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We study topological properties of density-wave states with broken translational symmetry in two-
dimensional multiorbital systems with particular focus on t2g orbitals in a square lattice. Due to the distinct
symmetry properties of d-orbitals, a nodal charge or spin-density-wave state with Dirac points protected by
lattice symmetries can be achieved. When an additional order parameter with opposite reflection symmetry is
introduced to a nodal density-wave state, the system can be fully gapped leading to a band insulator. Among
those, topological density-wave insulators can be realized when an effective staggered on-site potential gen-
erates a gap to a pair of Dirac points connected by inversion symmetry which have the same topological
winding numbers. We also present a mean-field phase diagram for various density-wave states and discuss the
experimental implications of our results.
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I. INTRODUCTION

Identifying topological insulators has been one of the
most fascinating research fields in contemporary condensed
matter physics.1–3 Topological insulators have a bulk gaplike
band insulators but are distinguished by topologically pro-
tected conducting edge states preserving time-reversal invari-
ance. In particular, two-dimensional �2D� topological insula-
tors are known as quantum spin Hall insulators with finite
spin currents on the edge, analogous to quantum Hall states.
Haldane4 proposed that the fictitious magnetic fluxes in the
honeycomb lattice lead to the quantum anomalous Hall insu-
lator �or Chern insulator�. Generalizing Haldane’s model in-
cluding time-reversal invariant spin-orbit coupling, it was
theoretically shown that such a quantum spin Hall insulator
can exist in graphene.5,6 A two-dimensional semiconductor
system with a uniform strain gradient was also proposed to
be a candidate.7 Later, the predicted edge states in HgCeTe
quantum well systems8 were experimentally verified which
confirmed the existence of two-dimensional topological
insulators.9

The topological insulators in these systems normally exist
due to strong spin- orbit coupling.5,10 When the spin-orbit
coupling preserves spin rotational symmetry about an axis,
the counterpropagating edge modes which carry opposite
spin quantum numbers result in quantum spin Hall insula-
tors. It was shown that these modes are protected by time-
reversal symmetry even in the absence of spin rotational
invariance.10 It was further pointed out that an effective spin-
orbit coupling term can be generated by spontaneous spin
rotational symmetry breaking in an extended Hubbard model
on the honeycomb lattice.11 In these studies, the structure of
the honeycomb lattice plays an important role, as the tight-
binding model on this lattice possesses two Dirac points at
the Brillouin-zone corners. Therefore in low-energy descrip-
tion, various gapped insulating phases proximate to the Dirac
semimetal can be understood in terms of mass perturbations
to gapless Dirac particles. For instance, the fictitious mag-
netic fluxes introduced by Haldane generate a mass term that
has the opposite signs at the two Dirac points leading to an

insulator with finite quantized Hall conductivity. The Dirac
Hamiltonian approach further provides a framework to un-
derstand the time-reversal invariant Z2 topological
insulators.10

While systems on the honeycomb lattice such as graphene
naturally support two-dimensional massless Dirac particles
in the bare band structures, this is not the case in a simple
square lattice system which is an effective model for abun-
dant layered perovskite materials in nature. In this respect, it
is interesting to note that the recently proposed nodal
density-wave state12 exhibits gapless Dirac particles via bro-
ken translational symmetry. This proposal was made in the
context of iron pnictide systems, where d orbitals of t2g
bands in an effectively two-dimensional square lattice give
rise to several Fermi pockets with interesting topological
properties. In this system, the spin-density-wave instability
with the finite ordering wave vector Q= �� ,0� �or �0,���
leads to band touchings between the k states with the mo-
mentum difference of Q. In general, the degeneracies at the
band touching points disappear because of the finite overlap
matrix between the degenerate states induced by the density-
wave order parameter. However, in multiorbital systems, be-
cause of the distinct symmetry properties of orbitals, the de-
generacies at some band touching points are protected
leading to nodal density-wave states, which is generally valid
for any density-wave orders.

In this work, we ask if topological insulators can emerge
by gapping nodal points turning the system from nodal
density-wave states to topological density-wave �TDW� in-
sulators. To find such a TDW insulator, we first investigate
the properties of the nodal density-wave states. We find that
one general and important characteristic of the Dirac par-
ticles in nodal density-wave states is that a pair of Dirac
Hamiltonians connected by inversion symmetry have the
same topological winding numbers. Thus an effective stag-
gered on-site potential generating a mass term, which has the
same signs at the inversion symmetric nodal points, induces
TDW insulators. This can be contrasted with the topological
properties of the Dirac particles in the honeycomb lattice
where the Dirac Hamiltonians at the two inversion symmet-
ric nodal points have the opposite winding directions.3,13
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Thus the mass term induced by, for example, a staggered
sublattice chemical potential, which has the same signs at the
two Dirac points would generate a topologically trivial band
insulator as shown in graphene system.5,14

The rest of the paper is organized as follows. In Sec. II,
we first consider a simple two-band model Hamiltonian com-
posed of dxz and dyz orbitals on the square lattice. After clas-
sifying all possible charge and spin-density-wave �SDW� or-
der parameters with the ordering wave vector Q= �� ,0�
based on their transformation properties under lattice sym-
metries, we establish general relations between the locations
of Dirac nodes and order-parameter symmetries in Sec. III.
The fact that dxz and dyz orbitals have the opposite eigenval-
ues under reflection symmetries along high-symmetry direc-
tions in the momentum space plays the key role for the emer-
gence of Dirac points. In addition to the Dirac points coming
from the Brillouin-zone folding, additional contributions
from quadratic band degeneracy splitting are also discussed.
In Sec. IV, topological properties of gapped density-wave
phases with two order parameters with the opposite reflec-
tion symmetries are studied. Fully gapped insulating phases
can be obtained by introducing two density-wave order pa-
rameters which have the opposite eigenvalues under reflec-
tion symmetries. Among them, a certain combination turns
the system to a TDW insulator. In Sec. V, the mean-field
phase diagram including the TDW phase is presented, which
is obtained by solving an extended Hubbard model Hamil-
tonian with orbital degeneracy. Topological density-wave
states in three orbital systems are discussed in Sec. VI.
Straightforward extension to three-orbital systems shows the
general applicability of the idea we pursue in this work to
obtain topological insulators in multiorbital systems. Finally,
we conclude in Sec. VII.

