aldrich, 90%�, squalane
�Aldrich, 99%�, amorphous selenium shots �Se, Aldrich,
99.999%�, and lead�II� oxide �PbO, Aldrich, 99.9%� were
used as purchased without further purification. Anhydrous
ethanol, chloroform, acetone, hexane, and tetrachloroethyl-
ene �TCE� were purchased from various sources. To prepare
1.0 M stock solutions of TDPSe, 7.86 g of Se was dissolved
in 100 mL of TDP.

Typically, 0.22 g of PbO was dissolved in 5 mL of
squalane in the presence of 1 mL OA. �Squalane can be
replaced by ODE.� After drying under nitrogen at 150 °C for
30 min, the solution was heated to 170 °C and 3 mL of a 1
M TDPSe solution in TDP was injected under vigorous stir-
ring. Once the reaction finished, the reaction mixture was
cooled to room temperature using a water bath. The crude
solution was mixed with hexane and precipitated by ethanol.
The precipitated NRs were isolated by centrifugation �at
5000 rpm for 3 min� and redispersed in chloroform or other
organic solvents. Size-selective precipitation can be carried
out to obtain better monodispersity of NRs samples using
chloroform/acetone or other solvent/nonsolvent pairs.

The size of the synthesized NRs was determined from
transmission electron microscopy. In-plane powder x-ray dif-
fraction shows that the NRs grow along the �100� direction.42

Absorption was measured on a Shimadzu UV-3101PC spec-
trophotometer at room temperature. Emission spectra were
recorded at room temperature with an infrared fluorimeter
equipped with a 200 mm focal length monochromator, a
single mode fiber coupled laser source �S1FC635PM, 635
nm, Thorlabs, Inc.� as the excitation source, and an InGaAs
photodiode �New Focus Femtowatt model 2153�. Fluores-
cence lifetime was measured using an InP/InGaAs photomul-
tiplier tube �Hamamatsu H10330A-75� with 120 fs excitation
pulses from a Ti:sapphire regenerative amplifier �Spectra-
Physics Hurricane� with 1 kHz repetition rate. NRs were
dissolved in TCE for all measurements to avoid spurious
absorbance in the near-IR. Quantum yield measurements
were performed using an integrating sphere with the method
described in Ref. 43.

B. Absorption spectra

First, we will highlight the qualitative differences between
the absorption spectra of NRs and spherical NCs. Figure 8

shows the absorption spectrum of 3.3 nm diameter x 12 nm
length PbSe NRs along with that of 4.4 nm diameter spheri-
cal NCs, chosen to have a nearly identical first absorption
peak. The spectrum of the NRs has fewer obvious features
than the NC spectrum. The first peak in the NR spectrum has
a broad high energy side even though its narrower low-
energy side is nearly identical to that of the NCs �inset of
Fig. 8�. Both of these observations indicate the presence of
more densely spaced transitions in the NR spectrum, which
have the effect of smoothing out the peaks. Interestingly, the
second NC peak appears where there is a dip in the NR
spectrum.

The broadening of the NR absorption peak seen in Fig. 8
is connected with the dispersion of NR diameter and length.
Our best PbSe NR samples have around 5% size distribution
in radius but a much larger 20% in length. This large length
polydispersity will blur out many of the NR transitions in an
ensemble, except for those that are roughly independent of
length—specifically, the lowest energy exciton for each pair
of NW subbands. Fortunately, this is also the transition pre-
dicted to have the largest oscillator strength. As we have
shown above, the energies of the optical transitions of the
ground exciton states practically coincide with the energies
between non-interacting electron and hole subbands, even
though their respective wave functions differ greatly. This
greatly simplifies the interpretation of the absorption spectra
of NRs.

