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The electron-electron pair-distribution functions �PDFs� of the two-dimensional �2D� electron fluid in the
quantum regime �at T=0� are calculated using a classical-map-hypernetted-chain scheme and compared with
currently available quantum Monte Carlo �QMC� simulations in the coupling range rs=1 to 50. We iteratively
extract the bridge function of the “equivalent” classical 2D liquid in the quantum regime. These bridge
functions B�r� are relatively insensitive to spin-polarization effects. The structure of the bridge functions
changes significantly for rs�6, suggesting the onset of strongly correlated clusters. The new B�r�, appropriate
for the long-range Coulomb potential, can be used to replace the hard-sphere B�r� previously used in these
calculations. They provide accurate classical representations of the QMC-PDFs even at very strong coupling,
and probably at finite-T near T=0.
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I. INTRODUCTION

The pair-distribution functions �PDFs� of strongly
coupled electron fluids contain all the physical information
associated with the ground-state static properties of such sys-
tems. Exchange-correlation energies, phase transitions, and
Fermi-liquid parameters such as the effective mass m� and
the spin-susceptibility enhancement �g�� can all be evaluated
from the PDFs, as discussed below. The static local-field
corrections to the response functions can also be addressed
via these PDFs.

The PDFs are usually determined by quantum Monte
Carlo �QMC� simulations since standard many-body meth-
ods become unreliable for densities where the electron-
sphere radius rs exceeds unity. The rs parameter is also the
ratio of the mean Coulomb energy and the Fermi energy, and
hence is a measure of the coupling strength. QMC simula-
tions for the two-dimensional �2D� electron system were first
published by Tanatar and Ceperley,1 and more recently by
Attaccalite et al.,2 and by Drummond and Needs.3 A transi-
tion from the paramagnetic state to the ferromagnetic phase
was predicted to occur at rs�26 by Attaccalite et al. while
weak-coupling theories �Hartree-Fock, random-phase ap-
proximation� predicted such transitions already at very low
values of rs. In contrast, Tanatar and Ceperley, as well as the
most recent QMC work by Drummond et al., find no such
phase transition, where the ferromagnetic state is very close
in energy but the paramagnetic state remains the ground
state. Indeed, direct comparisons of the QMC-PDFs of At-
taccalite et al., with the more accurate PDFs of Drummond
et al., show slight differences which show the need to be
cautious about undue claims of final accuracy.

QMC methods have also been used to calculate Fermi-
liquid parameters2 like m� and g�, but these, and especially
the m� calculation4 may require further effort before a con-
sensus is reached.

Besides QMC, one other method5 available for the calcu-
lation of PDFs of quantum �e.g., electron� fluids at arbitrary
coupling, temperature, and spin polarization is based on con-
sidering a classical charged fluid at an assigned classical-

fluid temperature Tcf, selected to reproduce the correct cor-
relation energy of the quantum fluid which has two spin
species � ,�. The noninteracting PDFs g�,�

0 �r� of the classical
charged fluid are formulated to agree with the analytically
known noninteracting g�,�

0 �r� of the quantum fluid. This is
done by introducing an effective potential known as the Pauli
exclusion potential P�,� to exactly reproduce the Fermi hole
in the parallel spin g0�r�. Once an “equivalent” classical map
of the quantum fluid is constructed, its PDFs are obtained
using a classical integral equation, namely, the hypernetted-
chain �HNC� equation modified to include bridge correc-
tions. This classical-map hypernetted chain procedure was
called the CHNC, and we showed that the method was sur-
prisingly accurate. The classical-fluid temperature of the
quantum fluid at T=0 was called the “quantum temperature”
Tq. In fact, using only the correlation energies tabulated by
Tanatar and Ceperley as the inputs, we constructed the effec-
tive quantum temperature Tq as a function of rs, and showed
that accurate PDFs of the quantum fluid could be calculated
at arbitrary rs via the classical map.5 Balutay and Tanatar6

also presented a closely similar temperature map. The advan-
tage of the CHNC approach is that it is numerically very
simple, and makes many properties �spin-dependent proper-
ties, Fermi-liquid parameters, local-field corrections, finite-T
results, etc.� easily computable with negligible effort. Thus
the product m�g� can be evaluated7 from the second deriva-
tive of the correlation energy with respect to the spin polar-
ization �. The effective mass m� can be obtained7 from the
second density derivative of the free energy which can be
evaluated from the temperature-dependent PDFs.