II. TWO-BAND HAMILTONIAN AND SYMMETRIES OF
ORDER- PARAMETERS

A. Tight-binding Hamiltonian

We consider a tight-binding Hamiltonian on the square
lattice with two orbital �dxz ,dyz� degrees of freedom at each
site. A generic Hamiltonian which contains all possible hop-
ping processes allowed by lattice symmetries is given by

H0 = �
k,�

�k,�
† H�k��k,�, �1�

where

H�k� = ��+�k� − ���0 + �−�k��3 + �xy�k��1. �2�

Here a two-component field �k,�
† = �dxz,�

† �k� ,dyz,�
† �k�� de-

scribes the creation of particles with dxz and dyz orbital fla-
vors and spin �, and the Pauli matrix �i connects these two
orbital states. In the above,

�+�k� = − �t1 + t2��cos kx + cos ky� − 4t3 cos kx cos ky ,

�−�k� = − �t1 − t2��cos kx − cos ky� ,

�xy�k� = − 4t4 sin kx sin ky . �3�

Diagonalization of H�k� gives rise to the following two
band dispersions:

E��k� = �+�k� − � � ��−
2�k� + �xy

2 �k� . �4�

In addition to time-reversal symmetry T, the Hamiltonian
H0 has the C4 point-group symmetry, which consists of the
fourfold rotation C�/2, the inversion I, and the two reflections
Px and Py mapping x to −x and y to −y, respectively. Each
symmetry operation transforms a two-component field
���kx ,ky� in the following way:

C�/2:���kx,ky� → i�2���− ky,kx� ,

Px:���kx,ky� → − �3���− kx,ky� ,

Py:���kx,ky� → �3���kx,− ky� ,

I:���kx,ky� → − �0���− kx,− ky� . �5�

If we choose the hopping parameters in such a way as
t1=−1.0, t2=1.3, and t3= t4=−0.85, the H0 works as an effec-
tive two-band Hamiltonian describing the Fe-pnictide
systems.15 Given the hopping parameters above, the Fermi
surface consists of two hole and two electron pockets when
the system is near half-filling.12,15 A pair of electron and hole
pockets are connected by a nesting wave vector Q= �� ,0�
�or �0,���, which drives various density-wave instabilities.16

Here we choose Q= �� ,0� �Ref. 17� and perform a detailed
study about the band structures of density-wave ground
states considering all possible density-wave order param-
eters.

B. Symmetry of order parameters

We consider various on-site density-wave order param-
eters and investigate their symmetry properties. Since we
have two orbitals per site, there are four different on-site
charge-density-wave �CDW� states with the ordering wave
vector Q= �� ,0�, which are given by

D̂i =
1

N
�
k

�
a,b=1

2

da,�
† �k���i�abdb,��k + Q� , �6�

where a are b are indices describing the dxz�a=1� or dyz�a
=2� orbital states. N counts the number of unit cells in the
system. Similarly, we also define SDW states choosing the
spin ordering direction along the z axis,

M̂i =
1

N
�
k

�
a,b=1

2

da,�1

† �k���i�ab�sz��1�2
db,�2

�k + Q� . �7�

These eight order parameters represent distinct phases
with different broken symmetries. For example, the D3 CDW
order parameter corresponds to �i�−1�ix�ni,xz−ni,yz�, where
ni,a is the density of electrons with the orbital a at the site i.
Thus it is characterized by the relative density difference
between two orbitals �orbital ordering�, which alternates
along the x direction, while keeping the total density �ni,xz
+ni,yz� uniform on every site as shown in Fig. 1�a�. This
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breaks translational symmetry, doubling the unit cell along x
direction. On the other hand, the M2 SDW order parameter
described in Fig. 1�b� corresponds to a staggered spin-orbit
coupling. This is because M2 can be written as �i�
−1�ixSi,zLi,z, where Li,z is proportional to �di,xz+ idi,yz�†�di,xz
+ idi,yz�− �di,xz− idi,yz�†�di,xz− idi,yz�=2idi,xz

† di,yz+H.c.. How-
ever, unlike the uniform spin-orbital coupling �iSi,zLi,z, the
M2 is a staggered spin-orbit coupling with alternating signs
along the x direction. It breaks spin-rotational and transla-
tional symmetries but preserves time-reversal symmetry. In
addition, D0 and M0 describe conventional charge- and spin-
density-wave states, respectively. It was found that M0 de-
scribes the leading density-wave instability in Fe-pnictides.12

The above eight order parameters can be distinguished by
their transformation properties under lattice symmetries. The
symmetries of density-wave order parameters are summa-
rized in Table I. Note that every density-wave state has even
parity under the inversion symmetry. Moreover, all the diag-
onal density-wave states Di �or Mi� with i=0 or 3 are even
under the two reflection symmetries while the other off-
diagonal density-wave states with i=1 or 2 are odd under the
reflections. These symmetry properties of density-wave order
parameters strongly constrain the location of Dirac nodes
generated by the Brillouin-zone folding and the winding
numbers around Dirac nodes in the momentum space, which
are discussed in detail in the following section.

III. NODAL DENSITY-WAVE PHASES

One intriguing property of the Q= �� ,0� density-wave
ground states is that a large number of Dirac nodes emerge in
the band structure.12 The numbers and locations of the nodal
points depend on band dispersions and the symmetries of the
order parameters.

There are two different sources generating nodal points in
general. One way is via introducing a density-wave order
parameter carrying a finite momentum. This induces a
Brillouin-zone folding which generates several band touch-
ing points. In most cases, the degeneracy at the band touch-
ing point is lifted because the density-wave order parameter
induces a finite overlap between the pair of states touching at
a point. Henceforth a band gap opens up. However, when the
band touching occurs at a high-symmetry point in the Bril-
louin zone, the overlap matrix vanishes due to the lattice
symmetries, generating symmetry protected nodal points.

The second group of nodal points come from the splitting
of quadratic band touching points, which exist in the bare
band structure. Because of the underlying fourfold rotational
symmetry, the original hopping Hamiltonian in Eq. �1� sup-
ports quadratic band crossing points.12,18–21 The introduction
of the density-wave order parameter carrying a finite mo-
mentum splits a quadratic band touching point into two Dirac
points along high-symmetry directions in the momentum
space. In the following, we discuss in detail the relation be-
tween the order-parameter symmetry and the locations of
Dirac points derived from these two different sources in
separate subsections.

A. Dirac nodes generated by Brillouin-zone folding

We first focus on the generation of Dirac nodes along the
ky axis. In Fig. 2�a� �Fig. 2�b�, we plot the energy dispersion
of the two bands given in Eq. �4� along the kx=0�kx=��
direction. Since the �xy term in Eq. �3�, which describes the
hybridization between dxz and dyz orbitals, vanishes along the
kx=0 axis, the upper and lower bands in Fig. 2�a� are just dyz
and dxz bands, respectively. For kx=0, H�k� is invariant un-
der the Px reflection which transforms a momentum kx to
−kx. Therefore each band is an eigenstate of Px with eigen-
values of �1. This is consistent with the fact that dxz�dyz�
orbital is odd �even� under Px. A similar analysis can also be
applied to the two bands dispersing along the kx=� direc-
tion. Since H�k� has Px symmetry along kx=�, the two
bands also have definite Px eigenvalues. In Fig. 2, the Px
even �odd� bands are represented by blue dotted �red solid�
lines.