We performed second-derivative analysis on the absorp-
tion spectra to determine the transition energies accurately.
To avoid the problems inherent in this method,44 only the
peaks in the second-derivative spectra that correspond to
obviously-visible peaks in the measured spectra were used.
NRs produced by our first syntheses showed instability in
solution and would slightly aggregate during the absorption
measurement. This adds a moderate scattering background so
only the absorption peak location is recorded for these
samples. NRs synthesized more recently are more stable, and
at least four peaks can be discerned, with an additional peak
in the three samples with narrowest size distribution. Figure
9�a� has an example measured spectrum of a
3.9 nm diameter�17 nm length PbSe NR that shows all
five peaks and the locations of all measurable peaks from all
samples are shown in Fig. 9�b�. The measured peaks are
plotted vs D−3/2 following the similar graph in Ref. 45. This
power of the diameter is chosen to make the trend linear over
the measured range, allowing rough extrapolation to bulk as
D−3/2→0. In this manner, the peaks originating from the L
point and � point are easily distinguished.

FIG. 8. �Color online� �a� Ab-
sorption spectra of PbSe NRs
�black line, vertically offset for
clarity� and spherical PbSe NCs
�red line� are compared. The inset
shows detail of the first peak. �b�
Emission spectra and fluorescence
decays measured at the emission
peak �inset� of the same two
samples.
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Quantitative theoretical description of the size-dependent
absorption spectra of PbSe NRs shown in Fig. 9 requires a
set of six room-temperature energy band parameters for this
semiconductor: mt

�, ml
�, and Pt,l

2 . The parameters extracted
from low temperature cyclotron resonance and interband
magneto-optical experiments in bulk PbSe �Ref. 46� describe
quite well the average two-dimensional effective mass of
electrons and holes at the bottom of the conduction band and
the top of the valence band, respectively. The fitting proce-
dure that gives this set is not sensitive, however, to the sepa-
ration of 1 /ml,t and the 2Pl,t

2 /m0
2Eg terms, and describes well

only the sum of these terms, because the all measurements
are conducted a the narrow energy range comparable with
the PbSe energy gap. This procedure is also not very sensi-
tive to the anisotropy of the carrier energy spectra because a
magnetic field averages out the two-dimensional motion of
electrons and holes. On the other hand, in order to predict
nanocrystal energy levels quantitatively, both the separation
of components of the effective masses and the band aniso-
tropy are crucial. Finally, the energy band parameters are
expected to be temperature dependent. Thus, we conclude
that parameters inferred from cyclotron resonance and
magneto-optical measurements might not describe the energy
spectra of NRs and NCs measured at room temperature.

In principle, spatial confinement of carriers in nanostruc-
tures provides a more-sensitive way to determine the energy
band parameters due to the large modification of the energy
spectra of confined carriers. With this motivation, we used
the previously measured absorption spectra of PbSe NCs in
Refs. 45 and 47–51 and extracted room-temperature band
parameters using a global fitting procedure. Importantly, this

new set of parameters not only quantitatively describes the
low-energy transitions of PbSe NCs but may also help re-
solve the long-standing controversy over the symmetry of
the second peak in the NC absorption spectra �see Appendix
D�. These band parameters �Table I� are used in all graphs
presented in this work.

The theoretical size dependence of the optical transitions
in PbSe NRs is calculated within our four-band model and
shown in Fig. 9�b� by solid lines. The lowest two transitions
agree well with the theory. The third predicted transition is
not observed, possibly owing to its proximity to other strong
transitions in our NR samples. The third and fourth peaks are
strong transitions that do not appear to be associated with the
L point. Their energies extrapolate back to the �-point en-
ergy. The third peak is fit well by the same parabolic band
model used to model spherical PbSe NCs and thus we assign
this transition to the lowest energy excitonic state at the �
point. This line was calculated for both spheres and rods with
m�

e =m�
h =0.45m0 and Eg���=1.65 eV. Without more-

detailed knowledge of the band structure there, we cannot
predict the excited states with any accuracy. Thus, the iden-
tity of the fourth transition cannot be determined but as the
energies approach the same 1.65 eV bulk value, it is reason-
able to tentatively attribute it to a higher energy exciton from
the � point. Finally, the fifth peak was perhaps the strongest
in the absorption spectra but showed no size dependence. We
tentatively ascribe this to a metal-complex transition on the
surface of the nanocrystal based on its proximity to absorp-
tion peaks of Pb�II� complexes.52 The identities of these tran-
sitions are summarized in Table II.

