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The role of electron-electron interactions is analyzed for Rashba-like and spin-split systems within a tight-
binding single-band Hubbard model with on-site and all nearest-neighbor matrix elements of the Coulomb
interaction. By Rashba-like systems we refer to the Dresselhaus and Rashba spin-orbit-coupled phases while
spin-split systems have spin-up and spin-down Fermi surfaces shifted relative to each other. Both systems
break parity but preserve time-reversal symmetry. They belong to a class of symmetry-breaking ground states
that satisfy: �i� electron crystal momentum is a good quantum number, �ii� these states have no net magnetic
moment, and �iii� their distribution of “polarized spin” in momentum space breaks the lattice symmetry. For all
members of this class, the relevant Coulomb matrix elements are found to be nearest-neighbor exchange J, pair
hopping J�, and nearest-neighbor repulsion V. These ground states lower their energy most effectively through
J, hence we name them class J states. The competing effects of V−J� on the direct and exchange energies
determine the relative stability of class J states. We show that the spin-split and Rashba-like phases are the
most favored ground states within class J because they have the minimum anisotropy in polarized spin. We
analyze these two states on a square lattice and find that the spin-split phase is always favored for near-empty
bands; above a critical filling, we predict a transition from the paramagnetic to the Rashba-like phase at a
critical J�Jc1� and a second transition from the Rashba-like to the spin-split state at Jc2�Jc1. An energetic
comparison with ferromagnetism highlights the importance of the role of V in the stability of class J states. We
discuss the relevance of our results to �i� the � and � phases proposed by Wu and Zhang in the Fermi-liquid
formalism and �ii� experimental observations of spin-orbit splitting in Au�111� surface states.
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I. INTRODUCTION

Numerous broken-symmetry phases have been predicted
to arise from electron-electron interactions. These phases are
often framed in the language of Pomeranchuk instabilities of
the Fermi liquid �FL�.1–4 In this language, the interactions
that drive a symmetry breaking are purely phenomenologi-
cal, though work has been done to derive the Landau inter-
action parameters from a more physical model, e.g., the Hub-
bard model; in these works5,6 particular attention has been
drawn to the Hubbard parameter U �describing on-site repul-
sion� because of the strong interest in high-temperature
d-wave superconductivity.7 There has been further progress
made by Lamas and co-workers in understanding how the
lattice affects FL instabilities in two dimensions,8 focusing
on Hubbard interactions U and V �nearest-neighbor repul-
sion�.

In the tight-binding representation, U and V are matrix
elements of the Coulomb interaction that are diagonal in the
density operators; there are also nondiagonal matrix
elements.9–13 In total, there are four nearest-neighbor inter-
actions, denoted by V �diagonal� and J, J�, and �t �off-
diagonal�. This Hamiltonian �including U� is usually termed
“generalized Hubbard model.”

In this paper, we ask: other than ferromagnetism and an-
tiferromagnetism, what kinds of broken-symmetry phases in-
volving spin arise in the generalized Hubbard model? It was
initially proposed by one of us14 that the interaction J
�nearest-neighbor ferromagnetic exchange� plays a crucial
role in displacing the Fermi surfaces of spin-up and spin-
down electrons relative to one another; the resultant spin-
split metallic phase is illustrated in Fig. 1�a�. Subsequently,

the spin-split phase has also been predicted to arise in the FL
framework by Wu and co-workers15 and by Chubukov and
Maslov.16 A possible realization of the spin-split phase was
originally proposed to be the low-temperature broken-
symmetry phase of chromium;14 recently Varma and Zhu
have proposed that it may describe the “hidden order” phase
in the heavy fermion compound URu2Si2.17

In addition to the spin-split phase �dubbed the � phase by
Wu et al.�, Wu et al. also showed that many spin-orbit-
coupled phases �the � phase� may arise from a phenom-
elogical Landau interaction in the p-wave spin channel. In
two dimensions, these phases include the Rashba,18

Dresselhaus19 and helicity spin-orbit-coupled systems; for
convenience, we call these group of spin-orbit-coupled
phases Rashba-like. The Rashba-polarized state is illustrated
in Fig. 1�b�.

In this paper we return to the tight-binding Hubbard for-
malism and analyze the effects of on-site repulsion and all
nearest-neighbor matrix elements of the Coulomb interac-
tion. We demonstrate that the spin-split state and the Rashba-
like phases are part of a broader class of symmetry-breaking
ground states for which the relevant matrix elements are
nearest-neighbor exchange J, pair hopping J�, and nearest-
neighbor repulsion V. This class of ground states has three
properties: �i� electron crystal momentum is a good quantum
number; �ii� these states have no net magnetic moment; �iii�
their distribution of “polarized spin” in momentum space
breaks the lattice symmetry. In this class of ground states, we
compare the stability of different phases and examine the
individual roles played by J, J�, and V in changing the dis-
persion and the ground-state energy.

In our analysis of the Rashba-polarized state, we are also
motivated by the following observation. Photoemission ex-
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periments on Au�111� surfaces have revealed a splitting of
Rashba-polarized Fermi surfaces; the experimental results
may be reproduced in a free-electron model by a phenom-
enological interaction

HR = �R�� · �n̂ � k�� �1�

with an electric field perpendicular to the surface �parallel to
n̂�.20–24 The Fermi wavevector in Au is kF�0.16 Å−1 and
the measured energy splitting of the Fermi surfaces is
�0.11 eV, corresponding to a Rashba coupling constant
�R�0.34 eV Å−1. The Rashba coupling constant derived
from the Dirac Hamiltonian in the nonrelativistic limit is

�R = −
e�2

4me
2c2E �2�

with e and me the electron charge and mass and E the electric
field normal to the surface. For the experimentally observed
splitting, the magnitude of the electric field in Eq. �2� is

− eE = 91,228 eV/Å−1. �3�

Such a large value of the electric field is justified only with
the assumption that the conduction electrons get very close
to the Au nucleus; this is incompatible with a free-electron
model. In this paper we ask the question: can electron-
electron interactions cause a large enhancement of the single-
particle spin-orbit splitting so that the observed Fermi-
surface splitting is explained with a much weaker electric
field than the value in Eq. �3�?

This paper is organized as follows: in Sec. II, we discuss
the relevance of various Hubbard parameters and identify a
class of ground states for which the relevant parameters are
J, J�, and V. With these important parameters, we derive a
reduced Hamiltonian. We solve this reduced Hamiltonian for
Rashba-like phases in Sec. III and for the spin-split state in
Sec. IV. In Sec. V, we find that V plays a pivotal role in the
phase transition between the Rashba-like and the spin-split
state. In Sec. VI, we consider the stability of class J ground
states other than the spin-split and Rashba-like phases; we
also discuss various symmetries of the class. In Sec. VII, we
investigate the stability of the spin-split and Rashba-like
states in comparison with ferromagnetism. Section VIII
draws the connection between the formalism in this paper
and the Fermi liquid � and � phases.15 In Sec. IX, we sum-

marize the key physical ideas and discuss possible generali-
zations to other lattices. Several technical points are dis-
cussed in the Appendix.

II. REDUCED HAMILTONIAN

We consider a single-band generalized Hubbard model
with on-site and all nearest-neighbor interactions25

H = Ht + HU + HJ + HJ� + HV + H�t. �4�

Respectively, the individual terms are the nearest-neighbor
hopping and the various electron-electron interactions that
correspond to on-site repulsion U, nearest-neighbor ex-
change J, pair hopping J�, nearest-neighbor repulsion V, and
correlated hopping �t.

We consider a two-dimensional square lattice and assume
that the spinor is confined in the x-y plane; we denote this
restricted set of bases by the index ��= 	1�

ck� =
1
�2

�ck↑ + �
�k�ck↓� , �5�

where we choose the convention that the basis ��= ↑ ,↓� is
quantized in the ẑ direction. We write the momentum-
dependent amplitude 
 as ��k�+ i��k�, with ��k� and ��k�
real. The physical interpretations of � and � are clear—a
spinor in the x-y plane may be expressed as

1
�2

	 1


�x� + i
�y�
� . �6�

The normalization 


2=1 is just the condition that 
�x�2

+ 
�y�2=1.
In assuming that the spin orientations of all electrons are

coplanar, we are anticipating an exchange interaction that
favors parallel alignment of spins. An out-of-plane degree of
freedom in spin space will tend to disrupt the parallel align-
ment of spins and is energetically suppressed.

In the coplanar basis characterized by 
, the kinetic hop-
ping term has the form
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FIG. 1. �a� Fermi-energy con-
tours of a spin-split state. �b�
Fermi energy contours of a
Rashba-polarized state.
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Ht = − 2t�
k,�

�cos kx + cos ky�ck�
† ck� �7�

just like in the � basis. Before transforming to the � basis,
the Coulomb interaction has terms quartic in creation and
annihilation operators in the � basis

HU =
U

2N
�

k,k�,q,�

�

ck+q,�
† ck�−q,−�

† ck�,−�ck,�,

HJ =
J

2N
�

k,k�,q,�

�,��

ei�k−k�+q�·�ck+q,�
† ck�−q,��

† ck�,��ck,�,

HJ� =
J�

2N
�

k,k�,q,�

�

ei�k+k��·�ck+q,�
† ck�−q,−�

† ck�,−�ck,�,

HV =
V

2N
�

k,k�,q,�

�,��

eiq·�ck+q,�
† ck�−q,��

† ck�,��ck,�,

H�t =
�t

2N
�

k,k�,q,�

�

�eik·� + eik�·� + ei�k−q�·� + ei�k�−q�·��

� ck+q,�
† ck�−q,−�

† ck�,−�ck,�. �8�

We convert this to the � basis and decouple in the 
ck�
† ck��

direct channel. Define mean fields

nk = nk+ + nk− = 
ck+
† ck+� + 
ck−

† ck−� �9�

and

�k = nk+ − nk− = 
ck+
† ck+� − 
ck−

† ck−� . �10�

In this paper we consider the set of ground states satisfy-
ing the symmetry constraints

�
k


�k��k = 0 �11�

and

�
k,�

eik·�
�k��k = 0. �12�

We will call them “class J ground states.” We deduce from
Eqs. �5� and �10� that Eq. �11� sums over the spins of all the
polarized electrons, hence these ground states have no net
magnetic moment—ferromagnetism does not belong in this
class. Equation �12� ensures that the momentum distribution
of the polarized spin 
� does not have the symmetry of the
underlying lattice; in two dimensions this symmetry is the
point group Cn
 for a lattice with n-fold symmetry. From the
choice of mean fields in Eqs. �9� and �10�, we deduce that
electron crystal momentum k is a good quantum number in
class J, hence antiferromagnetic and spin-density-wave states
are excluded.

