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Applying newly developed dynamical density matrix renormalization group techniques at zero and finite
temperatures to a Hubbard-Holstein model at half filling, we examine the optical conductivity of a typical
one-dimensional Mott insulator Sr,CuO;. We find a set of parameters in the Hubbard-Holstein model, which
can describe optical conductivity for both Mott-gap excitation in the high-energy region and phonon-assisted
spin excitation in the low-energy region. We also find that electron-phonon interaction gives additional broad-
ening in the temperature dependence of the Mott-gap excitation.
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I. INTRODUCTION

One-dimensional (1D) spin-1/2 quantum spin materials
have attracted great attention because they provide typical
quantum spin systems with large quantum fluctuations. A
copper oxide compound Sr,CuOj; consists of CuO chains
with the 3d° configuration of Cu ion and the 2p® configura-
tion of O ion, and it is known as a typical 1D spin-1/2
Heisenberg system with only nearest-neighbor interaction.!
Antiferromagnetic exchange interaction J between neighbor-
ing localized spins is very large with J~0.26 eV (Refs. 2
and 3) but interchain exchange coupling is very weak. As a
result, three-dimensional long-range antiferromagnetic order
is absent down to very low temperature 7~35 K, being re-
garded as an ideal 1D spin-1/2 Heisenberg system.

Sr,CuOj5 is a Mott insulator of charge-transfer (CT) type.
The CT excitation appears at 1.8 eV in optical absorption
spectra.* The CT excitation is known to be described by a
single-band Hubbard model with large on-site and nearest-
neighbor Coulomb interactions, U and V,>% via mapping the
Zhang-Rice singlet band onto the lower Hubbard band in the
Hubbard model.! The CT excitation gap is, thus, called Mott
gap. The optical conductivity above the CT excitation gap
has been studied by using analytical and numerical
methods.” The Hubbard model, however, cannot explain
midinfrared absorption inside the Mott gap, which is origi-
nated from phonon-assisted spin excitation.»!* In order to
understand both the Mott gap and spin excitations on the
same footing, we need to treat the Hubbard model with op-
tical phonons. The simplest model is a Hubbard-Holstein
model containing Holstein-type coupling of electron to the
Einstein phonons.

In this paper, we examine the optical conductivity of the
Hubbard-Holstein model by using a dynamical density ma-
trix renormalization group (DMRG) method'' combined
with a kernel polynomial expansion. By treating phonon de-
gree of freedom as a quantum object, we calculate the optical
conductivity of the model and reproduce both the Mott-gap
excitation and phonon-assisted spin excitation observed ex-
perimentally. We find a parameter set describing Sr,CuOs.
Furthermore, by using a low-temperature dynamical DMRG
method,'” we examine the temperature dependence of the
Mott-gap excitation to clarify the effect of optical phonons
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on spectral shape at finite temperature. We find that the pres-
ence of phonons induces the enhancement of the width of an
excitonic peak in the optical conductivity.

This paper is organized as follows. The Hubbard-Holstein
model in 1D is introduced in Sec. II. In Sec. III, a dynamical
DMRG combined with a kernel polynomial expansion is ex-
plained. The optical conductivity of the Hubbard-Holstein
model at both zero and finite temperatures are shown in Sec.
IV. Summary is given in Sec. V.

II. HUBBARD-HOLSTEIN MODEL

A coupling between an electron and breathing phonons in
cuprates can be mapped onto Holstein- and Peierls-type
electron-phonon (EP) interactions.!? Since the Holstein inter-
action is stronger than the Peierls one, we consider a 1D
Hubbard-Holstein model in the present work. In addition, we
introduce a nearest-neighbor Coulomb repulsion that leads to
excitonic effects. The Hubbard-Holstein Hamiltonian is de-
fined by

H=- tE (czgci+lyg+ Hec)+ UE n;in; |

i, i

+ V2 (ni= Dy = 1) + 002 bib;

~ g2 (b] +b)(n; 1), (1)

where CZ{, (¢; ) is the creation (annihilation) operator of an

electron at site i with spin o, and blT (b;) is the creation
(annihilation) operator of a phonon at site i. This model in-
cludes electron hopping, ¢, on-site and nearest-neighbor Cou-
lomb repulsions, U and V, respectively, phonon frequency,
wy, and EP coupling, g. Since the energy scale of the optical
conductivity is much larger than the dispersion relation of
the phonon, we neglect the dispersion of the phonon in order
to make our discussion simple. Keeping cuprates in mind, we
take U larger than the band width 4.