The fluorescence spectra and decays 
Fig. 8�b�� are nearly
identical for NCs and NRs with a slightly larger Stokes shift

FIG. 9. �Color online� �a� Example absorption spectra of a 3.9�17 nm2 PbSe NR. Inset shows the same data but on a scale where the
fifth peak is visible. �b� Peaks in second-derivative spectrum as a function of NR diameter �symbols�, calculated allowed transitions �gray
lines�, simple parabolic effective mass calculation around the � point �dashed gray line�, and linear fits �colored dashed lines.�

TABLE I. Energy band parameters that provide the best fits to the room-temperature data from PbSe NCs.
The left columns show the transverse band components while the right columns show the ratio of transverse
to longitudinal components.

Name Ref. 46 Best fit Aniso. ratio Ref. 46 Best fit

mt
+ /m0 0.29 0.59 ml

+ /mt
+ 1.28 1.6

mt
− /m0 0.27 0.79 ml

− /mt
− 3.53 1.6

2Pt
2 /m0 3.6 �eV� 4.25 �eV� Pt

2 / Pl
2 1.82 3.0
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in the NRs along with a slightly broader peak. The ensemble
quantum yield of the nanorods is around 15%, around half
that of the NCs. This might indicate that the radiate lifetime
of the rods is longer than that of the NCs but it is also
possible that the QY reflects an ensemble with 15% emitting
and 85% nonemitting rods.

Two effects would be expected to modify the radiative
lifetime in nanorods. First, because the radiative lifetime is
inversely proportional to the oscillator strength, the increased
electron-hole correlation in NRs should decrease the lifetime
compared to NCs. Second, the effect of screening is reduced
in NRs, which is believed to be the cause of the long lifetime
in PbSe NCs.49 Approximating the NR as a dielectric prolate
spheroid, the screening will substantially decrease along the
rod axis while slightly increasing along the other two axes
with an overall effect of a reduction in screening of the life-
time. Compared to a spherical NC of the same diameter, the
larger oscillator strength and the reduced screening should
each produce about a factor of 3 reduction in lifetime in NRs
with typical aspect ratios. Together this amounts to almost an
order of magnitude reduction and should be measurable even
considering other sample-related uncertainties. However, the
measured lifetimes of 0.9 and 1.1 �s in NCs and NRs, re-
spectively, are nearly identical 
Fig. 8�b��. This discrepancy
is not understood. It might be explained by a dark ground
exciton state that controls the photoluminescence decay in
PbSe NRs and NCs with the same activation mechanism in
both structures. To be thorough, the nonradiative rate must be
determined and completing this along with exploring this
phenomenon is a topic of future work.

VII. DISCUSSION AND CONCLUSIONS

Our model of the electronic structure of lead-salt NRs is
based on the four-band k ·p Hamiltonian suggested in Ref.
27, using the standard boundary condition of a vanishing
envelope wave function at the NR surface. All calculations
are conducted within a cylindrical approximation. To use this
model for description of various properties of NRs or NWs,
one needs to know a set of the six temperature-dependent
band parameters that describe a specific bulk lead-salt semi-
conductor. For the PbSe NRs studied in this paper, we ex-
tracted the set of room-temperature parameters from analysis
of the size dependence of previously measured room tem-
perature absorption spectra of spherical PbSe NCs.

The most significant conclusion of this work is that the
fundamental excitations in PbSe NRs are one-dimensional

excitons under each pair of optically coupled electron-hole
subbands. The binding energy of the ground exciton state,
which accumulates the most oscillator strength, increases
with decreasing NR thickness and reaches 400 meV in the
narrowest rods. Surprisingly, the large binding energy of the
exciton is almost exactly compensated by the self-interaction
of electrons and holes with their own images, which makes
the energies of the optical transitions nearly independent of
the solvent dielectric constant. Although the finite length of
NRs affects the spacing between excited exciton states, it has
a negligible effect on the energy of the exciton ground states.