We prove in Sec. VI C that these ground states break par-
ity. For the special case that ��k���k� are invariant under k
→−k, we also show that they preserve time-reversal symme-
try.

There are many variations in ground states that fall into
this class. We consider the following cases: �i� � breaks the
lattice symmetry but 
 does not. The simplest example is
when 
 is independent of momentum—the spin orientation
of all electrons point along the same axis—and there is a
relative displacement of spin-up and spin-down Fermi sur-
faces with respect to each other. This is the spin-split state
shown in Fig. 1�a�.

�ii� 
 breaks the lattice symmetry but � does not. The
simplest example is an expansion of one Fermi surface with
respect to the other in a basis that rotates spin by 2� rad as
we go around the Fermi contour, i.e., winding number of 1.
These include eigenstates of helicity �spin parallel or antipar-
allel to momentum� and eigenstates of the Rashba and
Dresselhaus spin-orbit interactions. The Rashba state is
shown in Fig. 1�b�.

�iii� It is also possible that 
 and � both break the lattice
symmetry. These exotic ground states are shown to be ener-
getically unfavorable in Sec. VI B.

These constraint will have important implications on
which Hubbard parameters are relevant to the energetics of
polarization. In particular, we will find that the nearest-
neighbor exchange J is the greatest driving force for symme-
try breaking, hence the name class J.

We proceed to reduce the Hamiltonian in Eq. �4�. We
introduce matrices

��k�� = nk�	1 0

0 1
� , �13�

��k,k�� = − �k�	 ���� + ���� i���� − ����
− i���� − ���� − ���� + ����

� . �14�

To simplify notation, we have written �k as � and ��k�� as ��
in Eq. �14�, and similarly for �. For the rest of this paper, we
use the convention that �=��k�� and �=��k ,k�� as defined
in Eqs. �13� and �14�. The diagonal and off-diagonal ele-
ments of � are proportional to 
�� · 
��� and 
��� 
���,
respectively.

There are two values of momentum transfer q that con-
tribute to the mean field: q=0 and q=k�−k. For example,
consider the on-site repulsion U. We may organize

HU = HU
�q=0� + HU

�q=k�−k�. �15�

After the mean-field decoupling,

HU
�q=0� =

U

2N
�

k,k�,�

�ck+
† ck−

† ����	ck+

ck−
� �16�

HU
�q=k�−k� =

U

2N
�

k,k�,�

�ck+
† ck−

† ����	ck+

ck−
� . �17�

We have neglected constants proportional to 
c†c�
c†c� that
will affect the expectation value of the ground-state energy
but not the single-particle energy spectrum. We carry out the
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integral over k�. Defining n as the total number of electrons,
�k��=n���� which is a constant matrix independent of po-
larization. Equation �11� leads to �k��=0. We conclude that
HU does not contribute to class J-type polarization. For the

same reasons, we may discard H�t
�q=k�−k� and HV

�q=0�.
We also consider

H�t
�q=k�−k� =

�t

2N
�

k,k�,�

�eik·� + eik�·���ck+
† ck−

† ��2��	ck+

ck−
� .

�18�

The sum over k� vanishes because of both symmetry con-
straints in Eqs. �11� and �12�.

The following terms are left:

HJ
�q=0� =

J

2N
�

k,k�,�

ei�k−k��·��ck+
† ck−

† ��2��	ck+

ck−
� , �19�

HJ� =
J�

2N
�

k,k�,�

ei�k+k��·��ck+
† ck−

† ��� + ��	ck+

ck−
� , �20�

HV
�q=k�−k� =

V

2N
�

k,k�,�

ei�k−k��·��ck+
† ck−

† ��� − ��	ck+

ck−
� ,

�21�

H�t
�q=0� =

�t

2N
�

k,k�,�

�eik·� + eik�·���ck+
† ck−

† ��2��	ck+

ck−
� .

�22�

With the exception of H�t
�q=0�, the other interactions are

particle-hole symmetric—we will show that their effects are
extremized at half filling.

We briefly describe the roles of the various Hubbard pa-
rameters: �i� the expectation value of Eq. �19� is


HJ
�q=0�� =

J

2N
�

k,k�,�

ei�k−k��·�nknk�. �23�

The amplitude ��ei�k−k��·� is negative when ki�0 and ki�
� 	� or vice versa, hence J favors a separation of electrons
in momentum space, i.e., polarization. This was first pointed
out by one of us26 in connection with ferromagnetism. Since
Eq. �23� is independent of the choice of basis, we find that J
promotes polarization in any arbitrary basis; this is true even
for ground states that do not satisfy the symmetry constraints
in Eqs. �11� and �12�. Class J ground states are special be-
cause they reduce their energy most effectively through
nearest-neighbor exchange J when they break symmetry.

�ii� The expectation value of Eq. �21� is


HV
�q=k�−k�� = −

V

4N
�

k,k�,�

ei�k−k��·���k�k�
�� · 
��� + nknk�� .

�24�

The second term has the opposite effect of J and tends to
suppress polarization. The first term causes an energy split-

ting between the �= 	1 bands and tends to lower the energy
if polarized electrons with k�k� have parallel spin. This is
analogous to the exchange energy J that favors parallel spins
for localized electrons; this was proposed by Heisenberg as a
mechanism to explain ferromagnetism.27 The difference is
that in the momentum representation, J influences the direct
energy while V mixes both direct and exchange energy.

While J unambiguously assists polarization in any basis,
V affects both direct and exchange energies in a manner that
is self-cancelling; its net effect on polarization depends sen-
sitively on �i� the choice of ground state and �ii� band filling.
Hence, V plays the crucial role of deciding which ground
state is energetically favored for a given band filling.

�iii� We show in Sec. III E that the main effects of J� and
�t are to cancel V and t, respectively.

We now analyze the two simplest examples of class J
with this reduced Hamiltonian—they are the Rashba-like and
the spin-split states. In Sec. VI B, we demonstrate that they
are also the most stable in this class.

III. CASE STUDY OF RASHBA-LIKE GROUND STATE

We examine a set of ground states with spin structures
that diagonalize Hamiltonians of the form H
��x sin ka	�y sin kb. For specificity, we first consider the
Rashba spin-orbit basis. For completeness of analysis, we
add a Rashba single-particle interaction HR to the Hamil-
tonian in Eq. �4�; this originates from the Dirac spin-orbit
interaction �Eq. �1�� with an electric field perpendicular to
the plane

H = Ht + HR + HU + HJ + HJ� + HV + H�t. �25�

With only nearest-neighbor hopping, the tight-binding ver-
sion of the single-particle Rashba Hamiltonian �Eq. �1�� is28

HR = − �R �
k���

ck�
† �sin kx��y���� − sin ky��x�����ck��,

�26�

where spin indices � are chosen to be diagonal in the ẑ
direction; Eq. �26� is formally derived in part A of the Ap-
pendix. Diagonalizing this Hamiltonian in momentum space,
we obtain

HR = �R�
k,�

��sin2 kx + sin2 kyck�
† ck�. �27�

We distinguish between indices � and �; the latter denotes
the Rashba polarization and takes on values 	1. The eigen-
vectors are

ck� =
1
�2

	ck↑ + �
fk


fk

ck↓� , �28�

fk = sin ky + i sin kx. �29�

We introduce the generalized dot and cross products

k̃i =
sin ki

�� j
sin2 kj

, �30�
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k̃ · k�̃ = �
ij

k̃ik̃ j��ij , �31�

k̃ � k�̃ = �
ij

k̃ik̃ j��ij . �32�

Note that �ij is the Levi-Civita symbol. The matrices intro-
duced in Eqs. �13� and �14� take the form

� = nk�	1 0

0 1
� , �33�

� = �k�	− �k̃ · k̃�� − i�k̃ � k̃��

i�k̃ � k̃�� �k̃ · k̃��
� . �34�

We may easily generalize the above results to include the
tight-binding generalizations of the Dresselhaus and helicity
spin-orbit bases. The Dresselhaus basis follows from chang-
ing the spin orientation fk→sin kx+ i sin ky in Eqs. �28� and
�29�; the helicity basis changes fk→sin kx− i sin ky. Without
any single-particle spin-orbit coupling, all three ground
states are degenerate because electron-electron interactions
cannot distinguish between their spin structures. Other than
the spin structure encoded in fk, all the results that follow in
the rest of Sec. III are applicable to the Dresselhaus and
helicity states if �R=0.

We first analyze a further reduced Hamiltonian with only

Ht, HR, HJ
�q=0�, and HV

�q=k�−k� in one and two dimensions; we
defer a discussion of the effects of H�t

�q=0� and HJ� to Sec.
III E.

A. One dimension

The reduced Hamiltonian is exactly solved in one dimen-
sion. Many of the qualitative conclusions generalize to two

dimensions. The generalized dot product reduces to k̃ ·k�̃
=sgn�k�sgn�k�� and the cross product vanishes. The interac-
tion part of the Hamiltonian simplifies to

HV,J =
1

N
�

k,k�,�

cos�k − k��ck�
† ck�

� ��2J − V�nk� − �V�k� sgn�k�sgn�k��� . �35�

We parametrize the polarization by a dimensionless quan-
tity �: nk	=1 for k� �−kF	� ,+kF	��. The single-particle
energy is

E��k� = − 2�t −
1

�
�2J − V�sin kFcos ��

�cos k + �	�R +
2

�
V sin kF sin ��sin
k
 . �36�

The ground-state expectation value of the full Hamil-
tonian is


H�
N

= −
2

�
sin kF��R sin � + 2t cos �� +

2

�2sin2 kF

��2J cos2 � − V� . �37�

From Eqs. �36� and �37�, we see explicitly that J promotes
polarization by increasing the bandwidth of the single-
particle energy spectrum. On polarization, V simultaneously
reduces the bandwidth and increases the energy splitting of
the Rashba bands; the net effect is that the V term in the
ground state energy is independent of �.