TABLE I. Symmetry of density-wave order parameters. Here “+” �“−”� indicates “even” �“odd”� sym-
metry of the order parameters under the corresponding symmetry operation.

D0 D1 D2 D3 M0 M1 M2 M3

Px + − − + + − − +

Py + − − + + − − +

I + + + + + + + +

T + + − + − − + −

(a) D - CDW(a) D - CDW (b) M - SDW(b) M - SDW33 22

FIG. 1. �Color online� Description of representative density-
wave ordering patterns with the ordering wave vector Q= �� ,0�. �a�
D3 charge-density-wave �D3-CDW� ordering. dxz and dyz orbitals
align alternatively along the x direction while local charge and spin
densities are uniform. �b� M2 spin-density-wave �M2-SDW� order-
ing. Here orbital and spin orderings occur at the same time. A solid
circle represents the d+ orbital defined as d+= �dxz+ idyz� /�2, while a
dotted circle indicates the d− orbital given by d−= �dxz− idyz� /�2.
The arrows inside circles describe spin ordering.
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Once we introduce a density-wave order parameter with
the ordering wave vector Q= �� ,0�, the unit cell doubles
along the x direction, which leads to the Brillouin-zone fold-
ing in momentum space. Thus within the reduced Brillouin
zone �RBZ�, we have four bands dispersing along the ky axis.
Note that the zone folding generates eight band touching
points, which are indicated by circles in Fig. 2�c�. Here the
band touching point between two bands with the same �op-
posite� Px eigenvalues is encircled by a solid �dotted� circle.

The degeneracy between two states, ��1�k�� and ��2�k
+Q��, touching at the momentum k after the Brillouin-zone
folding, is lifted when the matrix element of the density-
wave order parameter D̂i between these two states is finite,
that is, 	�1�k��D̂i��2�k+Q���0. Therefore if the order pa-
rameter D̂i �or M̂i� is Px even, the degeneracy is lifted when
the two degenerate bands have the same Px eigenvalues.
However, the nodal point remains gapless if the two degen-
erate bands have the opposite Px eigenvalues.

On the other hand, if the density-wave order parameter D̂i

�or M̂i� is Px odd, the full Hamiltonian is not invariant under

Px anymore. However, even in this case 	�1,s1
�k��D̂i��2,s2

�k
+Q��=0 in the weak-coupling limit, if s1=s2, where s refers
to Px eigenvalues. Namely, the matrix element of Di, which
is odd under Px, vanishes when the two degenerate eigen-
states have the same Px eigenvalues. To understand this point
clearly, let us define the eigenvector �	n,s

�0��k�� of the hopping
Hamiltonian H0 with the even �s=+� or odd �s=−�Px eigen-
values. Here n is a band index. Now we turn on a small

density-wave order parameter D̂i which is odd under Px.
Since the Px eigenvalue is not a good quantum number,
�	n,s

�0��k�� can be contaminated by the states with the opposite
Px eigenvalue �	m,s̄

�0� �k+Q��, leading to

�	n,s
�0��k��→

D̂i

��n,s�k�� = �	s�k�� + �	s̄�k + Q�� ,

where �	s�k��=�ncn�	n,s
�0��k�� is a linear combination of the

states with the Px eigenvalue of s, while �	s̄�k+Q��
=�ncn��	n,s̄

�0��k+Q�� is a linear combination of the states with
the opposite Px eigenvalue of s̄. Notice that �	s�k�� and
�	s̄�k+Q�� have a momentum difference given by the order-
ing wave vector Q carried by the density-wave order param-

eter D̂i. Because of the fact that the two components of the
wave function with the opposite Px eigenvalues have the
momentum difference given by Q, it is straight forward to

show that 	�1,s1
�k��D̂i��2,s2

�k+Q��=0 if s1=s2.
Therefore the nodal point remains gapless if the order

parameter D̂i is Px even �Px odd� while the two generated
bands have the opposite �same� Px eigenvalues. It means that
four nodal points among the eight band touching points re-
main gapless independent of the condition that the order pa-
rameter is even or odd under Px reflection symmetry.

In Fig. 3 we plot the band structure of the density-wave
ground states along the ky axis. Figure 3�a� corresponds to
the density-wave orders D0, D3, M0, M3, which are Px even,
while Fig. 3�b� describes the band structure for the other
order parameters, D1, D2, M1, M2, which are odd under Px
symmetry. Notice that nodal points show opposite behavior
for these two different classes of order parameters. Namely,
when a nodal point remains gapless for one order parameter,
it is gapped out for the other order parameter with the oppo-
site Px eigenvalue.

We can extend the same analysis to understand nodal
points lying along the kx axis. In this case we have Py reflec-
tion symmetry mapping y to −y. However, compared to the
previous analysis for nodal points on the ky axis, there is one
important difference in this case. Before the unit-cell dou-
bling, we have two bands dispersing along the kx axis. The

(a)(a) (b)(b)

(c)(c)

kkyy--ππ

E(k)E(k)

ππ kkyyππ--ππ

E(k)E(k)

--ππ
kkyyππ

E(k)E(k)

For k = 0For k = 0xx For k =For k = ππxx

FIG. 2. �Color online� �a� Band dispersion along kx=0 for the
hopping Hamiltonian in Eq. �1�. Here we use a red solid �blue
dotted� line to indicate a band which is odd �even� under the Px

reflection symmetry. �b� Band dispersion along the kx=� direction.
�c� Band structure along kx=0 after the unit-cell doubling due to the
Q= �� ,0� density-wave ordering. Four bands in �a� and �b� meet
and disperse together along kx=0 after the Brillouin-zone folding.
Note that the zone folding generates eight band touching points.
Black solid �dotted� circles indicate the band touching points be-
tween two bands having the same �opposite� Px eigenvalues.

-

(a)(a)

(b)(b)

--ππ
kkyyππ

E(k)E(k)

--ππ
kkyyππ

E(k)E(k)

FIG. 3. �Color online� The band structures of the Q= �� ,0�
density-wave ground states along the ky axis. �a� For Px even
density-wave states. �b� For Px odd density-wave states.
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Brillouin-zone folding induces overlaps of these two bands
with themselves. In Fig. 4, we plot the dispersion of the two
bands along the kx axis centered at k= �0,0� �Fig. 4�a�� and at
k= �� ,0� �Fig. 4�b��. The four bands after the zone folding
displayed in Fig. 4�c� can be obtained by superposing the
four bands in Figs. 4�a� and 4�b�. In Fig. 4�c�, we plot the
band structure from kx=−� to kx=� for convenience al-
though the first Brillouin zone is from kx=−� /2 to kx=� /2.
Note that in Fig. 4�c� the location of solid and dotted circles
are interchanged compared to those in Fig. 2�c�. Because of
this difference, the location of Dirac nodes along the kx and
ky axes also show the opposite behaviors.