With the set of PbSe band parameters extracted from
spherical NC absorption spectra �Table I�, the model pre-
sented here describes the absorption spectra of PbSe NRs,
and potentially resolves some troublesome aspects of k ·p
theory of spherical PbSe NCs. The energy of the optical tran-
sitions to the exciton ground states calculated within a cylin-
drical approximation match the two lowest energy transitions
observed experimentally. Although the effect of anisotropy in
important for description of the absorption in spherical PbSe
NCs, it is diminished in NRs �see Appendices A and D�, and
the energy of the first two transitions is unaffected by it.

The absorption spectra of PbSe NRs have another remark-
able feature. The size dependence of the third and fourth
absorption peaks is strong evidence that they originate from
the � point of the Brillouin zone. Similar states connected
with the � point were observed previously in the absorption
spectra45 and in the hot carrier dynamics53 of spherical PbSe
NCs. These observations provide clear experimental evi-
dence that even in the smallest nanostructures, wave func-
tions from distinct critical points �L and �, in this particular
case� are not mixed if both their corresponding conduction-
band minima and valence-band maxima are well-separated
energetically. This provides strong justification for the appli-
cability of our multiband effective mass approximation in
such small nanostructures. A large energetic separation of
L and � band edges is supported theoretically by recent ab
initio calculations,54 which for PbSe predict larger than 500
meV energy separation for these extrema, in both the valence
and conduction bands, in contradiction with similar earlier
calculations, which placed the separation in the valence band
closer to 150 meV.55

The predicted strong increase in electron-hole Coulomb
interaction in PbSe NWs should have major implications for
other properties. This enhancement should increase the rate
of the nonradiative Auger recombination as well as the rate
of the inverse process, impact ionization. A high rate of im-
pact ionization or efficient multiple exciton generation, com-
bined with good conductivity that might be expected in PbSe
NWs, suggests that these structures may be promising for
photovoltaic applications.

To summarize, we have developed a theory that describes
both the energy spectra of individual electrons and holes and
the absorption spectra of lead-salt NWs and NRs. Calcula-
tions show that even though spatial and dielectric confine-
ment dramatically increase the exciton binding energy, the
absorption spectra of PbSe NWs and NRs are practically
unaffected, which should lead to insensitivity of these spec-
tra to the surrounding media. The size dependence of lowest
absorption peaks measured in PbSe NRs is very well de-

TABLE II. Transitions observed in the absorption spectra of
PbSe NRs.

Label Assigned transitions

P1 1�1/2
h →1�1/2

e

P2 1�3/2
h →1�3/2

e and 1�1/2
h →1�1/2

e

P3 �-point ground state

P4 �-point excited state �?�
P5 Surface-metal complex mode
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scribed by the developed theory. It should be straightforward
to apply this model to PbS and PbTe NRs.
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APPENDIX A: EFFECT OF ANISOTROPY ON THE
NANOWIRE ENERGY SPECTRA

The cylindrically symmetric Hamiltonian in Eq. �4� can
be derived from the full Hamiltonian in Eq. �3� by transfor-
mation to the new coordinate system connected with NW
direction. The full Hamiltonian is defined with respect to a
crystallographic direction of the Brillouin zone, where the z
axis is pointed toward one of the L points, and we will call
this coordinate system the primed system, �x� ,y� ,z��. We
need to express Eq. �3� in the new coordinate system where
the z axis is directed along the rod axis, called the unprimed
system, �x ,y ,z�. To do this, we use a coordinate rotation, and
define the x axis such that the rotation occurs in the x-z
plane. In the rotation, vector quantities, such as p̂ or �̂ are
transformed using the rotation matrix, p̂�=R���p̂, with R de-
fined as