Minimizing 
H� with respect to �, the ground-state polar-
ization �� is determined by

�R cos �� +
2

�
J sin kF sin�2��� = 2t sin ��. �38�

This same equation can be obtained by enforcing the self-
consistency condition

E−�kF + ��� = E+�kF − ��� . �39�

In Sec. III B, we prove that they are equivalent statements by
minimization with Lagrange multipliers.

If �R=0, the polarization is determined by

cos �� =
�

2

t

J sin kF
�40�

and there is no nonzero solution for J�Jc with

Jc =
�

2

t

sin kF
. �41�

At J�Jc there is a symmetry breaking: � may take on values
	��. Note that the effect of J is maximized at half filling;
this is consistent with the particle-hole symmetry of the
nearest-neighbor exchange interaction.

Up to an arbitrary spin rotation, the Rashba state is
equivalent to the spin-split state in one dimension;14 we
show this in Sec. IV A.

B. Two dimensions

The off-diagonal terms in HV,J are proportional to the in-
tegral

�
�,k�

ei�k−k��·��k̃ � k̃���k�, �42�

which vanishes if the splitting satisfies �k=�−k and �kx,ky
=�	ky,	kx

. The latter condition reflects the symmetry of the
underlying square lattice.

We define the geometric factors

� =
1

N
�

k
�cos kx + cos ky�nk, �43�

� =
1

N
�

k

�sin2 kx + sin2 ky�k. �44�

Up to a negative constant −2t, � is the sum of the kinetic
energies of all the electrons; � can be interpreted as the order
parameter and is defined to be negative for positive �R. We
also define �o as the value of � when there is zero polariza-
tion; �o=0.

The single-particle energy spectrum is then
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E��k� = − 2�t −
1

4
�2J − V����cos kx + cos ky�

+ �	�R −
1

2
V���sin2 kx + sin2 ky . �45�

We observe that V results in an effective momentum-
dependent Zeeman field that is maximized at momenta
�	� /2, 	� /2� while � is the overlap of the polarization �k
with this Zeeman field. Consequently, V reduces the ex-
change energy most effectively at half filling, where any po-
larization takes maximal advantage of the Zeeman field.

The ground-state energy is


H�
N

= − 2t� + �R� +
1

2
J�2 −

1

4
V��2 + �2� . �46�

� ��� increases �decreases� as the system polarizes; by in-
spection of Eq. �46�, we confirm that J and �R favor polar-
ization. Whether V assists polarization or not is not clear
from Eq. �46� alone. In one dimension, �2+�2 is a constant
that is independent of polarization �cf. Eq. �37��, hence V
will not tip the balance in either direction. In Secs. III C and
V, we investigate the behavior of �2+�2 in two dimensions.

We wish to minimize the ground-state energy with the
constraint of fixed particle number n. Hence we define

G =

H�
N

− �	�
k

nk − n� �47�

and impose the condition

�G

�nk�

= 0. �48�

Since we are making an infinitesimal variation to the Fermi
surfaces of both Rashba bands, Eq. �48� only applies to states
at the two Fermi surfaces. From Eq. �48�,

�E��k��FS,� = � �49�

or

�E+�k��FS+ = �E−�k���FS− �50�

which is a generalization of Eq. �39�.
We define a and b

Ek� = − a�cos kx + cos ky� + �b�sin2 kx + sin2 ky . �51�

b is the energy splitting and a is a quarter of the bandwidth;
for convenience, we call a the bandwidth.

Given parameters t, J, V, �R and a filling n, Eqs. �9�, �10�,
�43�–�45�, and �49� may be solved numerically. A few repre-
sentative results are presented: �i� in Figs. 2�a� and 2�b�, a
symmetry-breaking solution exists for �R=0 and J�Jc �ii� in
Figs. 3�a� and 3�b�, a comparison is made between two
Rashba-polarized systems with equal �R but different J.
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FIG. 2. �a� Fermi-energy con-
tours of the two Rashba bands. Ar-
rows refer to spin directions. �b�
Dispersion at fixed ky =0. Param-
eters: t=1, V=2, J=3, �R=0. This
band is half filled. Symmetry
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C. A useful analytic approximation

We are motivated by the simplicity of the equations in one
dimension to look for a suitable approximation of the two-
dimensional equations; this approximation permits us to ex-
tract an analytic formula that relates J ,�R and t. We numeri-
cally explore the limits of validity of this approximation.

In one dimension, the Rashba bands can polarize in a
single direction. Hence, we minimize 
H� with respect to a
single polarization parameter � to obtain the unique ground
state with polarization ��. In addition,

�1D =
4

�
sin kF cos � , �52�

�1D = −
4

�
sin kF sin � �53�

and the combination �1D
2 +�1D

2 is independent of polarization
parameter �� and only dependent on the number of electrons;
this is a consequence of number conservation.

In two dimensions, the Rashba bands can polarize aniso-
tropically, hence we have to minimize 
H� with respect to all
the occupation numbers on the Rashba Fermi surfaces �see
Eq. �48��. This minimization process is equivalent to mini-
mizing 
H� with respect to mean fields � and �; this claim is
justified by the Hohenberg-Kohn theorem29 in part B of the
Appendix. After minimizing Eq. �46�, we obtain

2t = 	J −
V

2
�� + 	�R −

V

2
����

��
. �54�

�� /�� is fixed by the constraint of number conservation and
is generally a complicated function of � and �. The con-
stancy of �1D

2 +�1D
2 in one dimension suggests that we look

for a similar condition in two dimensions. In the limit that
the polarization is small relative to the filling, numerical re-
sults confirm that

��

��
� −

�

�
. �55�

Equation �55� is a good approximation even when extended
to systems that are medium polarized ��50% of the total
filling�; this is illustrated in Fig. 4. In Sec. V A, we provide a
geometric explanation of why this approximation is espe-
cially good near quarter filling.

Employing Eq. �55�, we cast Eq. �54� in the useful form

J =
1

�
�R +

2

�
t . �56�

We note that � is nonzero for any finite �R—a single-particle
Rashba interaction always polarizes the system. We may
minimize Eq. �46� with �R strictly zero to obtain the critical
J for symmetry breaking

Jc =
2

�o
t �57�

which is consistent with Eq. �41� in one dimension. Beyond
the approximation in Eq. �55�, we examine a correction to
Eq. �57� in Sec. V B and find that it is small for moderate

values of V. For a half-filled band in the unpolarized state,
electrons occupy all momenta with positive cos kx+cos ky,
hence symmetry breaking is most likely to occur at half fill-
ing where �o is maximized. We derive in part C of the Ap-
pendix the following equation:

Jc

t
=

�

kFJ1�kF�

=�2��	kF
2 −

kF
4

8
+

kF
6

768
−

kF
8

9216
+ ¯�−1

�58�

that is valid for small filling; J1�kF� is a Bessel function of
the first kind, of integral order 1. In this limit we see explic-
itly that Jc is lowered when filling increases. For �R=0 and
J�Jc, we may express the bandwidth defined in Eqs. �45�
and �51� as

a = �o	 2t

�o
− J +

V

2
� . �59�

As J is increased, symmetry breaking prevents the bandwidth
from reaching the critical value of �0V /2.

We observe that � and � are just the band filling and
polarization weighted by different geometric factors in their
respective integrals. For fixed � and �, we may ask what are
the range of J / t and �R / t that are consistent with this choice
of polarization and filling. Equation �56� gives us a simple
linear relation between J / t and �R / t that we plot in Fig. 5 for
various fillings. A Rashba-polarized system that is conven-
tionally explained by a nonzero �R is indistinguishable from
a system with a smaller �even zero� �R but larger J—there is
a trade-off between �R and J which is characterized by the
slope 1 /�. Typically, −��O�p̄� with p̄ the number of polar-
ized electrons normalized to a maximum of 1; this maximum
occurs in the fully polarized half-filled band. We explore the
implications of Eq. �56� for Au�111� in Sec. III D.

The analytic approximation in Eq. �55� is equivalent to
the statement that the polarization is independent of V. We
have shown that this approximation is only consistent if the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Number of polarized electrons

α2
+

β2

1

0.75

0.5

0.25

FIG. 4. �2+�2 vs number of polarized electrons. Parameters are
t=1, J=1, V=1 and �R is varied to change the extent of polariza-
tion. Numbers 0.25, 0.5, 0.75, and 1 on the graph refer to the total
number of electrons. �2+�2 can be approximated as a constant until
the number of polarized electrons exceeds half the total number of
electrons.
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resultant polarization is small relative to the band filling. We
defer a discussion of the role of V beyond this approximation
to Sec. V B.

D. Comparison with Au(111)

We investigate the range of values of t ,V ,J ,�R that are
compatible with the observed polarization of Au�111� surface
states, which has a hexagonal Brillouin zone. The small fill-
ing suggests we may approximate the Brillouin zone as
square.

Au�111� has a lattice constant of 2.89 Å. The Fermi mo-
menta of the two Rashba bands are 0.153 Å−1 and
0.177 Å−1.20 The energy dispersion is fitted to E�k�
=1.82 eV�k	0.0338�2. In the low-k limit, the tight-binding
dispersion reduces to E=−a�2−k2 /2�	bk from which we
infer a�3.64 eV and b�0.123 eV. � and � are evaluated
by numerically evaluating Eqs. �43� and �44� assuming cir-
cular Fermi surfaces: �=0.0707, �=−0.00244.