B. Dirac nodes from quadratic band crossing

The band structure of the two-band hopping Hamiltonian
H0 in Eq. �1� supports two quadratic band crossing points at
k= �0,0� and k= �� ,��.12,22 Splitting of these quadratic band
crossing points generates additional Dirac points, which con-
tribute additional Chern numbers for various insulating
phases.

Expanding the Hamiltonian H�k� in Eq. �2� near k
= �0,0�, we obtain the following low-energy effective Hamil-
tonian:

Heff =
 d2k�†�k�Hquad�k���k� , �8�

in which

Hquad�k� = 
�kx
2 + ky

2��̂0 + �kxky�̂1 + ��kx
2 − ky

2��̂3, �9�

where 
= �t1+ t2+4t3� /2, �=−4t4, and �= �t1− t2� /2. The
nontrivial topological property of the quadratic band crossing
point is reflected in the winding number Nw, which is defined
as19

Nw �
1

�i
�

C
dk · 	�†�k���k���k�� , �10�

where ���k�� is a Bloch wave function corresponding to one
of the bands involved in the band touching and C is a closed
loop in the momentum space encircling the band crossing
point. A quadratic band crossing point contributes NW= �2,
which is twice larger than the winding number around a
Dirac point.18–20,23

Adding a generic perturbation given by V=�i=1
3 mi�̂i, the

degeneracy at the quadratic band crossing point can be lifted.
An m2 term breaks time-reversal symmetry and the degen-
eracy is lifted by opening a gap. On the other hand, m1 and
m3 terms that break fourfold rotational symmetry, split the
quadratic band touching point into two Dirac points.18–20

Now we consider the effect of the Q= �� ,0� density-wave
orderings on the degeneracy lifting at quadratic band cross-
ing points. Since the density-wave order parameters carry the
momentum Q= �� ,0�, they cannot couple to the degenerate
states at k= �0,0� �or k= �� ,��� at first order. The lowest-
order contribution to degeneracy lifting at quadratic band
touching points starts from second-order processes. We first
consider charge-density-wave order parameters given by

HCDW = �
k,�

�k,�
† D̂�k+Q,�, �11�

where D̂=�i=0
3 Di�̂i. Treating the above HCDW as a perturba-

tion, standard second-order perturbation theory gives rise to
the following effective Hamiltonian near the quadratic band
touching point at k= �0,0�:

Hquad
eff = Hquad�k� + Hmass, = Hquad�k� + �

i=0

3

m

�i��̂i, �12�

in which

m

�0� = �
�D1

2 + D2
2��t1 + t2 + 4t3� + �D0 + D3�2�t2 + 2t3�

+ �D0 − D3�2�t1 + 2t3�� ,

m

�1� = 2�D1
D3�− t1 + t2� + D0�t1 + t2 + 4t3�� ,

m

�2� = 2�D2
D3�− t1 + t2� + D0�t1 + t2 + 4t3�� ,

m

�3� = �
�D1

2 + D2
2��t1 − t2� + �D0 + D3�2�t2 + 2t3�

− �D0 − D3�2�t1 + 2t3�� , �13�

where �=−1 / 
8�t1+2t3��t2+2t3��. Note that as long as only
one of the order parameters has finite magnitude while all the
other order parameters are zero, m


�1�=m

�2�=0. In other

words, if Dn�0 for a given n while all the other Di�n=0, the
quadratic band crossing point always splits into two Dirac
points along the main axes.

Combining the contributions both from the Brillouin-zone
folding and from the splitting of quadratic band crossing
points, we show the distribution of Dirac points for a D3 �or
M3� density-wave ground state in Fig. 5. There are four
bands within the reduced Brillouin zone as shown in Fig.
5�a�. We assign a band index i such that the energy eigen-

(a)(a) (b)(b)

(c)(c)

kkxx--ππ

E(k)E(k)

ππ kkxx2π2π00

E(k)E(k)

--ππ
kkxxππ

E(k)E(k)

For k =For k = 00yy For k =For k = 00yy

FIG. 4. �Color online� �a� Band dispersion along ky =0 centered
at k= �0,0�. �b� Band dispersion along ky =0 centered at k= �� ,0�.
�c� Band structure along ky =0 after the unit-cell doubling. Four
bands in �a� and �b� meet and disperse together along ky =0 after the
Brillouin-zone folding. Here we use a red solid �blue dotted� line to
indicate a band which is odd �even� under the Py symmetry. Black
solid �dotted� circles indicate the band touching points between two
bands having the same �opposite� Py eigenvalues.
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value Ei�k� of the band i satisfies E1�k��E2�k��E3�k�
�E4�k�. The location of Dirac points between the upper two
bands �bands 1 and 2� are indicated in Fig. 5�b�. Similarly,
the Dirac points between the middle �bottom� two bands are
described in Fig. 5�c� �Fig. 5�d��. Notice that there are many
Dirac touching points between the bands. Blue dots indicate
the nodal points coming from the Brillouin-zone folding in-
duced by the Q= �� ,0� density-wave states. On the other
hand, red dots result from the splitting of quadratic band
touching points. Two quadratic band touching points gener-
ate four Dirac points lying on the y axis. With the under-
standing of the origin and locations of Dirac points, below
we now discuss how to achieve TDW insulators.

IV. TOPOLOGICAL PROPERTIES OF THE GAPPED
DENSITY WAVE PHASES

A single density-wave order parameter induces a metallic
phase with many Dirac points. The locations of Dirac points
are determined by the transformation properties of the order
parameters under the reflection symmetries Px and Py. There-
fore to get an insulating phase, two coexisting density-wave
states, in which one is even and the other is odd under the Px
and Py symmetries, are required. In addition, according to
the order-parameter symmetries summarized in Table I, if
time-reversal invariance is imposed, there are only four dif-
ferent ways of choosing a pair of density-wave order param-
eters, which give rise to a gapped phase. The four pairs of
time-reversal invariant density-wave order parameters with
the opposite transformation properties under the reflections
Px and Py, are given by �D3 ,D1�, �D3 ,M2�, �D0 ,D1�, and
�D0 ,M2�.