Here, we briefly mention how to construct the model
Hamiltonian (1) in the case of the cuprates. The lower Hub-
bard band of Eq. (1) corresponds to the Zhang-Rice singlet
which is derived from a three-band model for Cu 3d,>_,> and
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O 2p orbitals. Lattice vibration leads to changes in the hop-
ping integral of an electron between neighboring Cu and O
orbitals. The modulation of the hopping integral gives rise to
a diagonal EP term, i.e., Holstein term, in the effective
single-band Hamiltonian, which is larger than an off-
diagonal (Peierls) term.'>14

In Hamiltonian (1), we have introduced the V term, V(n;
—1)(n;y;—1), instead of standard notation, Vnn;,,. The latter
term gives rise to an energy reduction by -2V, instead of -V,
when a doubly occupied state (doublon) is located at the
edge of a chain accompanied by a neighboring unoccupied
state (holon). This induces a localization of the doublon-
holon pair at the edge. On the other hand, for the former
term, the energy reduction is always given by -V for a
doublon-holon pair irrespective of the location of the pair.
Therefore, the V(n;—1)(n;,;—1) term prevents the localiza-
tion of the doublon-holon pair at the edge of a chain, leading
to the reduction in a boundary effect.

III. DYNAMICAL DMRG COMBINED WITH KERNEL
POLYNOMIAL EXPANSION

We examine the optical conductivity of the 1D Hubbard-
Holstein model [Eq. (1)] at half filling. Dynamical current-
current correlation function reads

Xl =— ZE ePen Imn|j'—

iy, (2
72 T i'y]|n> (2)

n
where N, is the number of electron sites, Z is the
partition function, B is the inverse temperature, j
=ir3; (,(CIHU c;o—H.c.) is the current operator, is an
eigenstate with eigenvalue €,, and 7 is a infinitesimally small
energy. The optical conductivity is given by x;(w)/ . Equa-
tion (2) for the Holstein-Hubbard model is calculated by us-
ing a dynamical DMRG method!'' combined with a kernel
polynomial expansion (shown below) at zero temperature
and a low-temperature dynamical DMRG method'? at finite
temperatures.

The dynamical DMRG method employs a multitarget pro-
cedure. At zero temperature, the multitarget states corre-
sponding to the optical conductivity [Eq. (2)] are |0), j|O),
and the correction vector [w—H-e€,—iy]* jl0), where |0)
represents the ground state.

There are several techniques to calculate the correction
vector. Usually we use a conjugate gradient method extended
to non-Hermitian matrix. In this case, the delta function is
broaden by Lorentzian with the half width at half maximum
(HWHM) of y. Since v is usually taken to be small but finite
number such as y=0.2¢ in our calculation at finite tempera-
ture, the tail of the Lorentzian extends to a wide range of
energy. This tail sometimes covers a small spectral weight.
Actually, the Mott-gap excitations at high energy tend to hide
the phonon-assisted spin excitations at low energy since the
weight of the former is more than thousand times larger than
that of the latter.” In order to diminish such a undesirable
tail, we introduce a Gaussian broadening instead of the
Lorentzian broadening.

The introduction of the Gaussian broadening is achieved
by employing a kernel polynomial expansion.!® Using the

PHYSICAL REVIEW B 82, 195130 (2010)

Legendre polynomial P;(x), we expand the correction vector

as
J|n> f —

—E Wi f Pl(x)
1 ! !

w -Xx—€,—1Yy

5(x H)j|n)

P((H,)jln),

3)

where w;=2/(21+1) is a normalization constant for the or-
thogonality of the Legendre polynomial, o'=wyw, €,
=wye€,, and H=wyH, wy being a rescaling parameter to
confine eigenvalues €, within the interval of [-1,1]. Note
that the Legendre polynomial is defined on the real axis
within this interval.