We define n̄ �p̄� as the band filling �polarization� normal-
ized to the range �0,2� ��0,1��. Given the above values of �
and �, we numerically solve the self-consistent mean-field
equations to obtain n̄=0.0363 and p̄=0.00525. This can be
compared with the fractional filling and polarization obtained
if we assume the experimental dispersion is embedded in a
square lattice, i.e., n̄=��0.1532+0.1772� / �2��2=0.0364 and
p̄=��0.1772−0.1532� / �2��2=0.00526.

Since the polarization is small compared to the filling, we
may employ the approximation of Eq. �55�. From Eq. �56�,
J / t=28.3–410�R / t; this is plotted in the inset of Fig. 5.

The conventional understanding of Au�111� is equivalent
to setting J=V=0, hence �R / t=0.069. We ask if the experi-
mental data is consistent with a smaller value of �R.

�i� From Eq. �51�, the energy splitting is related to the
Rashba constant and � by: �R+0.00122 V�0.123 eV. Re-
ducing �R requires that V be unphysically large if the
momentum-space polarization � is small. As per our discus-
sion in Sec. III B, the effect of V is maximized at half filling;
Au�111�’s band is near empty, hence V by itself is too weak
to produce the required energy splitting.

�ii� The energy-minimizing condition in Eq. �56� relates
J ,�R , t ,� ,�: J / t=28.3–410�R / t. Reducing �R while keep-

ing t fixed requires that J be unphysically large. This is be-
cause J most effectively polarizes a band at half filling but
the Au�111� band is nearly empty. One option to avoid en-
larging J is to decrease both �R and t simultaneously. How-
ever, this option is costly in V as per our discussion in �i�. We
conclude that it is unlikely that J and V play a significant role
in Au�111�.

E. Effects of �t and J�

The near-identical structures of Eqs. �20� and �21� �except
for minus signs� suggest the opposing roles played by J� and
V. One can show that the only effect of J� is to cancel V. We
may replace

V → Veff = V − J� �60�

in the preceding analysis of Sec. III. The presence of J� in
the dispersions of Eqs. �36� and �45� simultaneously in-
creases the bandwidth and reduces the energy splitting if the
system polarizes; these two effects tend to cancel and not
affect the resultant polarization.

We may derive from Eq. �22� the effect of �t on the
dispersion; we may substitute

E��k� → E��k� + 2�t�� + n̄�cos kx + cos ky�� . �61�

�t promotes polarization in two ways:
�i� the hopping parameter t is renormalized to teff= t

−�tn̄. This reduces the kinetic energy cost of polarization. �t
is the only nearest-neighbor interaction that breaks particle-
hole symmetry on a square lattice—this is reflected on the
dependence of teff on n̄.

�ii� On polarization, � decreases and the energies of all
electrons are reduced by the same amount, independent of k.

The effect of �t on the ground-state energy is


H�
N

→

H�
N

+ 2�tn̄� . �62�

The energy minimizing values of � and � are related by

J =
1

�
�R +

2

�
�t − �tn̄� �63�

with the approximation of Eq. �55�.

IV. CASE STUDY OF THE SPIN-SPLIT STATE

In Ref. 14 a parity-breaking spin-split Fermi-surface in-
stability was studied with a reduced Hamiltonian that limited
interactions to only nearest-neighbor exchange �J� of elec-
trons with antiparallel spin. The Hamiltonian in Ref. 14 is
equivalent to the particular choice V=J and �t=0 in the
more general reduced Hamiltonian considered in this paper;
we demonstrate this in part D of the Appendix.

A. One dimension

The spin-split state is equivalent to the Rashba-like state
in one dimension. In Fig. 6�a�, we depict a spin-split state in
which the spin is quantized along a direction perpendicular
to the electron’s momentum; in Fig. 6�b� we show the
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FIG. 5. Analytic approximation of J / t vs �R / t. These are the
values of J ,�R and t consistent with a polarization of 0.1 for fillings
0.25, 0.5, 0.75, and 1. The inset plots J / t vs �R / t in the model of
Au�111�.
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equivalent Rashba-polarized state. As a result of this equiva-
lence, they share the same dispersion �Eq. �36�� and ground-
state energy �Eq. �37�� with �R=0.

B. Two dimensions

The equivalence between the spin-split and Rashba-like
states in one-dimension does not generalize to two dimen-
sions. We begin with the general Hamiltonian in Eq. �4�.
Since the spin quantization direction is arbitrary in the spin-
split state, we choose for convenience that it lies along ẑ. We
decouple the electron-electron interaction with the mean
fields

nk = nk↑ + nk↓ = 
ck↑
† ck↑� + 
ck↓

† ck↓� �64�

and

�k = nk↑ − nk↓ = 
ck↑
† ck↑� − 
ck↓

† ck↓� . �65�

The spin-split state satisfies the symmetry constraints: nk
=n−k ,�k=−�−k. Applying these symmetry constraints and
the identity ���nk�nk�	��= �nknk�	�k�k�� /2, we reduce this

Hamiltonian and keep only Ht ,HJ
�q=0� ,HV

�q=k�−k� ,H�t
�q=0� and

HJ�
�q=0�.
We define geometric factors

� =
1

N
�

k
�cos kx + cos ky�nk, �66�

� =
1

N
�

k
�sin kx + sin ky��k �67�

and use the convention: �=+1�−1� for spin up �down�. The
energy dispersion is

E��k� = − 2�teff −
1

4
�2J − Veff����cos kx + cos ky�

− �	1

2
Veff���sin kx + sin ky� . �68�

The ground-state energy is


H�
N

= − 2teff� +
1

2
J�2 −

1

4
Veff��2 + �2� . �69�

The mathematical structure is very similar to that of the
Rashba instability �cf. Eqs. �45� and �46��. The difference
lies in geometry: �i� � is different for the Rashba and spin-
split states because the electrons occupy different regions in

momentum space �ii� � and � have different geometric
weights in their respective integrals.

We observe that the two-dimensional dispersion �Eq.
�68�� decouples into two one-dimensional dispersions as
follows:14

E��k� = �


�− 2�teff −

1

4
�2J − Veff��
�cos k


− ��2Veff�
�sin k
� , �70�

�
 =
1

2N
�

k
cos k
nk, �71�

�
 =
1

2N
�

k
sin k
�k. �72�

Here the index 
 runs over the �x ,y� directions. If there is an
energetic gain to polarizing in the x direction, the symmetry
of the lattice permits the same gain for a polarization in the y
direction. Hence, there is a spontaneously broken symmetry
in which the two spin-differentiated Fermi surfaces are dis-
placed in opposite directions along either x-y diagonals. One
example of the Fermi energy contours of the spin-split state
is illustrated in Fig. 1�a�.

This suggests we may think of the two-dimensional spin-
split state as being composed of many one-dimensional sys-
tems aligned parallel to the x-y diagonal. For each one-
dimensional system, number conservation ensures that the
ratio �


2+�

2 is a constant upon polarization; this is demon-

strated in Eqs. �52� and �53�. With the identity, �=4�
 ,�
=4�
 for any 
, we have proven that the geometric combi-
nation �2+�2 is rigorously a constant independent of polar-
ization. An alternative proof is presented in part E of the
Appendix.

Minimizing 
H� while keeping �2+�2 constant, we obtain
for the spin-split state

� =
2teff

J
. �73�

The critical J for symmetry breaking is

Jc =
2teff

�o
. �74�

The dispersion simplifies to

E��k� = −
teffVeff

J
�cos kx + cos ky� −

1

2
Veff��sin kx + sin ky� .

�75�

Equations �64�–�68� and the energy-minimization condition

�E↑�k��FS↑ = �E↓�k���FS↓ �76�

may be solved numerically for the unknown factor �. Alter-
natively, we may numerically evaluate �o for the case of zero
polarization and extract � from

k k

FIG. 6. �a� The spin-split state in one dimension. Spin-up and
spin-down electrons are shown divided by the momentum axis. �b�
The Rashba state in one dimension. Opposite Rashba polarizations
are shown divided by the momentum axis.
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�o
2 = �2 + �2 =

4teff
2

J2 + �2. �77�

In the limit of small filling, we use a result from the part D of
the Appendix to obtain

� =
2

�
��kFJ1�kF��2 − 	�

teff

J
�2

. �78�

V. ROLE OF V

In our previous analysis of the Rashba-like �Sec. III� and
spin-split �Sec. IV� instabilities, we have focused on the role
of nearest-neighbor exchange J in driving a symmetry break-
ing but have said little about the role of nearest-neighbor
repulsion V. In this section we ask how V �or effectively
Veff=V−J�� affects these two states. We find that Veff is piv-
otal in deciding which of the two ground states are energeti-
cally favored—this is discussed in Sec. V A. In Sec. V B, we
comment on how Veff affects the Rashba-like polarization
beyond the analytic approximation of Eq. �55�.

A. Competition between the Rashba-like and spin-split
instabilities

The Rashba-like instability with �R=0 is energetically
compared with the spin-split instability. Except for a small
correction that is explained in Sec V B, they have the same
critical Jc=2t /�o. For convenience, we call this the first criti-
cal Jc1. Which state is preferred for J�Jc1 is decided largely
by a competition between the geometric combinations �2

+�2 and �2+�2; the parameter V plays a larger role than
parameters teff and J. To understand this, consider the differ-
ence in energies of the Rashba and spin-split states

�
H� = �
Hteff,J
� + �
HVeff

� . �79�

The first term in this difference is �O����2 because 
Hteff,J
�

is minimized with respect to � for the spin-split state. The
second term is �O��� ,��� and is decisive in determining

where the spin-split and Rashba states are degenerate.
We first examine the geometric difference between � �Eq.