Since the z component of the spin Sz is conserved, the
Chern number NC,�

�n� is well defined for each band in a fully

gapped phase.24–26 Here NC,↑
�n� �NC,↓

�n� � is the Chern number of
the nth spin-up �spin-down� band. For every pair of the
density-wave order parameters generating a fully gapped
phase, the four bands within the reduced Brillouin zone are
well-separated from each other with a finite gap between any
pairs of the bands. Each band is distinguished by the index n
ranging from 1 to 4 as the energy decreases. The Chern num-
ber NC,�

�n� of the nth band with the spin � is defined as

NC,�
�n� =

1

2�



RBZ
d2kF�

�n��k� , �14�

where the momentum space Berry curvature F�
�n��k� for the

nth band with the spin � is defined as F�
�n��k���kx

Ay,�
�n� �k�

−�ky
Ax,�

�n� �k� in which the Berry potential A�,�
�n� �k� is given by

A�,�
�n� �k�=−i	��

�n��k���k�
���

�n��k��.27,28 Here the Bloch wave
function ���

�n��k�� is defined within the RBZ.
To facilitate numerical computation of Chern numbers,

we use the following relation:

�J��k��nm � 	��n��k��Ĵ����m��k��

= �Em�k� − En�k��	��n��k���k�
���m��k�� , �15�

where the current operator Ĵ� is defined as Ĵ���k�
H whose

analytic expression can be easily obtained for any given

mean field Hamiltonian H. With the current operator Ĵ�, the
Berry curvature can be written as29

F�
�n��k� = − 2 �

m�n

Im
�Jx�k��mn�Jy�k��nm�
�En�k� − Em�k��2 . �16�

Explicit numerical computation of the Chern numbers us-
ing Eq. �16� shows that every band of the insulating density-
wave phase with finite D3 and M2 has a nonzero Chern num-
ber as shown in Table II. On the other hand, every band has
zero Chern number for the other three gapped phases defined
with a pair of nonzero order parameters given by �D3 ,D1�,
�D0 ,D1�, and �D0 ,M2�.

A. Topological properties of the topological density-wave
ground state with finite D3 and M2

Nontrivial topological properties of the fully gapped
density-wave phase with nonzero D3 and M2 can be under-
stood in the following way. We first consider the charge
density-wave state with the finite D3 order parameter. The D3
density-wave phase supports many Dirac points whose dis-
tribution is described in Fig. 5. Now we turn on a small M2

TABLE II. The Chern number of each band for the gapped
density-wave ground state with finite D3 and M2.

NC,↑ NC,↓

Band 1 +1 −1

Band 2 −3 +3

Band 3 +3 −3

Band 4 −1 +1(b)(b) (c)(c)

kk

kk

xx

yy

kk

kk

xx

yy

kk

kk

xx

yy

(d)(d)

(a)(a)

FIG. 5. �Color online� Distribution of Dirac points for the D3 �or
M3� density-wave state. �a� Four bands within the reduced Brillouin
zone. The energy eigenvalue Ei�k� for a band i satisfies E1�k�
�E2�k��E3�k��E4�k�. �b� Dirac points between the bands 1 and
2, �c� between bands 2 and 3, and �d� between bands 3 and 4. Blue
�red� dots indicates Dirac points coming from the Brillouin-zone
folding �splitting quadratic band touching points�.
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which induces gap opening at each nodal point, leading to
the fully gapped insulating phase, which is described in Fig.
6. The degeneracy lifting at each nodal point can be under-
stood as a result of the mass perturbation, induced by the
finite M2, to the gapless Dirac particles. The nonzero Chern
number of each band is obtained by adding up the Chern
number contributions of the massive Dirac particles derived
from the corresponding band.

We first focus on the two Dirac nodes lying along the ky
axis between bands 3 and 4 shown in Fig. 5�d�. The effective
Dirac Hamiltonian can be obtained by linearizing the Hamil-
tonian near the two nodal points sitting at the momentum
k=k+ and k−. To simplify the computational procedures, the
hopping parameters ti are slightly shifted from the initial
values given in Sec. II A to t1=−t2= t3= t4=−1.0. This small
parameter change does not affect the topological properties
of the gapped phase but shifts the nodal points to k�

= �0, �
�
2 � making analytical analysis simpler. The effective

Hamiltonian describing the low-energy fermions near these
two nodal points is given by

Heff
Dirac = �

�=�

 d2q��,�

† �q�H�,�
Dirac�q���,��q� , �17�

where

H�,�
Dirac�q� = − ���2 +

8

�4 + D3
2�qy�̂3 +

4�D3�
�4 + D3

2
qx�̂1� .

�18�

Here the momentum q of the Hamiltonian H�,�
Dirac�q� is mea-

sured with respect to the degeneracy point at k=k���=+,
−�. The two-component fermion field ��,��q� is given by

��,��q� = �
1dyz,��k� + q� + 
2dyz,��k� + Q + q�
�1dxz,��k� + q� + �2dxz,��k� + Q + q�

� ,

�19�

where the constant coefficients 
i and �i satisfy 
1
2+
2

2

=�1
2+�2

2=1. Explicitly, 
i and �i�i=1,2� are given by


1 = �2 + �4 + D3
2�/�8 + 2D3

2 + 4�4 + D3
2,


2 = D3/�8 + 2D3
2 + 4�4 + D3

2,

�1 = �2 − �4 + D3
2�/�8 + 2D3

2 − 4�4 + D3
2,

�2 = D3/�8 + 2D3
2 − 4�4 + D3

2.

Notice that the first �second� component of ��,��q� is de-
rived entirely from the dyz�dxz� orbital.

Now we include the M2 spin-density-wave order param-
eter which generates a mass term in the low-energy limit
given by

HM2

mass = �
�=�


 d2q��,�
† �q��−

2�D3�M2�

D3
�4 + D3

2
�̂2���,��q� .

�20�

For the given spin �, the mass term has the same magnitude
and sign at the two Dirac points. At each Dirac point, this
mass term opens a gap and contributes to the Chern number
NC,�=+

M2�

2�M2� for the upper band �band 3� and NC,�=−
M2�

2�M2� for
the lower band �band 4�.8,23,30,31 Adding the Chern number
contributions from the two Dirac points, the total Chern
number of the band 4 with the spin � is given by NC,�

�4� =
−sgn�M2��, which is consistent with the result obtained from
the integration of the Berry curvature over the reduced Bril-
louin zone using Eq. �14�. �See Table II.� In the case of the
band 3, the Chern number is determined after including the
additional contributions from the nodal points between bands
2 and 3.

Similarly, the trivial topological property of the gapped
phase with finite D3 and D1 can also be understood by ap-
plying the same analysis. For the D3 nodal density-wave
state, the small D1 charge-density-wave order parameter gen-
erates mass perturbations to Dirac particles, which can be
described by the following Hamiltonian:

HD1

mass = �
�=�


 d2q��,�
† �q�� 2�D3�D1

D3
�4 + D3

2
�̂1���,��q� .

�21�

Notice that this term just induces the shifting of the nodal
points away from the ky axis. Once a Dirac point moves
away from the reflection symmetry axis, the degeneracy at
the band touching point is no longer protected by the sym-
metry and a gap opens because the density-wave order pa-
rameters support finite matrix elements between the two
bands touching at the nodal point. Since the D1 charge-
density-wave order parameter does not generate a mass term
to the Dirac Hamiltonian, it has no contribution to the Chern
number leading to the zero Chern numbers of all bands.

We apply a similar analysis to every Dirac point derived
from the Brillouin-zone folding for all pairs of density-wave
order parameters generating fully gapped phases. In all cases,
it is confirmed that the Chern number of each band obtained
by summing up the Chern number contributions from the
Dirac points is identical to the result obtained by the integra-
tion of the Berry curvature in the momentum space.