The integration in terms of x in Eq. (3) reads

1
P
f dx# =20/(w' - €)+imP (o' - €),
-1

o —x—¢€—iy
4)

where Q)(w) is the Legendre polynomials of the second kind.
From Egs. (3) and (4), we may calculate the correction vec-
tor, provided that the Legendre polynomials are obtained by
a three-term recursive formula. However, it is practically im-
possible to perform integration of / in Eq. (3) up to infinity.
Therefore, we need to introduce a truncation number L,
whose value is usually several hundred.

The truncation of / gives rise to so-called Gibbs oscilla-
tions in numerical data, which are known to be unphysical
phenomena. Some improved kernel polynomials are sug-
gested to remove the Gibbs oscillations.'®!” In the present
study, we employ a regulated polynomial'® given by a Gauss
distribution function,

1
(P(H,))s= f dxe™CTH TP () (5)
1

1
V2md? ) -

where & is the HWHM of the Gaussian given by ¢=27/L.
The regulated polynomial can be recursively calculated by a
three-term recursive formula without direct calculation of the
Gaussian integral in Eq. (5),

(Pra(H)sjln) = H (Pn(Hy))zj|n)

/
— m<Pl_] (Hx)>5'.]|n>

21+

02<P1 (Hy))ajlny (6)

and
(Pl (H,))zjln) = (21 + 1)(P(H,))5j|n) + (P_(Hy))5j|n),
(7)

where P (x)=dP,(x)/dx. We note that this regulated polyno-
mial method gives a Gaussian broadening of spectral weight
in optical conductivity with HWHM of 0=6/wy instead of
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FIG. 1. Optical conductivity in a Hubbard-Holstein chain with 24 sites. (a) Phonon-assisted spin excitation and (b) Mott-gap excitation.
The broadening factor 0=0.04 eV. The DMRG truncation number m=600 and m=800 for (a) and (b), respectively. Parameter values are

shown in the panels.

the Lorentzian broadening with HWHM of vy in the standard
correction vector method.

IV. RESULTS

First, we determine a set of parameters of the Hubbard-
Holstein model [Eq. (1)] that reproduces well both phonon-
assisted spin excitation and Mott-gap excitation simulta-
neously in the optical absorption of Sr,CuOj;. The phonon
energy w, is taken to be wy=0.11 eV from experimental
phonon peak at the bottom of phonon-assisted spin
excitation.? Since an excitonic peak seems to exist,” we take
a condition for V to generate the excitonic peak in 1D Mott
insulator: V/t=2.%! Remaining parameters are ¢, U, and g.
From a comparison of optical conductivity between experi-
ment and dynamical DMRG calculation, a relation of U/t
~8 was suggested.”*2! For g, a diagrammatic Monte Carlo
simulation reported a good description of angle-resolved
photoemission spectra in two-dimensional cuprates at half
filling when g/t~ 0.4,%? though a proper g value may depend
on the value of w,. Turning the ratios of U/t and g/t together
with the value of ¢, we find a best parameter set that can
describe both the Mott-gap and phonon-assisted spin excita-
tions in different energy regions. The best parameter set ob-
tained is r=0.41 eV, U=3.3 eV, V=0.82 eV, g=0.16 eV,
and wy,=0.11 eV. The exchange interaction given by a 1/U
expansion, J=41/(U-V)=0.273 eV, is close to the experi-
mentally estimated values, J~0.26 eV.>> We note that the
parameters of ¢, U, and V are different from those in Ref. 17,
although the difference is not significant.

Figure 1 shows optical conductivity at zero temperature
for a 24-site chain under open boundary condition. We note
that similar spectral behaviors in the optical conductivity are
obtained for a smaller 20-site chain (not shown). The Gauss-
ian broadening o is taken to be 0=0.04 eV, whose value is
enough to smear out discrete weights due to finite-size effect
[see the inset of Fig. 1(b)]. The number of the states kept in
the DMRG procedure (m, the DMRG truncation number) is
set to be m=600 and 800, which is enough to get good con-
vergency.