�44�� and � �Eq. �67��. As a first approximation, this differ-
ence suffices to explain qualitatively the behavior of �2+�2

relative to �2+�2. We first note that in the Rashba-polarized
state, the mean field �k is just the difference in the number of
electrons with opposite Rashba polarizations; this number
has the same sign for all polarized momenta. In the spin-split
state, �k is the difference in the number of spin-up and spin-
down electrons. In the example illustrated in Fig. 1�a�, �k is
positive �negative� when kx and ky are both positive �nega-
tive�. For all polarized momenta, the geometric weight in the
integral of � is always less than or equal to the weight in �

�sin2 kx + sin2 ky � 
sin kx
 + 
sin ky
 . �80�

Here we compare absolute values to account for the different
signs of �k in Rashba and spin-split states. In one dimension
these weights are trivially equal, hence the spin-split and
Rashba states are exactly equivalent �see Sec. IV A�. In two
dimensions, Eq. �80� naively suggests that ���.

However, we must consider the factor �k in these inte-
grals. For the same set of parameters, there are generally
more electrons polarized in the Rashba state because elec-
trons polarize in all directions, while electrons in the spin-
split state polarize only in the x-y diagonal direction. We
support this claim numerically in Fig. 7.

1. Small filling

For small filling, the fractional difference in the number
of polarized electrons is small—the effect of �k is out-
weighed by the difference in geometric weights. Hence �
��. This explains why �2+�2 is a monotonically decreasing
function of J / t for small fillings; we show this in Fig. 8�a�.
Since �2+�2��2+�2, a comparison of the energies in Eqs.
�46� and �69� implies that the spin-split state is favored for
small filling if Veff=V−J��0. We demonstrate in Sec. VII
that a large positive Veff is necessary for either spin-split or
Rashba state to exist at all, hence we predict that the spin-
split state exists only for small filling.

2. Phase transition above a critical filling

Above a certain critical filling �n̄c=0.45�, an interesting
geometric feature of �2+�2 leads to the possibility of a tran-
sition between Rashba and spin-split states at a second criti-
cal Jc2, where these states are degenerate for a second time.
In Fig. 8�b�, we observe that for quarter filling, �2+�2 ini-
tially rises with increasing J, then eventually falls and inter-
sects �2+�2 when J=JI.

As we have argued through Eq. �79�, the spin-split and
Rashba states are degenerate near this intersection JI. Jc2
would lie exactly on JI if not for a small correction �O����2

due to �
Hteff,J
�. We recall from Eq. �43� that �, the relevant

geometric factor in 
Hteff,J
�, is the negative sum of the kinetic

energy; � is smaller for the spin-split state because it polar-
izes in only one direction and incurs a larger kinetic energy
cost. Hence, 
Hteff,J

�SS� 
Hteff,J
�R and the effect of teff and J

through �
Hteff,J
� is to reduce Jc2.
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FIG. 7. The absolute number of polarized electrons vs J / t for
the Rashba �labeled R� and spin-split �labeled SS� instabilities at
different band fillings: n̄=0.25, 0.5, 0.75. Parameters: t=1, Veff

=3. For all fillings, the critical Jc1 for symmetry breaking from the
paramagnetic phase is nearly equal for both Rashba and spin-split
states.
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We may ask how the magnitude of Veff affects Jc2. In the
limit of large Veff, �
HVeff

���
Hteff,J
� hence Jc2→JI. The

limit of Veff→0 is unphysical for two reasons: �i� we note
from Eq. �75� that the spin-split state has a bandwidth and
energy splitting proportional to Veff �ii� in Sec. VII we show
that both spin-split and Rashba states are unstable against
ferromagnetism for small Veff. In Fig. 9, we plot Jc1 ,Jc2 and
JI as a function of band filling for Veff=3. Above the critical
filling and for Jc1�J�Jc2�JI, �2+�2��2+�2 so the
Rashba phase is favored; for J�Jc2, the spin-split phase is
favored.

We understand the behavior of �2+�2 and �2+�2 in the
following manner: �i� in the limit of large J / t, the polariza-
tions of both Rashba and spin-split states saturates to a maxi-
mum �p̄→ n̄� and the fractional difference in the number of
polarized electrons diminishes. The geometric weights domi-
nate the integrals in � and �, hence ���.

�ii� In the limit of small �J−Jc1� / t, the Rashba state has
significantly more polarized electrons than the spin-split
state, as we may observe in Fig. 7. This allows �k to domi-
nate the integrals in � and �. The effect of �k becomes more
pronounced as n̄→1 because the fractional difference in the
number of polarized electrons increases with the band filling.
Consequently, there exists a critical filling n̄c=0.45 above
which ���.

From �i� and �ii�, we deduce that there must be an inter-
section JI�Jc1 where �2+�2=�2+�2. In addition, �ii� im-
plies that as the band filling is increased, the range of J / t for
which ��� also increases, hence both JI and Jc2 increase.

This increase is quite dramatic, as we show in Fig. 9. The
spin-split phase is effectively squeezed out of existence by
the Rashba phase for large filling because Jc2� t.

The introduction of the single-particle Rashba interaction
��R�0� changes the phase diagram in Fig. 9 in two ways: �i�
the spin-split phase will shrink in parameter space �ii� there
is no longer a spontaneous broken symmetry for the Rashba
state; the paramagnetic phase becomes Rashba polarized.

B. Role of Veff in Rashba-like states

In our previous discussion of the Rashba-like state in Sec.
III C, we have made an analytic approximation in Eq. �55�
that is equivalent to claiming that the polarization is indepen-
dent of Veff. We have shown that this approximation is only
consistent if the resultant polarization is small relative to the
band filling. We now go beyond this approximation and ask
how Veff changes the Rashba polarization.

We consider an infinitesimal variation to the ground-state
energy in Eq. �46� due to an increase in polarization

�
H�
N

= �J� − 2teff��� −
Veff

4
���2 + �2� . �81�

Veff assists polarization if ���2+�2� is positive. From our
discussion in Sec. V A, we know that the sign of ���2+�2� is
always negative for band fillings below the critical level of
0.45—we conclude that Veff discourages Rashba-like polar-
ization for bands with small filling.

For fillings above the critical level, we note from Fig. 8�b�
that the slope of �2+�2 levels off at some critical polariza-
tion which we call p̄c. Veff assists �suppresses� polarization
for p̄� p̄c�p̄� p̄c�; in the limit of large Veff, the polarization
will approach this critical value.

From Eq. �81� we derive the critical J for symmetry
breaking

Jc = Jc
ss +

Veff

4�o
����2 + �2�

��
�

o
. �82�

We have denoted the critical J of the spin-split state as Jc
ss

=2teff /�o. The second term is a correction to the analytic
approximation of Sec. III C. From our discussion in Sec.
V A, we deduce that Jc�Jc

ss�Jc�Jc
ss� for band fillings less

than �more than� 0.45. The ratio of ����2+�2� /���o is fixed
by the constraint of number conservation and is typically
much less than �o for Rashba-like systems −Jc�Jc

ss for mod-
erate values of Veff.
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FIG. 8. Geometric combina-
tions �2+�2 and �2+�2 vs J / t for
�a� n̄=0.25 �b� n̄=0.5. Parameters:
t=1, Veff=3.
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FIG. 9. Phase diagram for the Rashba �R�, spin-split �SS� and
paramagnetic �P� states as a function of band filling and J / t. Veff

=3. a labels Jc1; b labels Jc2; c labels JI, the intersection of the
geometric factors �2+�2 and �2+�2.
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VI. GENERAL CLASS J GROUND STATES

In this section we present the formalism for the descrip-
tion of a general class J ground state. We consider the ener-
getic stability of class J states other than the spin-split and
Rashba-like states and comment on various symmetries such
as parity and time-reversal.

A. Formalism

A general class J ground state may be characterized by
their spin structure 
�k� �defined in Eq. �5�� and polarization
structure ��k� �defined in Eq. �10��. The various possible
ground states are distinguished by the component of the in-
teracting Hamiltonian that describes nearest-neighbor repul-
sion; for example, see Eq. �24�. From Eq. �24� we may sepa-
rate the amplitude for nearest-neighbor repulsion

�
�

Vei�k−k��·� = 2V�



�sin k
 sin k
� + cos k
 cos k
�� .

�83�

We consider only the component of Eq. �24� that is depen-
dent on 
 and �


HV
�
,���
N

= −
V

2 �


�	 1

N
�

k
�k��k�sin k
�2

+ 	 1

N
�

k
�k��k�sin k
�2� . �84�

In arriving at Eq. �84� we have dropped the second term
proportional to cos k
 in Eq. �83�; this is necessary to satisfy
the symmetry constraint in Eq. �12�.

We define geometric factors

�̄
 =
1

N
�

k
��k���k�sin k
 �85�

and

�̄
 =
1

N
�

k
��k���k�sin k
. �86�

Equations �85� and �86� suggest we may interpret �̄
 and �̄


as generalized Fourier coefficients of the harmonics
��k�sin k
 and ��k�sin k
, respectively. The change in the en-
ergy dispersion due to � and � is

E�
��,���k� = − �V�




sin k
���k��̄
 + ��k��̄
� . �87�

Including the effects of J�, the ground-state energy becomes


H�
N

= − 2teff� +
1

2
J�2 −

1

4
Veff��2 + 2�




��̄

2 + �̄


2�� .

�88�

B. Energetic considerations of other class J ground states

In Secs. III–V we chose to analyze the spin-split and the
Rashba-like states because they are the simplest examples of

class J ground states. In this section, we demonstrate that
they are also the most energetically stable phases in their
class. The general principle behind these claims is that an-
isotropy is energetically costly.

In Sec. II we learned that the spin polarization as a func-
tion of momentum is given by 
�k�=��k�+ i��k�= 
�x�
− i
�y�. For simplicity of notation in this section, we will
omit the implicit dependence on momentum for all functions.
Given a fixed spin structure 
, Eq. �87� informs us that �
may spontaneously develop a symmetry in any of the four
possible harmonics—�� sin k
 ,� sin k
�—that satisfy the
symmetry constraint of Eq. �11�. It is also possible to com-
bine two harmonics to obtain a more favorable ground state.
A case in point is the spin-split state. Taking 
=1, we have
two possible harmonics—sin kx and sin ky—which corre-
spond to a displacement of the Fermi surface in the x̂ and ŷ
direction, respectively. These harmonics are complementary
in the sense that we may displace the Fermi surface along the
x-y diagonal for a greater reduction in energy. Hence, the
spin-split state has a polarization with the combined symme-
try ��sin kx+sin ky.