In addition, the coexisting D3 and M2 density-wave order
parameters also lift the degeneracies of the two quadratic
band touching points at k= �0,0� and �0,�� leading to a fully
gapped band structure. In contrast to the case of Dirac points,
the Chern number obtained by lifting a quadratic band de-
generacy is two times larger than the contribution from a

-

(a)(a) (b)(b)

-π
kyπ

E(k)E(k)

-π kyπ

E(k)E(k)

D onlyD only3 D + MD + M23

FIG. 6. �a� Band structure of the D3 nodal density-wave state
along the ky axis. �b� Band structure of the gapped density-wave
phase with finite D3 and M2.
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single Dirac point. However, since the two quadratic band
crossing points lead to the Chern number contributions with
the opposite signs, the net effect of the two quadratic band
touching points vanishes.

Since the four bands are well separated from each other
for the topological density-wave phase with D3�0 and M2
�0, if the magnitude of the order parameter M2 is large
enough, an insulating ground state is obtained whenever the
Fermi level lies in the gap between two neighboring bands.
Therefore there are three different insulating phases, in prin-
ciple, whenever the Fermi level lies between the band n and
n+1 �n=1,2 ,3� corresponding to the band filling factor
Nfilling= �4−n� /4. The topological property of the insulating
phase can be explicitly characterized by computing topologi-
cal invariants. We first consider the spin Chern number CS
which is defined in the following way:

CS = �
n�occ


NC,↑
�n� − NC,↓

�n� � , �22�

where the summation includes all the occupied bands. When
the Sz is conserved, the spin Chern number CS is quantized
and characterizes the two-dimensional topological
insulators.24 In Table III we show the spin Chern numbers for
the insulating phases. It is interesting that the spin Chern
numbers are nonzero for all cases. Therefore as long as the z
component of the spin is conserved, we can obtain the topo-
logical insulator with finite spin Hall conductivity for every
quarter filling. However, in the presence of spin nonconserv-
ing perturbations and disorders, the spin Chern number is not
well defined and conserved only modulo 4.26,32 In other
words, when the Sz is not conserved, the half-filled system is
equivalent to the phase with zero-spin Chern number, which
is nothing but a topologically trivial band insulator. How-
ever, it is important to notice that even in this case the system
remains as a topological insulator with nonzero Z2 topologi-
cal invariant for 1/4 and 3/4 fillings.

We also compute the Z2 topological invariant � shown in
Table III, which can be used to distinguish topological insu-
lators ��=1� from trivial band insulators ��=0� for generic
time-reversal invariant systems. Since the system has the in-
version symmetry, the Z2 invariant can be obtained from the
parity eigenvalues �m�
l� of the occupied bands with the
band indices m at the time-reversal invariant momenta �l.

33

Using the reciprocal lattice vectors Gi �i=1, 2�, the four time
reversal invariant momenta can be written as �l=n1n2
= �n1G1+n2G2� /2, with n1,2=0 ,1. The inversion parities of
the bands at the time reversal invariant momenta are shown
in Table IV. Explicitly the Z2 topological invariant � is given
by

�− 1�� = �
ni=0,1

�
m

�m��n1n2
� , �23�

where the parity eigenvalues of the occupied bands at the
four time-reversal invariant momenta are multiplied. Be-
cause of time reversal symmetry, each band is doubly degen-
erate at the time reversal invariant momentum and every
Kramers doublet shares the same inversion parity. The Z2
topological invariant counts the parity of one state for each
Kramers pair.33

As shown in Table III, the Z2 topological insulators exist
when the band filling is one-quarter or three-quarter. How-
ever, the 3/4 filled case requires unreasonably large M2 to
achieve an insulating phase. This is because, as shown in
Fig. 6, the overall structures of the bands 1 and 2 are in
parallel. To open a full gap between the upper two bands
�bands 1 and 2�, the magnitude of the M2 density-wave order
parameter should be as large as their bandwidth. Therefore
the quarter-filled system is the most favorable for the real-
ization of the Z2 topological insulator.

To support further the nontrivial topological properties of
the topological density-wave phase with D3�0 and M2�0,
we compute the edge state spectrum by considering the
Hamiltonian on a strip geometry, which is infinite in the x
direction but finite in the y direction with open boundaries at

TABLE III. Spin Chern numbers and topological Z2 invariants
for the gapped density-wave ground state with finite D3 and M2.

Band filling Spin Chern number �CS� Z2 invariant ���

3/4 −2 1

1/2 +4 0

1/4 −2 1

TABLE IV. Inversion parities of the bands in the topological
density-wave phase. Here +�−� means the even �odd� parity of the
band at a time-reversal invariant momentum within the reduced
Brillouin zone.

�0,0� �0,�� �� /2,0� �� /2,��

Band 1 − − + −

Band 2 − − − +

Band 3 − − − +

Band 4 − − + −

kkxx

EE

ππ−−ππ 00

00

-8-8

-4-4

44

FIG. 7. �Color online� Energy spectrum for the topological
density-wave ground state with D3=0.85 and M2=0.75 in a strip
geometry with the hopping parameters given by t1=−1.0, t2=1.3,
and t3= t4=−0.85. Here we use open boundary conditions with Ny

=40 sites along the y direction. The red dotted lines stand for edge
states, all of which are doubly degenerate. For 1/2 filling, the num-
ber of edge states is twice larger than that for ¼ filling.
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y=1 and y=Ny. Here Ny indicates the number of lattice sites
in the y direction. The energy spectrum of the system with
Ny =40 is described in Fig. 7, which shows the existence of
robust gapless edge states traversing between the lower two
bands �bands 3 and 4� and the middle two bands �bands 2
and 3�. The upper two bands �bands 1 and 2� are not well
separated for D3=0.85 and M2=0.75, which are used to ob-
tain the energy spectrum. Each edge state represented by a
red dotted line is doubly degenerate, one with spin up and
the other with spin down. For the 1/4 filling with the chemi-
cal potential lying in the gap between the bands 3 and 4,
there are two gapless edges states on each boundary propa-
gating in the opposite directions with the opposite spin quan-
tum numbers. On the other hand, for the 1/2 filling, there are
four gapless edge states on each boundary consistent with the
fact that the spin Chern number CS=4 whose magnitude is
twice larger than that for the 1/4 filling with CS=−2. There-
fore, for the collinear spin ordering with M2�0, which con-
serves Sz, there are robust gapless edge states for both the
quarter-filled and half-filled systems.

B. Comparison to the honeycomb lattice

It is interesting that a simple on-site density-wave order
parameter can generate insulating phases with nontrivial to-
pological properties. This result can be contrasted with the
topological insulator on the honeycomb lattice where com-
plex second neighbor hopping processes are required to ob-
tain a topological insulator while the simple on-site stag-
gered chemical potential gives rise to a trivial band
insulator.4,5,10 It is the distinct topological properties of the
Dirac particles in the D3 nodal density-wave phase in the
d-orbital system which make it possible to realize the topo-
logical insulator by introducing a simple on-site order pa-
rameter M2.

