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The widely employed DFT+U formalism is known to give rise to many self-consistent yet energetically
distinct solutions in correlated systems, which can be highly problematic for reliably predicting the thermo-
dynamic and physical properties of such materials. Here we study this phenomenon in the bulk materials UO,,
Co0, and NiO, and in a CeO, surface. We show that the following factors affect which self-consistent solution
a DFT+U calculation reaches: (i) the magnitude of U; (ii) initial correlated orbital occupations; (iii) lattice
geometry; (iv) whether lattice symmetry is enforced on the charge density; and (v) even electronic mixing
parameters. These various solutions may differ in total energy by hundreds of meV per atom, so identifying or
approximating the ground state is critical in the DFT+ U scheme. We propose an efficient U-ramping method
for locating low-energy solutions, which we validate in a range of test cases. We also suggest that this method

may be applicable to hybrid functional calculations.
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Since its introduction two decades ago, the density-
functional theory+U formalism (DFT+U) (Refs. 1 and 2)
has achieved a wide array of successes in resolving short-
comings of conventional DFT. The inclusion of an onsite
Hubbard-type U term in the DFT Hamiltonian enables a
more accurate treatment of correlated electron phenomena.
For example, one classic failure of DFT is the prediction of a
metallic band structure for the Mott-Hubbard insulators; the
U parameter of DFT+U addresses this failure by localizing
the d or f electrons erroneously found to be itinerant within
DFT.! However, DFT+U’s special treatment of these corre-
lated d or f electrons means that the DFT+ U Hamiltonian is
explicitly orbital-dependent. As a result, DFT+U calcula-
tions possess orbital degrees of freedom that are absent from
conventional DFT. These orbital degrees of freedom mani-
fest themselves in typical DFT+U calculations as multiple
self-consistent solutions corresponding to different occupa-
tions of the m projections associated with the subshell / to
which the U parameter is applied. These multiple solutions
can vary in energy by several electron volts per formula unit
but may not be easily distinguished from the ground state by
inspection of predicted physical properties such as total en-
ergy and band gap. Thus, the seemingly subtle orbital phys-
ics inherent in the DFT+ U scheme can have enormous prac-
tical consequences for first-principles energetics calculations.

Some groups have carefully probed these important or-
bital effects; especially worthy of note is the work of
Amadon,>% Koepernik’~ (see, in particular, the illuminating
discussion in Ref. 9), Ozolin3,'? Pickett,'"'> and their respec-
tive co-workers. Other work has highlighted the great rel-
evance of orbital physics to DFT+U calculations of rare-
earth nitrides,'® Fe;0,,'* and FeO.!>!® However, the great
majority of DFT+U calculations in the literature are per-
formed with no mention of correlated orbital occupations. As
a result, we argue that such calculations may not have
reached the ground state. In this paper, we first investigate
the large energetic spread of multiple solutions in DFT+U in
the bulk system UO,. The nature of these multiple solutions
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is sensitive to the value of U, the lattice geometry, and
whether or not lattice symmetry is enforced on the charge
density. We then study how these solutions appear at low
values of U, noting that the solutions arise as electrons begin
to localize under the influence of U. Since widely used DFT
codes such as VASP,!”!8 pwscF,!® and ABINIT (Ref. 20) do not
employ any methods to rigorously locate the lowest energy
DFT+U solution, we propose a heuristic U-ramping method
for locating or approximating the ground state. While the
works noted above generally rely on symmetry arguments
and/or manual enumeration to investigate different orbital
occupations, our method requires no symmetry analysis and
is less costly than enumeration. We first validate our method
in UO,, CoO, and NiO in a variety of different symmetries.
To emphasize the practical impact of our method, we then
demonstrate that a typical “naive” calculation of a CeO,
(111) surface containing a vacancy can converge to a solu-
tion +284 meV/vacancy higher in energy than a calculation
using our U-ramping scheme. An error of this magnitude
could qualitatively invalidate predictions made from routine
calculations.

We first demonstrate the energy scale and differences in
physical properties of the multiple solutions inherent in
DFT+U, taking as an example antiferromagnetic (AFM)
UO, in the fluorite structure (a six atom cell). All bulk cal-
culations in this work (except those for CeO,) were per-
formed with the ABINIT code using Perdew-Burke-Ernzerhof
(PBE) projector augmented wave potentials, a 700 eV
kinetic-energy cutoff for the wave functions, and a 6 X6
X 6 k-point mesh. Following Dorado et al., we enumerate
all (})=21 ways of distributing the two U 5f electrons into
the seven available f orbitals. We then use these 21 possibili-
ties as initial correlated orbital occupation matrices for our
DFT+U calculations of UO,. Some of these possibilities are
degenerate by symmetry and others only slightly differ in
energy from one another. For clarity, therefore, only nine
representative results of the 21 are depicted in Fig. 1, where
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FIG. 1. (Color online) The relative energies, as a function of U, of multiple solutions in DFT+ U for fluorite UO,. The curves represent
different initial correlated orbital occupation matrices that were applied to the calculations. These curves are plotted at two different unit-cell
volumes: (a) corresponds to a=1.02a,,, and (b) corresponds to a=0.98a,,,,. The band gaps for the multiple solutions at the larger and

smaller volumes are given in (c) and (d), respectively.