The spin-split example suggests that a state with the
maximum number of complementary harmonics is likely to
be energetically favored. We consider a general state that
develops a symmetry in all four harmonics; we ask what
conditions are necessary to keep all four. We define the re-
flection operations Rx by �kx→−kx , ky→ky� and Ry by �ky
→−ky ,kx→kx�. For an arbitrary band filling, the condition of
no net magnetization �Eq. �11�� enforces certain conditions
on how � and � transform under Rx and Ry. The polarized
spin 
� has six distinct harmonics
��2 sin k
 ,�2 sin k
 ,�� sin k
� which must all sum to zero to
satisfy Eq. �11�, i.e., for all momenta 
�→−
� under
inversion—there are only two possibilities, which we catego-
rize into subclasses of class J.

The first subclass of ground states is defined to satisfy: �i�
� is even under both Rx and Ry, �ii� � is even under both Rx
and Ry. As a result, ��k�=−��−k�—the Fermi surfaces are
displaced relative to each other in opposite directions. The
choice of � independent of momentum corresponds to the
spin-split state.

The second subclass is defined to satisfy: �i� � is even
under Ry but odd under Rx �ii� � is even under Rx but odd
under Ry. Alternatively, the conditions �i� and �ii� describe an
equivalent state if � and � interchanged. The combined effect
of �i� and �ii� is that the spin polarization rotates 2� radians
around the Fermi contour—it has winding number one. The
polarization � has �i� two “s-like” harmonics
�� sin kx ,� sin ky� which are even under Rx and Ry �ii� two
“d-like” harmonics �� sin ky ,� sin kx� which are odd under
Rx and Ry. Unlike the first subclass, the second subclass has
two competing symmetries and will favor one and not the
other. We note that both s-like and d-like instabilities satisfy

�→−
� under inversion; we elaborate on this in the next
section.

The simplest example of the second subclass is 

= fk / 
fk
 , fk=sin kx	 i sin ky; this has three distinct harmon-
ics �sin2 kx / 
fk
 , sin2 ky / 
fk
 , sin kx sin ky / 
fk
�. The first two
correspond to a relative expansion of one Fermi surface in
the x̂ and ŷ directions; they are complementary in the sense
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that the Fermi surface may expand in both directions with a
combined symmetry ���sin2 kx+sin2 ky—we call this the
Rashba-like phase. The third harmonic corresponds to an ex-
pansion along one x-y diagonal and a contraction along the
other; this is not complementary with the symmetry
�sin2 kx+sin2 ky.

This general discussion suggests a great many possibili-
ties among the two subclasses; however, we now argue from
energetic considerations that only two really matter. The
Rashba-like and the spin-split phases are special because
they have the minimum amount of anisotropy needed to re-
duce the magnetic moment of a polarized state to zero. The
Rashba-like phase has the maximum isotropy in charge space
and the next-best isotropy in spin space and vice versa for
the spin-split phase. In the continuum analogy, the Rashba
phase corresponds to an s-wave charge polarization and a
p-wave spin polarization while the spin-split phase corre-
sponds to a p-wave charge polarization and an s-wave spin
polarization.

A highly anisotropic harmonic �� sin k
 ,� sin k
� encour-
ages an anisotropic polarization that is penalized by high
kinetic energy �i.e., greatly reduced �2�. In addition, the “sur-
face tension” due to Ht ensures that the overlap between the
polarization �k and the harmonic is weak—the generalized

Fourier coefficients ��̄
 , �̄
� are diminished. In combination,

�2+2�
��̄

2+ �̄


2� for these anisotropic ground states are gen-
erally smaller than that for the spin-split and Rashba-like
phases; from Eq. �88�, we conclude that the Rashba-like and
spin-split states are the most favored.

We may ask physically why the Rashba-like and the spin-
split states are so close in energies. In the spin-split phase,
electrons with neighboring momenta have spins in perfect
parallel alignment, hence this state benefits from the most
reduction in energy per polarized electron due to the ex-
change interaction Veff; this exchange interaction is explained
in Sec. II. However, the spin-split state polarizes in one di-
rection and consequently has fewer polarized electrons than
the Rashba-like phase. The Rashba phase has a spin structure
that rotates 2� as we go around the Fermi contour; the spins
of electrons with neighboring momenta are not perfectly par-
allel to one another, hence the energy reduction per polarized
electron is not as large. The net effect is that the Rashba-like
and spin-split states are almost equally favored by the ex-
change interaction Veff.

C. Comments on various symmetries

In this section we ask if class J ground states �i� break
parity �ii� preserve time-reversal symmetry. We provide a
proof for the first and a necessary condition for the second.

1. Proof of parity breaking

At least one component of the polarized spin must have a
harmonic of the form �2 sin k
 or �2 sin k
. On inversion,
harmonics of this form changes sign. This implies that the
spin of the polarized electrons are not invariant under inver-
sion, hence class J ground states break parity.

2. Condition for time-reversal invariance

For time-reversal invariance to hold, we require that for
all momenta 
�→−
� under parity inversion, i.e., any po-
larized electron always has a time-reversed partner with op-
posite momentum and spin polarization. In Sec. VI B we
showed that this condition is satisfied for the first subclass
and both s-like and d-like instabilities in the second subclass;
they share the crucial condition that �� is even under inver-
sion.

If we relax this condition, it is still possible to obtain a
state with no net magnetization if �=��kx� is even under Rx
and �=��kx� is odd under Rx. � has two competing harmon-
ics: �i� ��kx�sin ky is p-like �ii� ��kx�sin ky is d-like. For the
favored p-like instability, the ŷth component �−��� of the
polarized spin has the symmetry sin�2kx�sin ky which is in-
variant under inversion, hence time-reversal symmetry is
broken. This general discussion suggests that time-reversal
breaking states in class J have at most one harmonic and are
not stable relative to multiple-harmonic states like the spin-
split and Rashba-like states. The simplest state that breaks
time-reversal symmetry is 
=e−ikx , ��=sin�2kx� /2.

VII. COMPARISON WITH THE FERROMAGNETIC
INSTABILITY

The ferromagnetic instability has a net magnetic moment
and is not a class J ground state. The ferromagnetic ground
state has the most isotropic polarized spin—it corresponds in
the continuum analogy to an s-wave charge and s-wave spin
polarization. In this section, we compare the ferromagnetic
with the class J instabilities. We single out nearest-neighbor
repulsion V as the crucial interaction that allows class J
ground states to compete with ferromagnetism.

We begin with Hamiltonian in Eq. �4� and decouple the
electron-electron interactions with the mean fields defined in
Eqs. �64� and �65�. In contrast with the spin-split state, the
ferromagnetic state satisfies the symmetry constraints: nk
=n−k , �k=�−k. This difference changes the mean-field
Hamiltonian significantly. Following a previous work by one

of us,25 we keep terms: Ht , HU
�q=0� , HJ , HV

�q=k�−k� ,H�t
�q=0�

and HJ�
�q=0�.

We define the geometric factors

� =
1

N
�

k
�cos kx + cos ky��k �89�

and

� =
1

N
�

k
�k. �90�

and employ the definition of � in Eq. �43�. The energy dis-
persion is
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Ek� = �− 2t + 2�tn̄ +
1

2
�2J + J� − V����




cos k


− ��1

2
�J� + V�� + 2�t���




cos k


− ��2�t� +
1

2
�4J + U��� + 2�t� �91�

and the ground-state energy is


H�
N

= − 2�t − �tn̄�� +
1

4
�2J + J� − V��2 −

1

4
�4J + U��2

−
1

4
�J� + V��2 − 2�t�� . �92�

Unlike the Rashba and the spin-split states, the ferromagnetic
state is characterized by a spin-dependent bandwidth and en-
ergy baseline.

There are more channels through which the ferromagnetic
state may gain an energetic advantage. It is no surprise that
within the tight-binding Hubbard model, the ferromagnetic
instability is favored for a large range of parameters.

A. One dimension

In Sec. IV, we showed that the Rashba and spin-split
states are equivalent in one dimension—for convenience, we
call this the RSS state. In this section, we ask: for what range
of parameters is the RSS state favored over the ferromagnetic
state in one dimension?

We parametrize the ferromagnetic polarization with di-
mensionless quantity �̄, which is defined: nk�=1 for k� �
−kF−��̄ ,+kF+��̄�. Minimizing the ground-state energy with
respect to �̄, we obtain an implicit equation for the ground-
state polarization �̄�,

�2�t sin kF − 4�tkF sin kF − 4�t cos kF�sin �̄�

= �U + 2J��̄� + ��t cos kF��̄� cos �̄� + �2J sin2 kF

+ V cos kF + J��sin �̄�. �93�

The limit of vanishing �̄� determines the critical J̄c for the
onset of ferromagnetism25

J̄c = ��t sin kF − 2�t�kF sin kF + 2 cos kF�

−
U

2
− V cos 2kF − J��/�1 + 2 sin2 kF� , �94�

from Eqs. �37� and �60� we extract the critical Jc for the
RSSstate

Jc =
�t − 2�tkF

2 sin kF
. �95�

If J is greater than both Jc and J̄c, ferromagnetism typically
wins because it gains an extra energetic advantage through
�t, U, and J� �cf. Eqs. �46�, �69�, and �88��.

We analyze the effect of the various Hubbard parameters:
�i� in Eq. �94�, we note that V is multiplied by cos 2kF—a

large V increases J̄c in the range kF� �� /4,3� /4�. This al-
lows the RSS state to compete with the ferromagnetic state.
This is illustrated in Fig. 10 for parameters t=1, �t
=0, U=0, J�=0, �R=0. The RSS state exists in the region

where J̄c�J�Jc, which is most likely to occur at half-filling
and extends to quarter filling in the limit of large V. For

small V, Jc never intersects J̄c �compare curves a and b in
Fig. 10� and ferromagnetism is always favored. �ii� Positive
parameters U and J� tend to favor ferromagnetism by reduc-

ing J̄c. This narrows the region in which the RSS phase is
favored. �iii� The presence of �t breaks the particle-hole
symmetry of the phase diagram. It improves �reduces� the
stability of the ferromagnetic phase at small �near-full� fill-
ing, respectively.