In this subsection, we discuss the topological property of
the Dirac particles in the D3 nodal density-wave state in de-
tail and compare it with the topological property of the Dirac
particles on the honeycomb lattice. In the forthcoming dis-
cussion we neglect the spin degrees of freedom and focus on
the condition under which the insulating phase possesses a
finite Chern number, which is nothing but a Chern insulator.
Once we find the condition to obtain a Chern insulator, the
time-reversal invariant topological insulator can be realized
by superposing two Chern insulators with spin-up and spin-
down particles, respectively.

The topological property of the Dirac particles in the D3
nodal density-wave state can be understood in the following
way. The low-energy Hamiltonian H�

Dirac in Eq. �18� for the
Dirac particles near the momentum k=k�, where the band
touching points between the bands 3 and 4 locate, can be
written as

H�
Dirac�q� = h�,x�q��̂1 + h�,y�q��̂3. �24�

Since �h�,x
2 �q�+h�,y

2 �q� is nonzero away from the degen-
eracy point, a two component vector d���q� with unit length
can be defined as

d���q� = �d�,x�q�,d�,y�q�� �
�h�,x�q�,h�,y�q��
�h�,x

2 �q� + h�,y
2 �q�

. �25�

Along the circle CR satisfying qx
2+qy

2=R2�0 with the degen-
eracy point at the center, the 2D unit vector d���q� defines a
map from the circle CR to the unit circle S1. Since the fun-
damental group �1�S1�=Z, the 2D unit vector d���q� has an
integer-valued topological invariant, which is nothing but the
winding number Nw defined in Eq. �10�. In terms of the 2D
unit vector d���q�, the winding number Nw can be rewritten
as

Nw =
1

2�
�

CR

d�ẑ · �d� �
dd�

d�
� , �26�

where the loop integral is defined along the circle where the
momentum q=Rei�.34

In Fig. 8�a� we describe the directions of the two-
component d� vector along the circular path around the Dirac
points for the D3 nodal density-wave state. Notice that the d�
vector has the same winding direction with the winding num-
ber of Nw=1 around the two Dirac points. The two Dirac
points share the same winding number because of the con-
straint imposed by lattice symmetries. Since the first �sec-
ond� component of the two-component Dirac field ���q� is
given by the dyz�dxz� orbital state, ���q� transforms to
−��̄�−q� under inversion due to the odd parity of dxz and dyz

orbitals. Here �̄ has the opposite sign of �. This imposes the
following constraint on the pair of Dirac Hamiltonians re-
lated by inversion symmetry,

H+
Dirac�q� = H−

Dirac�− q� . �27�

This constraint guarantees the same winding numbers for the
two Dirac Hamiltonians H+

Dirac and H−
Dirac. It is important to

notice that every pair of Dirac Hamiltonians related by in-

(b)(b)

kk

kk

xx

yy
(a)(a)

kk

kk

xx

yy

FIG. 8. �Color online� The winding directions of the d��q� vector
around the Dirac point. Black arrows describe the two component
d� = �dx ,dy� vector in Eq. �25� along the circular path around the
Dirac point at the center. �a� For the two Dirac points between the
band 3 and band 4 in the nodal density-wave state with the finite
D3. The d� vector has the same winding direction around the two
Dirac points. �b� For the two Dirac points on the graphene system.
The d� vector has the opposite winding directions around the two
Dirac points.
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version symmetry satisfies the same constraint for nodal
density-wave phases.

The fact that a pair of Dirac Hamiltonians related by in-
version symmetry have the same winding numbers is the
distinct topological property of the Dirac particles in the
nodal density-wave states, distinguishable from the topologi-
cal properties of the Dirac particles in the honeycomb lattice.
In this system, the two Dirac points at the corners of the first
Brillouin zone have the opposite winding directions, which is
described in Fig. 8�b�. Since the inversion symmetry inter-
changes the two sublattices of the honeycomb lattice, each of
which comprises one component of the Dirac fermion field
���q�, the Dirac fermion field ���q� transforms, for ex-
ample, to �̂x��̄�−q� under inversion symmetry. This imposes
the following constraint on the two Dirac Hamiltonians re-
lated by inversion symmetry:

H+
Dirac�q� = �̂xH−

Dirac�− q��̂x. �28�

The additional Pauli matrix reverses the winding direction of
one of the d� vectors, leading to two Dirac Hamiltonians with
opposite winding numbers. Therefore these two Dirac points
can be pair annihilated when they are brought together by
perturbations.3,13

The relative winding numbers of the pair of Dirac Hamil-
tonians related by inversion symmetry strongly constrain the
topological properties of the insulating phases obtained by
mass perturbations to the Dirac particles. The introduction of
a constant mass term H�

mass=m�̂2 to the Dirac Hamiltonian in
Eq. �24� gives rises to the third component dz�q� of the cor-
responding d� vector.18,24 Explicitly, for the massive Dirac
Hamiltonian given by

HDirac�q� = hx�q��̂1 + hy�q��̂3 + m�̂2, �29�

the three-dimensional �3D� unit vector d�3D is defined as

d�3D�q� = �dx�q�,dy�q�,dz�q�� �
�hx�q�,hy�q�,m�

�hx
2�q� + hy

2�q� + m2
.

�30�

If we introduce, for instance, a positive mass term to the
two Dirac Hamiltonians corresponding to the D3 nodal
density-wave phase described in Fig. 8�a�, both of the d�3D
vectors, which have positive z components, move along the
northern hemisphere as the momentum q sweeps over the
two-dimensional momentum space. The net solid angles sub-
tended by these two d�3D vectors over the entire momentum
space are the same, each of which covers 2�. At this point, it
is useful to take into account the following relation between
the Chern number of the valence band and the 3D unit vector
d�3D for the two band Hamiltonian in Eq. �29� �Ref. 18�:

NC =
 d2k

4�
d�3D · ��kx

d�3D � �ky
d�3D� . �31�

The above identity implies that the Chern number counts the
number of times the 3D unit vector d�3D winds around the
unit sphere over the Brillouin-zone torus. Therefore, when a
constant mass term is added to the two Dirac points con-

nected by inversion symmetry, the Chern number NC= �1 if
the two Dirac points have the same winding numbers, which
is realized in the nodal density-wave ground state.