Figure 1(a) shows phonon-assisted spin excitations in the
optical conductivity. A phonon peak appears at

=0.11 eV as expected. Just above the phonon peak, a broad
structure emerges as phonon-assisted spin excitation. With-
out EP coupling, we cannot obtain this structure. The energy
position of a broad peak, w~0.48 eV, is consistent with an
experimental value.’ The peak comes from a Van Hove sin-
gularity of spinon excitation.>?3

Figure 1(b) shows the optical conductivity in the CT en-
ergy region. A peak appears at w=1.75 eV. This energy is in
agreement with the experimental data.* In addition, we can
find a hump structure at w=1.86 eV. It is natural to assign
the hump structure to a one-phonon excitation on top of the
w=1.75 eV structure because of wy=0.11 eV. Thus EP in-
teraction contributes to the broadening of the main peak in
the optical conductivity.*

The intensity of the Mott-gap excitation is several hun-
dred times larger than that of the phonon-assisted spin exci-
tation, which is consistent with the experimental data.? Judg-
ing from the agreement of calculated spectral weights with
experimental ones for both the Mott-gap excitation and
phonon-assisted spin excitation, we conclude that the
Hubbard-Holstein model with the suggested parameter set
can describe very well the optical properties of Sr,CuOs;.

Next we examine the effect of temperature on the optical
conductivity in 1D Mott insulators. Figure 2 shows the tem-
perature dependence of the optical conductivity in the Mott-
gap energy region for system size N,=12. Since the Herbert
space of the N,=12 system is very large due to phonon de-
grees of freedom, it is impossible to perform fully exact di-
agonalization even though the system size is small. Then we
use the low-temperature dynamical DMRG procedure. In
this calculation, we use the conjugate gradient method to
obtain the correction vector with a broadening factor of y
=0.2¢ in Eq. (2). We employ a parameter set of the Hubbard-
Holstein model as U/t=10, V/t=3, wy/t=0.5, and g/t
=0.25, instead of the best parameter set for Sr,CuO5: U/t
=8, V/t=2, wy/t=0.27, and g/r=0.39. We have chosen this
new parameter set to reduce computational costs because a
larger wy/t as well as a smaller g/t reduces the number of
phonons to be included in our numerical calculations. The
values of parameters are, however, close to the values esti-
mated for Sr,CuOj5. Thus, it is expected that the tendency of
the temperature dependence of the optical conductivity is
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FIG. 2. (Color online) Temperature dependence of (a) the optical conductivity and (b) the density of doublon and phonon in a 12-site
Hubbard-Holstein chain. The truncation number m=400. A Lorentzian broadening factor y=0.2¢ in (a).

similar to that obtained by the best parameter set for
Sr,CuOj5 used in Fig. 1. The truncation number is m=400.
The solid line in Fig. 2(a) shows the result at zero tempera-
ture. Since V/r=3 is larger than V/¢t=2 in Fig. 1(b), the
excitonic peak at w/r=5.95 is more isolated from high-
energy spectral weight consisting of phonon-related states as
well as continuous states of the Mott-gap excitation. The
broken and the dotted lines in Fig. 2(a) represent the results
at T=0.1¢ and 0.2, respectively. We find that the intensity of
the peak decreases with increasing temperature, which is
consistent with the results obtained experimentally.* It is
noted that the peak position shifts toward higher @ with in-
creasing temperature. The shift comes from the finite-size
effect, which was confirmed by investigating the system size
dependence.”

To investigate the detail of such a temperature effect,
we calculate the number of phonon per site,
N;'S, e Pan(n|=blb;|n) and double occupation of electron
per site (the number of doublon),
]\C12,16‘&"(11|Eic%c,~ﬂczlci,l|n). Figure 2(b) shows their tem-
perature dependence up to 0.2¢~J/2. We find that the pho-
non number gradually increases with increasing temperature
while the doublon number only slightly changes. It is natural
to consider that phonons excited by temperature give some
effects on the spectral shape of the optical conductivity.