we show the relative energies of these various solutions as a
function of U. We include results at volumes both larger than
the experimental value (a=1.02a,,,) and smaller (a
=0.98a,,,,), in order to span a realistic range of initial vol-
umes for typical relaxation calculations. Band gaps of the
solutions are also given.

Figures 1(a) and 1(b) demonstrate that, at a nominal U
=4.5 eV, total energies for the AFM cell can vary by up to
3.5 eV depending on the initial guess for the correlated or-
bital occupations. A particular initial guess may also hop
between different final converged states depending on the
value of U; beginning from the same initial guess at a variety
of U values may thus produce unexpected discontinuities in
calculated properties as a function of U. Dorado et al.® made
this observation for unit-cell volume in UO,. Furthermore,
while most of the high-energy solutions remain metallic even
at U=4.5 eV, one troublesome solution has a reasonable
band gap of 1.6 eV in Fig. 1(c) but is more than 0.5 eV/cell
higher in total energy than the ground state in Fig. 1(a). Such
a solution could pass a “reality check” based on an exami-
nation of physical properties but would lead to highly erro-
neous energetic predictions.

Geometry considerations also affect the solution obtained
from a particular calculation. Comparing the results at differ-
ent volumes, we note that, at U=4 eV, the ground-state so-
lution at the smaller lattice parameter does not even converge
to self-consistency within 150 electronic iterations at the
larger lattice parameter. Likewise, across all values of U, the

relative energies of the different solutions are significantly
rearranged depending on the volume used for the calcula-
tions. Thus, we conclude that, unless two calculations begin
from the same initial geometry and the same initial occupa-
tion matrices, there is no guarantee that the two calculations
will converge to the same final result. As we later show, even
seemingly innocuous changes, such as adjusting electronic
mixing parameters, can push DFT+U calculations toward
different self-consistent solutions.

We now turn our attention to the emergence of DFT+U’s
multiple solutions as the U parameter is gradually applied
and describe a method to locate low-energy solutions. Figure
2(a) depicts the number of fractionally occupied bands in the
same UO, calculations as Fig. 1, for small values of U. Of
course, zero fractionally occupied bands correspond to an
insulating state, which is the motivation behind applying
DFT+ U to Mott-Hubbard insulators. Figure 2(a) shows that,
even at extremely small values of U (in this case, around 0.2
eV), solutions begin to depart from one another in their elec-
tronic localization behavior. As U increases, the various ini-
tial guesses hop unpredictably between different degrees of
localization. Evidently, the path to an insulating state is deli-
cate and the energetic barriers that the U parameter creates
between different states can trap calculations in local ener-
getic minima in electronic orbital configuration space.

The complex electronic configuration space created by the
Hubbard U term motivates the usefulness of our method for
locating low-energy solutions. To understand how and why it
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FIG. 2. (Color online) The behavior of our U-ramping method at small values of U in fluorite UO,. (a) The number of fractionally
occupied bands in calculations using the same enumerated occupation matrices as in Fig. 1, as compared to the iterative U-ramping scheme.
(b) The relative energies of the calculations in (a); our method finds a low-energy solution at all U.

works, let us introduce some convenient notation. Let n de-
note the joint occupation matrix of all localized orbitals in
the system and define the constrained ground-state energy
Eppr(n) obtained by minimizing the DFT energy over the set
of all wave functions consistent with the occupation matrix
n. [Here “DFT” could stand for any semilocal functional,
such as a local-density approximation (LDA) or a general-
ized gradient approximation (GGA)].

Popular DFT functionals typically yield a well-behaved
energy optimization problem with a unique global energy
minimum (at least for a given spin configuration). This is an
indication that the function Eppr(n) tends to be convex (see
Fig. 3, bottom curve). However, it is difficult to prove con-
vexity formally. The Coulombic energy and the LDA
exchange-correlation energy terms are indeed convex in the
charge density but this is not clear for the kinetic energy term
or the GGA exchange-correlation term.