However, the classical map of the 2D electron fluid leads
to a Coulomb fluid for which the simple HNC is inadequate.
The irreducible three-body and higher-order contributions
which are lumped into the bridge term B�,��r� are very dif-
ficult to calculate directly. The need for bridge functions ap-
pears in many areas in the theory of Coulomb systems.8

Hence, as is customary,9 in our earlier work we used a hard-
disk model, based on solutions of the Percus-Yevik
equation.10 However, the availability of an extensive set of
QMC-generated PDFs for the 2D electron fluid presents the
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possibility of extracting accurate Coulomb-adapted bridge
functions B�r�. These are implicit functions of the PDFs
themselves.11 Thus, in this paper we present an iterative pro-
cedure for extracting the 2D-bridge functions appropriate to
a classical Coulomb fluid at a given rs, and at the effective
classical-fluid temperature Tcf, and yielding the quantum
PDF at the given rs and at T=0.

II. HNC AND CHNC METHODS

The HNC equation12 and its generalizations, coupled with
the Ornstein-Zernike �O-Z� equation have lead to very accu-
rate results for classical charged-particle interactions. In the
following we use indices i , j which could be spin indices or
other species-identifying indices. The exact equations for the
PDFs are of the form

gij�r� = e−�cf�ij�r�+Nij�r�+Bij�r�, �1�

Nij = hij�r� − cij�r� , �2�

hij�r� = gij�r� − 1. �3�

Here �ij�r� is the pair potential between the species i , j, and
Nij�r� is the nodal function while cij�r� is the direct correla-
tion function connected to hij by the O-Z equation. The pair
potential �ij�r� is the sum of a diffraction corrected Coulomb
potential and the Pauli exclusion potential �see Eqs. �1� and
�2�, Ref. 5�.

If the bridge function Bij�r� were set to zero we have the
HNC approximation, adequate for systems where the kinetic
energy dominates strongly over the potential energy. The
bridge function brings in many-body cluster interactions be-
yond the diagrams of the hypernetted chain expansion. A
systematic investigation of the three-dimensional one-
component plasma was given many years ago by Lado et al.9

As the bridge interactions involve many-internal interactions
�within the cluster� averaged over, they are somewhat insen-
sitive to the exact form of the pair interactions, and their spin
states. Thus it was shown10 that the analytically available
Percus-Yevik hard-sphere bridge function could be used for
most fluids, to closely reproduce the Monte Carlo PDFs
available at the time. The hard-sphere radius of the model
bridge function was in effect an optimization parameter in
such approaches to liquid structure.

The PDFs of the classical 2D electron fluid became rel-
evant to 2D quantum fluids when Laughlin13 introduces his
plasma mapping of 2D fractional-quantum Hall �FQH� fluids
to classical plasmas. The use of a suitable bridge function
was found to be essential if high accuracy was to be obtained
via the plasma map14 for the hierarchy of FQH states. The
temperature of the classical fluid in Laughlin’s classical map
is directly related to the filling factor, via the form of the
many-body wave function proposed by Laughlin �Laughlin
used a simple HNC without bridge corrections�. There is no
external magnetic field in the 2D systems studied here. It
turns out that the temperature of the classical charged fluid
whose PDF agrees with the electron �quantum� fluid at T
=0 can be expressed5 as a function of the density parameter
rs.