The intensity of the spectra in both Figs. 2(a) and 3(a)
decreases with increasing temperature. The reason of such
temperature dependence comes from the increase in the

0.4 . , , :
(@) Ns=12, U/=10, V/t=3 —1/t=0
- -TIt=0.1

- Tt=0.2

5.8 6.0 6.2 64 6.6 6.8
alt

probability of ferromagnetic alignment of neighboring spins,
which prevents charge transfer process due to the electric
field. However, phonons may also have a role in the tempera-
ture dependence of the optical conductivity. In order to make
clear the role of the phonons, we calculate the temperature
dependence of the optical conductivity for the extended Hub-
bard model without the EP interaction in Eq. (1) and show
the results in Fig. 3(a). Comparing Fig. 3(a) with Fig. 2(a),
one can find that the peak at finite temperatures in Fig. 2(a)
seems to be wider than that in Fig. 3(a). To see this more
clearly, we fit the peak position of the 7=0 spectrum in the
extended Hubbard model to that in the Hubbard-Holstein
model. Here we introduce scaling parameters for energy
shift, d, and for high change, 4. We obtain d=0.2 and h
=0.9. The rescaled result is shown in Fig. 3(b) as dashed
lines. We find that spectral weight of the Hubbard-Holstein
model at around w/?t—d=6.45, which is higher by w, than
the peak position at @=5.95, is larger than that of the ex-
tended Hubbard model. This is due to the presence of pho-
non structure as discussed in Fig. 1(b). The same scaling
parameters are applied to the 7=0.1¢ and T=0.2¢ spectra for
the extended Hubbard model. We clearly find that the peak
width of the Hubbard-Holstein model at 7=0.2¢ is wider than
that of the extended Hubbard model. At T=0.1¢, although the
difference of the peak width between the Hubbard-Holstein
model and the extended Hubbard model is smaller than that
at 7=0.2¢, the tendency in the peak width is same as that at
T=0.2¢. This implies that the EP interaction broadens the

Hubbard-Holstein

T T
(b) T/=0
r — — extended Hubbard

0.2

Hubbard-Holstein: 2=1, d=0
extended Hubbard: #=0.9, d=0.2
' | ' ' |

T T T
| T=0.1 ==

5.6 58 6.0 6.2 6.4 6.6

a't-d

FIG. 3. (Color online) (a) The temperature dependence of the optical conductivity in a 12-site extended Hubbard chain. (b) Comparison
between the temperature dependence of the optical conductivity in the Hubbard-Holstein model (solid lines) and that in the extended

Hubbard model (dashed lines).
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peak structure with increasing temperature as a consequence
of the enhancement of phonon density with 7 as shown in
Fig. 2(b). From this result, we find that the EP interaction
cannot be ignored when we discuss the temperature depen-
dence of the optical conductivity in 1D Mott insulator
Sr2CUO3.

V. SUMMARY

We have investigated the optical conductivity in 1D Mott
insulator Sr,CuO;. We have employed the Hubbard-Holstein
chain including the Holstein-type EP interaction and Einstein
phonon. Using a newly developed dynamical DMRG tech-
nique combined with a kernel polynomial expansion, we
have found that, for a proper parameter set, our model repro-
duces simultaneously both Mott-gap excitation at the high-
energy region and the phonon-assisted spin excitation at the
low-energy region in the optical conductivity. We conclude
that the Hubbard-Holstein model provides a good description

PHYSICAL REVIEW B 82, 195130 (2010)

of Sr,CuQO3, and thus the EP interaction plays important roles
in the electronic structure of Sr,CuO;. Using the low-
temperature dynamical DMRG technique, we have found
that the EP interaction broadens a peak structure in the opti-
cal conductivity with increasing temperature. This is accom-
panied by the increase in phonon number. Thus the EP inter-
action also plays an important role in the temperature
dependence of the optical conductivity in the 1D Mott insu-
lator such as Sr,CuOs;.
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