Unfortunately, in a system exhibiting a strong electron
localization, the global minimum of Epgp(n) often exhibits
an unphysical fractional orbital occupation. The “Hubbard
U” correction term penalizes fractional occupations to re-
store the actual ground state with integral orbital occupation.
However, this correction term is concave and therefore typi-
cally causes the energy surface to become concave as well,
yielding a multitude of local minima (see Fig. 3, top curve).
Finding the global minimum, therefore, apparently involves
a computationally intensive combinatorial search over all po-
tential orbital occupations for each atom in the system. Our
approach to avoid this problem is to adiabatically “turn on”
the Hubbard U correction term so that the incorrect fractional
orbital occupations are allowed to gradually converge to the
true integral orbital occupations (see Fig. 3).

This approach is generally successful because the correc-
tion targets the incorrect curvature of the energy surface as a
function of orbital occupation while leaving the energy of
integral occupation states essentially unchanged. Hence, at
some intermediate value of the U parameter, the energy sur-
face is close to linear and a global minima can easily be
found. The same correct minima then persists as the U pa-
rameter reaches its full correct value.

While we were not able to find any case where our
method failed to find a very low-energy solution, there is no
mathematical guarantee that our method will always work,
because all convex portions of the energy surface may not
become concave at the exact same value of U. In fact, if the
method always worked, we would have accidentally found a
polynomial solution to a well known and unresolved non-
deterministic polynomial-time (NP) hard problem,?' an un-
likely possibility.

In practice, we begin at U=0 with a diagonal occupation
matrix and ramp U by 0.1 eV at a time, iteratively applying
the occupation matrix from the previous calculation to the
next value of U. Intuitively speaking, this method is intended
to guide the calculation to a deep total-energy well as U
gradually reshapes electronic configuration space. The
method produces the bold curve in Fig. 2(a) and gives a
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Orbl[al occupauon (n)

FIG. 3. Schematic illustration of the principle underlying the
proposed method. For simplicity, the horizontal axis denotes the
occupation of a single localized orbital (out of the numerous local-
ized orbitals present in the system). As the Hubbard U parameter is
gradually turned on, the energy surface (as a function of orbital
occupation) goes from being convex (bottom curve, corresponding
to conventional DFT) to being concave (top curve, corresponding to
DFT+U). For small values of U, the DFT+U global energy mini-
mum is easy to find and gradually converges to the true DFT+U
global energy minimum (filled circles) as U increases to its full
correct value. The concavity of the DFT+U curve (at the nominal
value of U) would have otherwise necessitated a combinatorial
search among the possible local minima (the true energy surface is
a high-dimensional object with considerably more local minima).
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FIG. 4. (Color online) Results of our U-ramping scheme, as
compared to manual enumeration of possible correlated orbital oc-
cupation matrices, for a variety of test cases using nominal values
of U and J from the literature: (a) fluorite AFM UO,; (b) fluorite
AFM UO, with symmetry disabled; (c) rocksalt AFM CoO; (d)
rhombohedrally distorted CoO; and (e) rocksalt AFM NiO with
symmetry disabled.

smooth path to an insulating state, without the hopping that a
static initial guess produces. The energetics of these calcula-
tions are shown in Fig. 2(b), where we observe that our
method converges to a low-energy solution (although not
always the ground state) across all studied values of U.

While our method appears successful for small values of
U (Fig. 2), our objective is to propose a means for obtaining
a low-energy solution in any DFT+ U calculation at nominal
higher values of U. We now validate our method for typical
DFT+U calculations in five distinct test cases: (1) fluorite
AFM UO, [U=4.5 eV, J=0.51 eV,% and a=5.47 A (Ref.
22)], (2) fluorite AFM UO, with symmetry disabled in
the calculation, (3) rocksalt AFM CoO [U=7.1 eV, J
=1.0 eV, and a=4.27 A (Ref. 22)], (4) slightly thombo-
hedrally distorted AFM CoO (using the cubic value of a),
and (5) rocksalt AFM NiO with symmetry disabled [U
=8.0 eV, J=0.95 eV, and a=4.17 A (Ref. 22)]. We repeat
that the method consists of ramping U by a small increment
(0.1 eV in these cases) and iteratively applying previous oc-
cupation matrices (or, in DFT codes that do not supply such
functionality, simply the previous wave functions and charge
density) until all bands are integrally occupied, then proceed-
ing to the nominal higher value of U using the first obtained
insulating occupation matrix. For NiO, which is already a
small-gap insulator in GGA, we need only calculate U=0
and U=8.0 eV. A comparison of our method to the combi-
natorial enumeration of occupation matrices,?* discussed
above, is shown in Fig. 4.