We found5 that the use of hard-sphere model bridge func-
tions gave good agreement around the first peak of the PDFs
while the more distant oscillations were weaker than those in
the QMC-PDFs. The PDF of the fully spin-polarized T=0
electron fluid at rs=10, calculated using CHNC without
bridge, and CHNC with a hard-sphere bridge function,5 and
the benchmark QMC-PDF are shown in Fig. 1.

The bridge function B�r� is a function of the PDFs them-
selves, and hence their extraction from QMC simulation re-
sults is by no means obvious. However, given a choice for
the effective pair potential and classical-fluid temperature
implicit in the CHNC ���r�ij, and the assumed applicability
of the modified-HNC equation and the O-Z equation, a
bridge function can be evaluated from the QMC-g�r�. This
evaluation requires separating out the long-range tails of the
pair potentials, direct correlations, etc., in r and k space,
using numerical Fourier transforms for the short-range parts,
analytical formulas for the long-range parts and reassembling
the results in r and k space. Since these mathematical ma-
chinery are already available in the algorithms for the
CHNC, we present here a simple iterative scheme equivalent
to the above, but using the CHNC code itself.

The B�r� functions obtained from such a procedure, to-
gether with the ���r� of CHNC present a complete, accu-
rate, classical representation of the quantum PDFs obtained
by QMC. It is hoped that such bridge functions and classical
maps can then be used in regimes where QMC simulations
are not possible or easily available, as discussed below.

III. EXTRACTION OF THE BRIDGE FUNCTION FROM
QMC DATA

Given a density n=1 / ��rs
2� specified by an rs value, the

target QMC-PDFs that we use are those of Attaccalite et al.,
as parametrized by Gori-Giorgi et al.15 We drop the species
indices i , j except when required, and indicate the PDFs from
QMC and CHNC by g�r� and gchnc�r�. Given the hypothesis
that the QMC-PDFs can be represented by classical forms, a
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FIG. 1. �Color online� The QMC pair-distribution function of a
fully spin polarized ��=1� electron fluid at rs=10, T=0 is com-
pared with those calculated from CHNC using a hard-sphere bridge
function and with no bridge function what so ever
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nodal function and bridge function corresponding to the
given target g�r� should exist. Thus the QMC and the CHNC
PDFs satisfy

log�g�r�� = − ���r� + N�r� + B�r� . �4�

Both N�r� and B�r� are implicit functions of g�r�. However,
all the terms in the CHNC form

log�gCHNC�r�� = − ���r� + NCHNC�r� + BCHNC�r� �5�

are known. Also, it has been found from previous
comparisons5 of g�r� and gCHNC�r� that they agree closely,
even when BCHNC�r� was taken from a hard-disk model.
Hence we assume that N�r� can be replaced by NCHNC as a
first approximation. Then we easily obtain an initial estimate
of the bridge function contained in the QMC-PDF,

B�r� = log�g�r�� − log�gCHNC�r�� + BCHNC�r� . �6�

Thus, starting from the hard-sphere model of BCHNC�r� we
obtain a standard mixing procedure to construct a new
BCHNC�r�, and hence a new gCHNC, and so on. In the small-r
region, the value of g�r� becomes negligibly small and hence
the extraction of the difference between two logarithms be-
comes numerically unsatisfactory. However, as may be sur-
mised from Eq. �6�, the calculated g�r� are found to be in-
sensitive to the form of B�r� for r�rs. Thus even a simple
polynomial extrapolation �connecting the r /rs�1 region
with, say, the region 1�r /rs�1.5� or the hard-sphere model
itself may be used. The iterative procedure is even insensi-
tive to slight discontinuities at the connection point �although
of course, discontinuities should be avoided�. These bridge
functions will be called “Coulomb bridge functions,” to dis-
tinguish them from the hard-sphere bridge functions BHS�r�.