R��� = 	cos � 0 − sin �

0 1 0

sin � 0 cos �

 . �A1�

This transformation expresses the squared momenta in Eq.
�3� as

p̂x�
2 = cos2 �p̂x

2 − sin 2�p̂xp̂z + sin2 �p̂z
2, �A2�

p̂z�
2 = sin2 �p̂x

2 + sin 2�p̂xp̂z + cos2 �p̂z
2 �A3�

and the diagonal and off-diagonal elements of the matrix of
Hamiltonian in Eq. �3� in new coordinate system as

1

mt
�p̂x�

2 + p̂y�
2� +

1

ml
p̂z�

2

= � cos2 �

mt
+

sin2 �

ml
�p̂x

2 +
1

mt
p̂y

2

+ � sin2 �

mt
+

cos2 �

ml
�p̂z

2 + sin 2�� 1

ml
−

1

mt
�p̂xp̂z,

�A4�

Pt�x�p̂x� + Pt�y�p̂y� + Pl�z�p̂z�

= �Pt cos2 � + Pl sin2 ���xp̂x + Pt�yp̂y + �Pt sin2 �

+ Pl cos2 ���zp̂z +
1

2
sin 2��Pl − Pt���zp̂x + �xp̂z� .

�A5�

Notice that neither elements are cylindrically symmetric in
the new coordinates. To enforce this symmetry, we rewrite
these expressions in a form that separates a cylindrically

symmetrical part, formally: aÔx+bÔy = �1 /2��a+b��Ôx

+ Ôy�+ �1 /2��a−b��Ôx− Ôy�. The first term, which has cylin-
drical symmetry, is used in the zeroth-order Hamiltonian, and
the second term creates the asymmetric perturbation. This
procedure produces the Hamiltonian in Eq. �4�, along with
the perturbation matrix

Ĥan =	
1

2
Û� 1

ml
− −

1

mt
−��1

2
sin2 ��p̂x

2 − p̂y
2� + sin 2�p̂xp̂z� 1

2m
�Pl − Pt��sin2 ���̂xp̂x − �̂yp̂y� + sin 2���̂zp̂x + �̂xp̂z��

1

2m
�Pl − Pt��sin2 ���̂xp̂x − �̂yp̂y� + sin 2���̂zp̂x + �̂xp̂z�� −

1

2
Û� 1

ml
+ −

1

mt
+��1

2
sin2 ��p̂x

2 − p̂y
2� + sin 2�p̂xp̂z� 
 .

�A6�

We study the effect of anisotropy described by Eq. �A6� on
the energy spectrum of electrons and holes. Figure 10 com-
pares the energy of the lowest electron levels in a 4 nm PbSe
NW calculated within the cylindrical approximation and with
complete numerical inclusion of the anisotropy. The aniso-
tropy was taken into account by diagonalizing the matrix

elements of Han in the space of the highest 20 valence and
lowest 20 conduction states �that is, including the highest ten
and lowest ten doubly degenerate electron and hole levels.�
One can see in Fig. 10 that the anisotropy in PbSe splits the
nearly degenerate energy levels, whose radial or angular
quantum momentum numbers differ by one in radial or an-
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gular quantum momentum numbers while necessarily leav-
ing the Kramer’s degeneracy unbroken. The splitting should
broaden the energy levels without an overall shift in the level
position.

APPENDIX B: CALCULATIONS OF THE ONE-
DIMENSIONAL COULOMB POTENTIAL

Calculation of the one dimensional Coulomb potential in
Eq. �19� and self-interaction energy in Eq. �18� can be
greatly simplified by initial averaging over angular variables.
For the U1 term of Eq. �19� the angular integration results

�U1��z� = �
0

R

d
e
e�
0

R

d
h
h��e�2��h�2V1�
e,
h,z� ,

�B1�

where

V1�
e,
h,z� = − 4�
e2

�s
�
e
h

Q−1/2� z2 + 
e
2 + 
h

2

2
e
h
� �B2�

and Qn is the Legendre function of the second kind. The two
remaining radial integrals are evaluated numerically.