Figure 4 demonstrates that our method provides excellent
results both for f and d systems, at a variety of lattice geom-
etries and symmetry constraints. We point out that, as ex-
pected, lower symmetry calculations have a higher number
of permitted orbital occupation states, and hence more ener-
getically distinct solutions. In the case of nonsymmetrized
fluorite UO, [Fig. 4(b)], the U-ramping scheme gives a so-
lution only about 5 meV/atom above the lowest energy enu-
meration solution. This +5 meV/atom result is the highest
energy solution located by our method relative to enumera-
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tion. However, in rhombohedrally distorted CoO [Fig. 4(d)],
the method finds a solution 5 meV/atom below the best enu-
merated matrix result. In our simple enumeration, we consid-
ered only the diagonal elements of the occupation matrix. A
more exhaustive enumeration would need to include the off-
diagonal matrix elements, which dramatically increases the
computational cost of the enumeration and thus illustrates
the relative attractiveness of our approach.

We now comment in more detail on our method’s effi-
ciency, especially as compared to enumeration of occupation
matrices. Our U-ramping method requires typically 2-15
DFT+U calculations, depending upon the U increment cho-
sen and the value of U at which an insulating state is
reached, although the wave functions and charge densities
may be reused during ramping to accelerate progress. One
might argue that the combinatorial enumeration scheme is
similarly costly but it has two major caveats: first, the occu-
pation matrices may only be enumerated in codes such as
ABINIT that offer this functionality. Second, and most impor-
tantly, in our combinatorial search we only considered the
diagonal elements of the occupation matrix, which failed to
find the lowest energy solution for rhombohedrally distorted
CoO. When Dorado et al.® performed a more extensive
search of electronic configuration space and included off-
diagonal matrix elements, they performed over 60 DFT+U
calculations in all. Thus while our method is obviously more
expensive than a single DFT+U calculation, we assert that
the insurance it provides against reaching a high-energy
metastable solution justifies its cost and that its cost is in fact
much lower than that of exhaustive enumeration. Our ap-
proach avoids a combinatorial search whose complexity in-
creases exponentially with the number of localized orbitals
under consideration.

To emphasize the significant impact DFT+U’s multiple
solutions may be having on routine calculations, we now
consider a thin oxygen vacancy-containing CeO, (111) slab
consisting of 23 atoms using the popular VASP code. The O
vacancy leaves behind two electrons and in general one
would like to know where and how these electrons localize.
The first question involves enumeration and total-energy cal-
culations of possible combinations of Ce®* sites,?> which we
do not present here. The second question is of great rel-
evance to the present work: the two electrons have orbital
degrees of freedom when they localize. The different orbitals
they may occupy will have very different energies, as we
now show, yet most DFT+U calculations in the literature
make no mention of explicitly searching electron orbital con-
figuration space in such situations.

We compare three surface calculation results in Fig. 5,
each of which has a visibly distinct orbital configuration. The
first two calculations were performed without any attention
to f orbital occupations but employed different electronic
mixing parameters. Strikingly, we see that such a change in
input parameters, which should ordinarily not affect the re-
sults of calculations, may actually substantially affect the
DFT+U total energy since calculations can converge to one
of many orbital-dependent solutions inherent in the DFT
+U approach. The third calculation is the result of our
U-ramping method, for which we increased U,;=U-J by
0.5 eV from 0 to 4.5 eV,? and it exhibits a different orbital
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FIG. 5. (Color online) DFT+ U solutions for a CeO, (111) sur-
face containing an O vacancy, obtained by two choices of electronic
mixing parameters and by our U-ramping method. The difference
between spin-up and spin-down charge densities is shown for the
two present Ce®* ions. Internal degrees of freedom were relaxed.

polarization and a lower energy than either “standard” DFT
+U calculation. Based on these findings, we conclude that
exploration of electron orbital configuration space is essen-
tial in the DFT+ U framework in order to avoid high-energy
metastable solutions. Our CeO, surface result calls into ques-
tion any DFT+U calculation performed without consider-
ation of orbital occupations.

In this work, we showed that the multiple orbital-
dependent solutions present in DFT+ U can vary drastically
in energy while their other physical properties may or may
not be clearly distinguishable. Which of the multiple solu-
tions a particular calculation reaches is a sensitive function
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of the U parameter, initial orbital occupations, lattice geom-
etry, enforced symmetry, and even electronic mixing values.
Lower symmetry calculations tend to have more permitted
solutions. We introduced a simple U-ramping method in-
tended to negotiate the complex electronic configuration
space of DFT+U by slowly increasing U and iteratively re-
applying the occupation matrices of previous calculations.
This scheme achieved success in finding low-energy solu-
tions in d and f electron systems under a wide variety of
conditions. Finally, we suggest that our ramping method may
also be suitable for hybrid functional calculations, in which
the adjustable degree of Fock exchange takes the place of the
U parameter.
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