The extraction procedure for the Coulomb bridge func-
tions Bi,j�r� from the QMC-PDFs, i.e., gij�r� is found to be
very efficient, and the iterative inclusion of the extracted
bridge functions leads to rapid convergence in reproducing
the target gij�r�. It is easiest to consider a fully spin-polarized
�i.e., �=1� electron fluid as it is a one-component system,
with just one bridge function. A set of bridge functions for a
range of rs values which reproduce the QMC pair-
distribution functions at �=1 when used in CHNC are shown
in Fig. 2. It is found that as rs increases from 0.3 �not shown�
to unity, the B�r� remains more or less unchanged. From then
onward, especially after rs=3, the development of the first
peak in the PDF produces an oscillatory structure in B�r�.
This trend continues till about rs=6. However, now the deep-
ening of the second trough in the PDF leads to a complete
qualitative change in the form of the bridge function, as seen
from the panel �b� of Fig. 2. The new deep trough seen near
x=r /rs�3 is already there as a weak trough in the moder-
ately coupled fluids of panel �a�. In panel �a�, the deep trough
is in the r /rs�1 region and it is not of much importance in
the HNC equation. In panel �b�, when the deep trough near
x�3 develops, the small x region rises rather steeply. But
this rise has only a small numerical significance in the HNC
since the pair potential and the Pauli potential become very
large and dominant for small x. In contrast, the structure in
B�r� for larger x becomes significant, as the pair-potential
effects fall off with increasing x. These results show that the

short-range structure of the fluid undergoes significant and
subtle changes in the regime rs�6. Previous studies of the
local-field corrections to the response function of the 2D
electron liquid had unraveled interesting characteristics16,17

which may well be related to the onset of strongly correlated
clusters for rs�6.

Another system which effectively reduces to a one-
component system is the paramagnetic electron fluid ��=0�
with equal amounts of up-spin, and down-spin species. As a
test of spin insensitivity, we can use the bridge functions
determined from the �=1 case for the �=0 case and see if the
CHNC-PDFs reproduce the QMC-PDFs. This is in fact very
nearly the case, showing that the spin-polarization depen-
dence of B�r� is very small. This also shows that, if desired,
one may introduce just one bridge function B�r ,�� for all i , j
components, where the latter is based on linearly interpolat-
ing between B�r ,�=1� and B�r ,�=0� since they are very
similar. The differences are found in the near r�rs region
close to the first peak, where the Pauli-exclusion effects, dif-
fraction effects, etc., are comparable to the Coulomb repul-
sion effects �see the discussion of Fig. 3�.

IV. DISCUSSION

Currently, the most sophisticated QMC calculations for
the quantum 2D electron liquid are those of Drummond et al.
In practice, the differences between those of Drummond et
al., and those of Attaccalite et al., are irrelevant except for
dealing with very small energy differences indicative of a
phase transition from the paramagnetic to the ferromagnetic
state. The presence or absence of a ferromagnetic transition
would also modify the predictions regarding the enhance-
ment of g�. The lack of such a transition in the results of
Drummond et al., further illustrate the difficulties inherent in
assuming that a given set of QMC data are essentially the
definitive result. Given the very slight energy differences be-
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FIG. 2. �Color online� The 2D Coulomb bridge functions needed
for a classical description of the pair-distribution function of a fully
spin-polarized ��=1� 2D electron fluid, for rs=1 to 50. Panel �a�
shows the weak to moderately coupled regime. Panel �b� shows that
the nature of the B�r� changes rapidly near rs=6 and rs=7, when
the second trough in the PDF begins to develop. The PDFs are
insensitive to the behavior of these functions for r /rs� �1.3.
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tween the two phases, any technical improvements can
modify the conclusions. Since CHNC is based on using some
of the QMC data as inputs, and then applying CHNC to other
instances, the conclusions of CHNC also get modified as the
input QMC data are modified. Thus, in our study of the two-
valley 2D electron gas18 found in Si metal-oxide field-effect
transistors �MOSFETS�, we used hard-sphere bridge func-
tions, and the classical-fluid temperatures based on the QMC
correlation energies of Tanatar and Ceperley as inputs to the
CHNC. It was found that the two-valley systems becomes
critical at sufficiently high rs values, when the effective mass
and the spin susceptibility become very large. This property
is no longer found to be the case when more accurate bridge
functions are used.