For the second term in Eq. �19�, U2, the angular integrals
vanish unless m=0 leaving only this term from the sum. This
results in the following expression for �U2��z�:

�U2��z� = − 8�
e2

�s
�

0

�

du
��s − �m�K0�Ru�K1�Ru�cos�uz�

�sI1�Ru�K0�Ru� + �mI0�Ru�K1�Ru�

� ��
0

R

d�e�e��e�2I0�u�e��
ie�u�

��
0

R

d�h�h��h�2I0�u�h��
ih�u�

.

�B3�
To calculate the integrals ie and ih in Eq. �B3�, we approxi-
mate the squared wave functions as a short sum of the form
��e�2=�n=1

N An�1−
e
2n� with N�8. Even with so few terms,

the maximum relative error is typically �10−7. This allows
us to solve these two integrals analytically

ie�u� = �
n=1

N

An�
0

R

d
e
e�1 − 
e
2n�I0�u
e�

= �
n=1

N

An�RI1�u�
u

−
R1

2+2n
1F2�1 + n;1,2 + n;R2u2/4�

2 + 2n
� ,

�B4�

where pFq is the generalized hypergeometric function. The
remaining integral over u in Eq. �B3� is performed numeri-
cally.

Lastly, the two self interaction terms in Eq. �18�, Ue and
Uh, after angular integrations are reduced to

�Ue,h� =
2e2

�s
�
m=0

� �
0

�

du��
0

R

d
e,h
e,h��e,h�2Im
2 �u
e,h�� ��s − �m�Km�Ru�
Km−1�Ru� + Km+1�Ru���2 − �m0�

�sKm�Ru�
Im−1�Ru� + Im+1�Ru�� + �mIm�Ru�
Km−1�Ru� + Km+1�Ru��
.

�B5�

The two dimensional integrals in Eq. �B5� was taken numerically. It is summed over only the first �20 values of m, as the sum
converges rapidly.

FIG. 10. Effect of the energy spectrum anisotropy on the energy of the 1D subband bottom in a 4 nm PbSe NW grown along the �a� �111�
and �b� �100� crystal axes. The “approximate” calculations are conducted within the cylindrical approximation, which gives Eq. �15� for the
energy levels. The “full” calculations are performed as described in the text. The energy levels are labeled by the angle between the L point
and the rod growth axis. Note that the �=0 energy levels do not require perturbation, as Han=0 for that angle.
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APPENDIX C: NUMERICAL CALCULATION OF THE
EXCITON BINDING IN PbSe NANORODS

Our analytic model makes the assumption that the 1D
exciton is only weakly confined along the NR axis. In this
case the finite length of the NR affects only the exciton cen-
ter of mass motion. To verify this assumption, the 1D Hamil-
tonian was numerically diagonalized while treating both
binding and confinement exactly. As an orthogonal basis for
this diagonalization we used a sufficiently large set of elec-
tron and hole plane waves that satisfied the single-particle
boundary conditions. The 1D exciton wave function in this
basis set can be written as

�1D = �
ne=1

Ne

�
nh=1

Nh

Ane,nh

2

L
sin�ne�ze

L
�sin�nh�zh

L
� , �C1�

where Ane,nh
are the numerical coefficients.

The kinetic energy is diagonal in this basis, and matrix
elements of Eq. �21� can be evaluated analytically. Calcula-
tion time was dominated by evaluation of these matrix ele-
ments and scaled as O�NeNh�. For Ne=Nh�30, calculations
were sufficiently converged for the lowest few dozen states
and required roughly one minute of computation time on a
desktop computer.