The introduction of a nonzero �R will Rashba-polarize the
paramagnetic phase and shrink the spin-split phase; if �R� is
comparable to the energetic gain for ferromagnetism, the fer-
romagnetic phase will diminish as well.

B. Two dimensions

In one dimension, we emphasized the role of nearest-
neighbor repulsion V in allowing the Rashba-like and spin-
split states to compete with ferromagnetism near half-filling.
In this section we ask if this conclusion generalizes to two
dimensions.

We proved in Sec. III B that the energy-minimizing con-
dition is equivalent to equating the single-particle dispersions
�Eq. �91�� of spin-up and spin-down electrons at their respec-
tive Fermi energies. We define these Fermi energies as �F

↑

and �F
↓ and perform said operation

4�t� + �4J + U�� = ��F
↑ − �F

↓�	1 −
�t

t
n̄ −

2J + J� − V

4t
��

+ ��F
↑ + �F

↓�	 J� + V

4t
+

�t

t
�� . �96�

We define g��� as the density of states. In the limit of zero
polarization, we find an expression for the critical J

0 1
0

1

2

3

k
F
/π

J/
t

P

a

FM FM

b

RSS

c

FIG. 10. Phase diagram for the RSS, ferromagnetic �FM� and
paramagnetic �P� states as a function of the Fermi momentum and
J / t; one dimension; parameters: t=1, �t=0, U=0, J�=0. a la-

bels the critical J̄c for ferromagnetism with V=5; b labels J̄c for
ferromagnetism with V=1; c labels the critical Jc for the RSS state.
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�4g��F� +
�o

2t
�J̄c = 1 − Ug��F� +

�t

t

��4�Fg��F� − n̄� +
V

4t
��o −

�F
2g��F�

t
�

−
J�

4t
��o +

�F
2g��F�

t
� . �97�

For a square lattice with only nearest-neighbor hopping,
there is a Van Hove singularity at half filling. Since the sin-
gularity in g��� is logarithmic, the dominant terms in Eq.
�96� the limit �F→0 are

g��F��J̄c + U� = 1. �98�

As is well known in a mean-field treatment, ferromagnetism
is greatly enhanced where the density of states diverges. In a
one-dimensional nearest-neighbor tight-binding model, this
divergence occurs for near-empty or near-full bands; in two
dimensions the divergence occurs at half filling. In contrast
to one dimension, the two-dimensional Rashba-like and spin-
split states cannot compete against ferromagnetism at half
filling.

We expect that the Rashba-like and spin-split states are
stable if a large nearest-neighbor repulsion V suppresses fer-
romagnetism; we know from Eq. �97� that this only occurs
when the condition �o��F

2g��F� / t is satisfied. In one dimen-
sion, we showed in Sec. VII A that this condition restricts the
band filling to lie in the range �1/4,3/4�. In two dimensions,
the density of states is approximately flat away from the
divergence at half filling. We approximate g���=1 / �8t� and
simplify Eq. �97� to obtain

J̄c = �t − 4U − 2�t�2 − n̄� −
J�

2
�1 + �1 − n̄�2�

+
V

2
�1 − 3�1 − n̄�2��/�2 − �1 − n̄�2� . �99�

This result was first derived by one of us.25 Within this ap-
proximation, we find that V destabilizes ferromagnetism for
band fillings in the range �0.423, 1.577�; this range is slightly
larger than that in one dimension. At half filling, the approxi-
mation breaks down and ferromagnetism dominates. We
have learned in Sec. V A that the Rashba-like phase likely
outcompetes the spin-split state for band fillings larger than
0.45 or less than 1.55; this phase diagram is plotted in Fig. 9.
As we increase the band filling from 0.423, we predict a
transition from the spin-split state to Rashba-like state and
then to ferromagnetism near half-filling. A more general
treatment than this section would also allow for antiferro-
magnetism at half filling.

VIII. CONNECTION WITH FERMI LIQUID
� AND � PHASES

Within a tight-binding Hubbard model with on-site and
nearest-neighbor interactions, one of us first proposed that
electron-electron interactions may spontaneously produce a
spin-split phase.14 In this paper, we demonstrated that the

Rashba phase may be produced through a similar mecha-
nism. Wu and co-workers have also explored the spontane-
ous generation of the � and � phases in a Landau Fermi-
liquid framework.15 The names of these phases should not be
confused with the geometric factors defined in Eqs. �43� and
�44�. The spin and momentum-space polarizations of the
spin-split and Rashba-like phases are equivalent, in the con-
tinuum limit, to that of the � and �, respectively. In this
section, we compare the formalisms and the conclusions de-
rived from both models.

In the Landau Fermi-liquid framework, Wu et al. showed
that the � and � phases result from a Pomeranchuk
instability1 in the l=1 angular momentum channel. This in-
stability is driven by the phenomenological Landau param-
eter F1

a. The interaction part of their phenomenological
Hamiltonian may be simplified to

Hint =
1

2N
�

q
f1

a�q�Q�b�− q�Q�b�q� �100�

with the spin-current operator defined as

Q�b�q� = �
k

ck+q,�
† ���

� k̂bck�. �101�

The coupling f1
a�q� is assumed to be a Lorentzian centered

around q=0. They defined f1
a�0�= f1

a and decoupled this in-
teraction with a q=0 mean field

n�b =

f1

a

N

�
k


ck
†��k̂bck� . �102�

We define the density of states at the Fermi surface as N�0�.
The Pomeranchuk instability occurs at N�0�f1

a�−2.
The Rashba ground state is achieved by choosing n�b

= n̄��b. The resulting mean-field Hamiltonian is diagonalized
by the Rashba basis

Hint = sgn�f1
a�n̄�

k�

�ck�
† ck�. �103�

This results in an effective spin-orbit field that Zeeman splits
the Rashba energy bands. We compare this phenomenologi-
cal Hamiltonian with Eqs. �45� and �60�. To cross over from
the tight-binding to the Fermi liquid formalism, we limit in-
teractions in the tight-binding model to a thin shell around
the Fermi surface and take the continuum limit. By compar-
ing the energy splitting of the Rashba bands in both formal-
isms, we may identify the phenomenological coupling f1

a

with −VeffkF
2 in two dimensions.

In the tight-binding Hubbard model, the effective spin-
orbit field is due to an exchange interaction in momentum
space due to off-site repulsion V; there is also a cancelling
effect by the pair-hopping J�. However, these same processes
also increase the bandwidth in a manner that suppresses po-
larization. In the continuum limit, we showed in Sec. V B
that the net effect of Veff is to suppress Rashba polarization.

We reach a similar conclusion in the comparison of the �
phase with the spin-split state. The phenomenological model
postulates an effective Zeeman field that is necessarily ac-
companied by an increase in bandwidth within the tight-
binding Hubbard approximation. We have shown in Sec. IV
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that these two effects exactly cancel and that Veff neither
promotes nor suppresses the spin-split instability. We con-
clude that the validity of the phenomenological model must
lie outside the physical approximations that are assumed in
the tight-binding Hubbard model.

We have found that for class J ground states, J is the
greatest driving force for symmetry breaking. It is instructive
to translate HJ

�q=0� to the language of Pomeranchuk
instabilities.1 In a basis �, we decompose an arbitrarily
shaped Fermi surface into its Fourier components

kF
���� = kF

o +
�ko

�

�2
+ �

l�0
�kl

� cos�l�� . �104�

We define kF
o as the Fermi momentum before symmetry

breaking. From Eq. �7�, the change in kinetic energy due to a
deformation of the Fermi surfaces is

�
Ht�
N

=
1

4�
t�kF

o�2�
l,�

��kl
��2. �105�

We compare this to the change in the energy of HJ
�q=0�. From

Eq. �23�,

�
HJ
�q=0��
N

= −
1

16�2J�kF
o�4�

l,�
��kl

��2. �106�

As we argued in Sec. II, a simplified Hamiltonian with only
parameters t and J exhibits symmetry breaking in an arbi-
trary basis �. The critical J is 4�t / �kF

o�2 which agrees with
Eqs. �57� and �74� to O�kF

o�2. In addition to the arbitrariness
of the basis, Eq. �106� also suggests that all Fourier modes l
are unstable. We gain specificity when we take into account
the effect of the lattice and of Veff; as we demonstrated in
Sec. VI, the ground states with the least anisotropic polarized
spin—the spin-split and the Rashba-like phases—are the
most favored.

IX. DISCUSSION

In this paper we have singled out a class of symmetry-
breaking ground states with three properties: �i� electron
crystal momentum is a good quantum number, �ii� these
states have no net magnetic moment, and �iii� their distribu-
tion of polarized spin in momentum space breaks the lattice
symmetry. Examples of this class of ground states include
the spin-split state and the Dresselhaus/Rashba spin-orbit
coupled states. Since the Rashba, Dresselhaus and helicity
spin-orbit coupled states are degenerate under Coulomb in-
teractions, we just call them Rashba-like. Employing a
mean-field approximation, we analyzed these ground states
within a tight-binding single-band Hubbard model with all
on-site and nearest-neighbor matrix elements of the Coulomb
interaction. The relevant matrix elements were found to be
nearest-neighbor exchange J, pair hopping J�, and nearest-
neighbor repulsion V; �t plays the minor role of reducing the
hopping parameter t.

Because of these symmetry constraints, these ground
states lower their energy most effectively through the
nearest-neighbor exchange interaction J, hence the name

class J. Though J has been proposed to lower the exchange
energy of localized electrons with parallel spin,27 the effect
of J in momentum space is through the direct energy.26 We
have found that J favors a separation of electrons in momen-
tum space, i.e., polarization. This conclusion is independent
of the choice of basis, hence J alone does not energetically
distinguish between different ground states. In the broken-
symmetry phase, a mean-field decoupling of HJ reveals that
J lowers the energy by expanding the bandwidth of the
single-particle dispersion.