The pair-distribution functions calculated from CHNC us-
ing the bridge functions extracted from the Gori-Giorgi et al.
fit to the Attaccalite g�r� are, of course, essentially identical
to the target g�r�. Thus a comparison of CHNC-g�r� using
the fitted B�r� is a check on our fitting process as well as an
indirect comparison of Refs. 2 and 3. It also enables us to
check on the applicability of the B�r� obtained from the
polarized-2D system for predictions on the unpolarized sys-
tem. In Fig. 3 we compare CHNC-g�r� with numerical data
from Drummond et al.,19 for rs=20, �=1, and rs=30, �
=0. In the latter case, we have also calculated the CHNC
PDFs using the appropriate bridge function B�r ,�=0�, and
also the inappropriate B�r ,�=1� to display the relative insen-
sitivity of the PDF to any spin-polarization dependence in
B�r�.

It should also be noted that we have not modified the
quantum temperature Tq of the classical map given in Ref. 5
in extracting the bridge functions. In the classical map of
Balutay et al., a pure-HNC procedure and a different Tq were
used. If it were extended to include the bridge terms, quali-
tatively very similar results are obtained for the bridge func-
tions which are now slightly different functions.

Once a family of bridge functions for each rs and Tq is
obtained, the g�r� for each rs as well as all the smaller rs data
are used in the adiabatic-connection formula for the correla-
tion energy Ec. Then the QMC value of Ec will be accurately
recovered, and hence we need not revise the preset quantum
temperature Tq that was used in the classical map. That is,
given a Tq of a classical map of the CHNC type, the use of
the Coulomb bridge function based on that Tq instead of the
original bridge functions used when forming the Tq, does not
require any refitting the Tq. This is a very convenient conser-
vation property for implementing CHNC calculations with
improved bridge functions.

The advantage of the CHNC procedure over those of
QMC is its simplicity of implementation, as well as its easy
applicability to finite-T, finite-� situations. Thus CHNC stud-
ies of multivalley systems �e.g., Si-MOSFETs�, nanostruc-
tures, etc., can be attempted. Finite-T studies become pos-
sible if the B�r� remain valid even for finite-T, at least in the
near T=0 region. An estimate of the transferability of the T
=0 bridge functions to finite-T may be obtained by noting
that temperature acts to level out the oscillations in the PDFs
while the B�r� attempts to sharpen the oscillations.

Some years ago we showed20 that very interesting spin-
dependent effects arise in the T=0 to T=EF region due to the
interplay of spin, onset of partial degeneracy, Coulomb cor-
relations, and temperature effects. Those studies were carried
out with the hard-sphere bridge functions available at that
time. Such temperature-dependent studies are still beyond
the reach of QMC methods. The accuracy of those earlier
B�r�HS-based studies at finite-T can now be further examined
using the new bridge functions.

Finite-temperature studies of the free energy of the 2D gas
as a function of density and spin polarization can also be
used to determine Fermi-liquid parameters such as the effec-
tive mass4,21 and the spin susceptibility. In CHNC we di-
rectly determine m� from the second density derivative of the
excess free energy with respect to the density.7 Thus, the
availability of these new Coulomb bridge functions which
accurately describe the T=0 PDFs provide greater confi-
dence in the results that may be obtained for the Fermi-liquid
parameters in future studies.

In conclusion, we have presented an accurate classical
representation of the pair-distribution functions of the quan-
tum 2D electron fluid at T=0, for arbitrarily strong coupling
and arbitrary spin polarizations.
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