Figure 11 shows the square of 1D wave functions, ��1D�2,
calculated both the numerically and analytically as a function
of ze and zh. For the lowest two exciton states ��1D�2 shows
good agreement between the numerical model and the ana-
lytical calculation. This is because the electron and hole are
strongly localized around each other and do not feel the ef-
fects of confinement at the edges of box. As a result, the
wave function orients along the coordinates associated with
Coulomb binding, z and zcom, roughly along the graph diago-
nals. On the other hand, by the 17th excited state, also shown
in Fig. 11, the numerical and analytical calculations disagree
greatly. This is because the higher kinetic energy of this state

causes the wave function to reach the edges of the box and
feel confined. And, as a result, it begins to orient along the
box coordinates, ze and zh, associated with confinement. In
general, our analytic model shows good agreement for the
lowest �10 states for each pair of nanowire bands.

APPENDIX D: CHOICE OF THE ROOM-TEMPERATURE
BAND PARAMETERS

The absence of reliable room-temperature energy band
parameters for bulk PbSe has lead to several problems in the
quantitative description of spherical PbSe NC electronic
properties within effective mass theory, and as a result, to
some controversy on their electronic structure.45,55–58 As has
been noted,56,59 effective-mass theory significantly overesti-
mates the energy gap in PbSe NCs �though not in PbS.� In

FIG. 12. �Color online� Calculations of the lowest electron levels in spherical PbSe NCs. �a� Splitting of the P state induced by the fully
anisotropic Hamiltonian in a 4 nm radius NC. Anisotropic states are labeled by writing the state in the basis of isotropic states and labeling
it by the isotropic state with largest coefficient. �b� The size dependence of the transition energies in spherical PbSe NCs. Experimental data
�Ref. 45� are shown by symbols. The solid lines show the size dependence of optically allowed transitions calculated in a fully anisotropic
effective-mass model. The optically allowed transitions occur between the states of the same symmetry but opposite parity, and we label
them by a symmetry type, which is common for both states. Open points indicate transitions originating from the L point in the Brillouin
zone while half-open points are suggested to be from the � point as in Ref. 45. The dashed line shows the size dependence of lowest confined
level connected with the � point of the Brillouin zone, calculated in a parabolic effective mass approximation as explained in the text.

FIG. 11. �Color online� Comparison of the numerically and ana-
lytically calculated 1D exciton wave functions ��1D�2. Each subplot
has axes ze and zh ranging along the length of the nanorod from 0 to
L. The two lowest energy states and the 17th state are shown.
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addition, the nature of the second optical transition is still a
source of debate,60–63 whether it is of symmetry type S-P or
P-P. Considering the body of experimental evidence, the ex-
planation put forward by Franceschetti62 seems to offer the
simplest explanation of this controversy, that the electron and
hole P states are split into P� and P� states by the anisotropy
of the bands, and the second transition is of type P�-P�.
These two problematic aspects of experimental spectra of
PbSe NCs for effective-mass theory—overestimation of the
band gap and the symmetry of the second transition—as well
as the observation of several optical transitions in a wide
range of energies can be used for extraction of a real set of
the energy band parameters.

Although the extraction of the set of energy band param-
eters from room temperature absorption spectra is possible, it
is likely that many sets of parameters will equally well fit the
first few optical transitions. In order to increase the accuracy
of the fit, we want to somehow incorporate the energy band
parameters in low-temperature experiments in bulk PbSe. So,

the total band-edge effective masses for electrons and holes
at T=4 K are held constant at the values from experiment.46

In addition, to limit the degrees of freedom in the fit, the
anisotropy of the far-band contributions to both the electron
and hole are held equal. That is, ml

+ /mt
+=ml

− /mt
−, even

though their individual values will differ. With these con-
straints, a fit is performed using the body of literature
data45,47–51 for the first transition, and the data from Koole45

for the second and third transitions.
The final set of room-temperature parameters are shown

in Table I together with the set of low-temperature param-
eters reported for bulk PbSe in Ref. 46. The transition ener-
gies calculated using these parameters are shown in Fig. 12.
The anisotropic effective-mass calculations were performed
using the method outlined in Ref. 64 and the results com-
pared to the energies measured in Ref. 45, ignoring those
points criticized in Ref. 44 as possibly being second deriva-
tive artifacts.
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