The other relevant interactions are nearest-neighbor repul-
sion V and pair-hopping J�; they act in the combination
Veff=V−J� to influence both the direct and exchange ener-
gies. In the broken-symmetry phase, Veff �i� increases the
direct energy by compressing the single-particle bandwidth,
�ii� reduces the exchange energy by splitting the dispersion
of electrons with opposite polarizations. We have found that
for ground states with highly anisotropic polarized spin, the
advantage gained in exchange energy is outweighed by the
cost in direct energy due to Veff—these states are energeti-
cally unfavorable. Among class J ground states, the most
favored are found to be the spin-split and Rashba-like
states—they possess the minimum amount of anisotropy
needed to eliminate their net magnetic moment. In the con-
tinuum analogy, the Rashba-like phase corresponds to an
s-wave charge polarization and a p-wave spin polarization
while the spin-split phase corresponds to a p-wave charge
polarization and an s-wave spin polarization.

We provided a physical explanation for why the spin-split
and Rashba-like states are so close in energy. In the spin-split
phase, electrons with neighboring momenta have spins in
perfect parallel alignment, hence this state benefits from the
most reduction in exchange energy per polarized electron
due to Veff. However, the spin-split state polarizes in one
direction and consequently has fewer polarized electrons
than the Rashba-like phase. The Rashba phase has a spin
structure that rotates 2� as we go around the Fermi contour;
the spins of electrons with neighboring momenta are not per-
fectly parallel to one another, hence the exchange energy
reduction per polarized electron is not as large. The net effect
is that the Rashba-like and spin-split states are almost
equally favored by Veff; they are only distinguished by band
filling.

In the case of a square lattice, we have found that the
spin-split state is favored for small band fillings; above the
critical filling of 0.45, we predict a symmetry breaking from
the paramagnetic to the Rashba-like phase at Jc1 and a sec-
ond phase transition from the Rashba-like to the spin-split
state at Jc2�Jc1. Since all nearest-neighbor interactions on a
square lattice except �t are particle-hole symmetric, Veff pro-
duces an effective Zeeman field that is extremized at half
filling. This suggests that differences between the spin-split
and Rashba-like states are magnified near half-filling—in
particular, the Rashba-like state has significantly more polar-
ized electrons than the spin-split state, hence the exchange
energy favors Rashba. For near empty �or full� filling, the
difference in polarization is not as pronounced and as a con-
sequence the spin-split state is favored.

We have found that a Rashba-polarized system that is
conventionally explained by a relativistic single-particle in-
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teraction ��R� with an electric field is indistinguishable from
a system with a smaller �even zero� �R but larger J �and Veff

for larger band fillings�. The effects of J and Veff are found to
be strongest at half filling. We have compared our model
with the Rashba-polarized surface states in Au�111�. Due to
its near-empty band, we concluded that electron-electron in-
teractions are too weak to explain the large energy splitting
in Au�111�.

We have compared the energetic stability of class J
ground states with ferromagnetism, an instability with the
most isotropic polarized spin; in the continuum analogy, fer-
romagnetism corresponds to an s-wave charge and s-wave
spin polarization. Because it has a less restrictive symmetry
constraint, we found many more channels through which the
ferromagnetic state may gain an energetic advantage. The
ferromagnetic instability is favored for a large range of pa-
rameters, as is confirmed by the abundance of ferromagnetic
materials in nature. The crucial interaction that allows class J
ground states to compete with ferromagnetism is nearest-
neighbor repulsion V. The particle-hole symmetric repulsion
is found to maximally suppress ferromagnetism at half fill-
ing; in contrast, we have shown that its effects on the direct
and exchange energies of class J states are self-cancelling.
Hence we expect that the Rashba-like and spin-split states
are stable in systems with large V and only for a certain
range of band fillings. From a mean-field treatment on a
square lattice, this range is found to be between quarter-to
three-quarter-filling in one dimension; in two dimensions we
argue that this range is enlarged to �0.423, 1.577� with an
exception at half filling, where there is a Van Hove singular-
ity.

In this paper our analysis was done on a square lattice
assuming only nearest-neighbor hopping terms in the single-
particle Hamiltonian. As a result, all electron-electron inter-
actions with the exception of correlated hopping �t are
particle-hole symmetric—it is not surprising that the effects
of J and Veff are maximized at half filling. The conclusions
that are specific to band filling will change �i� if next-nearest-
neighbor hopping terms are relevant or �ii� if we analyze a
different lattice �e.g., honeycomb, triangular�. In particular,
we expect that the regions of stability for the different class J
and ferromagnetic states will shift. For example, if we in-
clude next-nearest-neighbor hoppings on the square lattice,
the Van Hove singularity moves away from half filling—this
may stabilize the Rashba-like and spin-split states at half
filling. In the three-dimensional generalizations of the spin-
split and Rashba-like states, we believe our conclusions with
regards to band filling are applicable to simple cubic and bcc
lattices.
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APPENDIX

1. Rashba tight-binding approximation

We formally derive the Rashba tight-binding Hamiltonian
discussed in Ref. 28. The free-space Rashba spin-orbit term
is

HR = �R��xky − �ykx� �A1�

for a single electron. We generalize this to a lattice as fol-
lows:

HR = �
k���

�Yky
ck�

† ��x����ck�� − Xkx
ck�

† ��y����ck��� .

�A2�

Here we have neglected band indices.
We Fourier transform Eq. �A2� and employ the symmetry

constraints �i� X is not a function of ky; Y is not a function of
kx �ii� X and Y are odd functions. Denoting lattice sites as j
and j�,

HR =
i

�N
�
j j�

���

��
ky

Yky
sin�ky�yj − yj����xj,xj�

cj�
† ��x����cj���

− �
kx

Xkx
sin�kx�xj − xj����yj,yj�

cj�
† ��y����cj���� . �A3�

Symmetry on a square lattice imply Xu=Yu. The nearest-
neighbor approximation involves keeping only terms with
xj −xj�= 	1 and yj −yj�= 	1. In combination, these are
equivalent to setting Xu=Yu=�R sin u. Hence we arrive at
Eq. �26�.

2. Why minimize with respect to � and �

In Eqs. �47� and �48�, we minimized G with respect to nk�

on the respective Fermi surfaces. This is equivalent to mini-
mizing 
H�−���2+�2� with respect to � and � for the fol-
lowing reasons: �i� keeping �2+�2 constant is equivalent to
fixing particle number. This is strictly true in one dimension
and approximately true in two dimensions for small to me-
dium polarization.

�ii� The Hohenberg-Kohn Theorem states that the ground
state of a many-body Hamiltonian satisfies

��r� ⇔ V�r� , �A4�

where � is the density of electrons in real space and V is an
external potential. Treating nk� as a density in momentum
space and Ek��� ,�� as the external potential, a generaliza-
tion of the Hohenberg-Kohn Theorem yields

nk� ⇔ Ek� ⇔ �,� . �A5�

3. Critical J at small filling

At J=Jc,
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�2 + �2 = �o
2. �A6�

In the small filling approximation, the Fermi surfaces are
circular, hence

�o �
1

�2�
0

kF

dkk�
0

2�

d� cos�k cos ��

=
2

�
�

0

kF

dkkJo�k�

=
2

�
kFJ1�kF�

=
2

�
�
m=0

�
�− 1�m

4m�2m + 2��m!�2kF
2m+2. �A7�

Jn�x� are Bessel functions of the first kind.

4. Connection with Ref. 14

In Ref. 14 the spin-split state was studied with a reduced
Hamiltonian that limited interactions to only nearest-
neighbor exchange �J� of electrons with antiparallel spin. We
apply the formalism in this paper and derive an important
result from Ref. 14, namely the one-dimensional dispersion
of the spin-split state. We derive this in the Rashba basis.

We define operators n̂�=c�
†c� , n̂=��n̂� and �̂=���n̂�.

Following Ref. 14, we only allow interactions in HJ
�q=0� �Eq.

�19�� between electrons with antiparallel spin. We may de-
duce from Fig. 6 that interactions between electrons with
antiparallel spin are equivalent to a sum of �i� interactions
between electrons of the same Rashba polarization if both
electrons have momenta with the same sign �ii� interactions
between electrons of opposite Rashba polarizations if both
electrons have momenta with opposite signs. We change Eq.
�19� by making the substitution

n̂k�n̂k →
1 + sgn�k�sgn�k��

2
�n̂k�+n̂k+ + n̂k�−n̂k−�

+
1 − sgn�k�sgn�k��

2
�n̂k�+n̂k− + n̂k�−n̂k+�

=
1

2
n̂k�n̂k +

sgn�k�sgn�k��
2

�̂k��̂k. �A8�

After mean-field decoupling, the single-particle energy spec-
trum is

E��k� = − 2	t −
J

�
sin kF cos ��cos k

+ 2�	 J

�
sin kF sin ��sin
k
 . �A9�

By comparing Eq. �36� with Eq. �A9�, we understand the
spin-split Hamiltonian studied in Ref. 14 as the particular
choices V=J and �t=0 in the more general reduced Hamil-
tonian considered here.

5. Proof that �2+�2 is a constant

Consider an infinitesimal variation in � �defined in Eq.
�66�� due to a relative displacement of the Fermi surfaces

�� =
1

N
�

k,
,�
cos k
�nk�. �A10�

Since the shapes of the Fermi surfaces are unchanged for
both spin up and down, this is mathematically equivalent to
keeping the Fermi surfaces stationary and instead displacing
the origin of the Brillouin zone in opposite directions for
spin up and down. We parametrize this displacement of the
origin for spin ��= 	1� as �k�=���x̂+ ŷ�. We may rewrite
Eq. �A10� as

�� =
1

N
�

k,
,�
�cos�k
 + ��� − cos k
�nk�. �A11�

To first order in �

�� = −
1

N
�

k,
,�
sin k
�nk� = − �� . �A12�

From Eq. �67�, an analogous treatment of �� reveals

�� = �� . �A13�

Together,

��

��
= −

�

�
. �A14�
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