In contrast, the net solid angles covered by the two d�3D
vectors in the honeycomb lattice have the same magnitudes
but with the opposite signs. Therefore the total solid angle
covered by these two d�3D vectors vanishes. The vanishing
Chern number contributions from the two Dirac points leads
to the topologically trivial insulating phase when the simple
mass term in Eq. �29� is introduced. This contrasting behav-
ior of the pair of 3D unit vectors d�3D in these two systems
results in the distinct topological properties of the insulating
phases, the topological insulator in the d-orbital system and
the topologically trivial band insulator in the honeycomb lat-
tice when constant mass terms with the same signs are added
to the pair of Dirac points connected by inversion symmetry.
However, if we introduce mass terms with the opposite signs
at the two Dirac points in graphene, a topological insulator
with a finite Chern number can be obtained, which is realized
by considering the complex second nearest-neighbor hop-
ping processes on the honeycomb lattice.

V. MEAN-FIELD THEORY

Now we address the question whether the TDW insulator
with finite D3 and M2 can be achieved in real systems. In
particular, by taking into account the interactions between
electrons, we investigate the conditions to realize the TDW
insulator via spontaneous symmetry breaking. Previous mean
field studies on the two-orbital Hubbard model with the hop-
ping Hamiltonian H0 in Eq. �1� show that the leading insta-
bility of the system is the uniform spin-density-wave phase
�M0-SDW�, which is described by nonzero M0. However,
there exist other density-wave order parameters including
imaginary charge- and spin-density-wave states, which are
competing with the uniform spin-density-wave state
�M0-SDW� with small energy differences.16,35,36 Therefore, if
we include longer range interactions, which are not included
in the multiorbital on-site Hubbard Hamiltonian, other com-
peting ground states, for example, the topological density-
wave �TDW� state, can replace the M0-SDW state.

Including on-site and intersite electron-electron interac-
tions, the full Hamiltonian is given by

Hfull = H0 + Honsite + Hintersite, �32�

in which

Honsite = U�
i

�
a=1,2

ni,a,↑ni,a,↓ + U2�
i

ni,1ni,2

+ JH�
i

�
�1,�2

di,1,�1

† di,2,�2

† di,1,�2
di,2,�1

+ JH�
i

�di,1,↑
† di,1,↓

† di,2,↓di,2,↑ + H.c.� �33�

and
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Hintersite = V1A�
	ij�

�
a=1,2

ni,anj,a + V1B�
	ij�

ni,1nj,2

+ V2A �
		ij��

�
a=1,2

ni,anj,a + V2B �
		ij��

ni,1nj,2, �34�

where H0 indicates the hopping Hamiltonian in Eq. �1�. For
the on-site interactions described by Honsite, the intraorbital
repulsion U, the interorbital repulsion U2, and the Hund’s
coupling JH are considered. In the Hintersite describing the

intersite Coulomb interactions, V1A�V1B� indicates the
nearest-neighbor Coulomb repulsion between electrons in
the same �different� kinds of orbitals. Finally, V2A�V2B� indi-
cates the next nearest-neighbor Coulomb repulsion between
electrons in the same �different� kinds of orbitals.

To investigate the existence of the TDW state with D3
�0 and M2�0 and its competition with the uniform spin-
density-wave phase �M0-SDW�, we apply a mean-field ap-
proximation to the Hamiltonian Hfull. The resulting mean-
field Hamiltonian is given by

HMF = H0 + N�0 + �
k�RBZ,�

�A11,�
d1,�
† �k�d1,��k + Q� + d1,�

† �k + Q�d1,��k�� + A22,�
d2,�
† �k�d2,��k + Q� + d2,�

† �k + Q�d2,��k��

+ A12,�
d1,�
† �k�d2,��k + Q� + d1,�

† �k + Q�d2,��k�� + A21,�
d2,�
† �k�d1,��k + Q� + d2,�

† �k + Q�d1,��k��� , �35�

in which

�0 =
U

8
�M0

2 − D3
2� +

U2

8
�M2

2 + 2D3
2� +

JH

8
�M0

2 − D3
2 − M2

2� + �V2A −
V2B

2
�D3

2 �36�

and

A11,� =
U

4
�D3 − �M0� −

U2

2
D3 − �2V2A − V2B�D3 +

JH

4
�− D3 + �M0� ,

A22,� = −
U

4
�D3 + �M0� +

U2

2
D3 + �2V2A − V2B�D3 +

JH

4
�D3 + �M0� ,

A12,� = A21,�
� =

U2

4
i�M2 −

JH

4
i�M2. �37�

Note that the nearest-neighbor Coulomb repulsions V1A and
V1B do not contribute to the mean-field Hamiltonian because
the order parameters have the ordering wave vector Q
= �� ,0�.

The order parameters M0, M2, D3 are determined by solv-
ing the following self-consistent equations:

M0 =
1

N
�

r=�rx,ry�
�
�=�

�− 1�rx�	dr,1,�
† dr,1,� + dr,2,�

† dr,2,�� ,

M2 =
1

N
�

r=�rx,ry�
�
�=�

�− 1�rx�	idr,1,�
† dr,2,� − idr,2,�

† dr,1,�� ,

D3 =
1

N
�

r=�rx,ry�
�
�=�

�− 1�rx	dr,1,�
† dr,1,� − dr,2,�

† dr,2,�� .

�38�

The chemical potential � is also determined self-consistently
to satisfy the half-filling condition.

The resulting mean field phase diagram is shown in Fig.
9. Here we choose U=5, JH=0 and compute the ground state
phase diagram as a function of the interorbital on-site repul-
sion U2 and effective next-nearest-neighbor repulsion V2,eff
�V2B−2V2A. In the absence of the intersite interactions
V2,eff=0, the uniform spin-density-wave phase �M0-SDW�
dominates the phase diagram consistent with the previous
studies. However, the interorbital on-site repulsion U2 sup-
presses the uniform spin-density-wave states �M0-SDW�
which is diagonal in the orbital space, but promotes the
M2-SDW, which is off-diagonal in the orbital space, to the
ground state. On the other hand, the D3 charge-density-wave
phase �D3-CDW� is strongly affected by the next-nearest-
neighbor Coulomb repulsions V2A and V2B. In particular, the
V2A, the next-nearest-neighbor repulsion between the elec-
trons in the same kinds of orbitals, strongly favors the
D3-CDW because the staggered orbital ordering described by
D3-CDW can avoid the energy cost coming from V2A. Notice
that there is a finite range in the parameter space where both
M2-SDW and D3-CDW are nonzero realizing the TDW
phase.

The above mean-field phase diagram is obtained for the
half-filled case where the topological property of the TDW
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phase is not robust against perturbations breaking Sz symme-
try. On the other hand, the TDW insulator at 1/4 filling main-
tains its topological properties as long as time-reversal sym-
metry is preserved. It was shown, in the study of the single
orbital extended Hubbard model, that the next-nearest-
neighbor interaction �V2A for our model� stabilizes a stripe
pattern charge ordering with the momentum Q= �� ,0�.37

This occurs at 1/4 filling when the on-site Hubbard interac-
tion U is much stronger than the hopping amplitude t satis-
fying U� t so that double occupancy is almost frozen. In our
model, there are two orbitals of dxz and dyz. Similar to the
single orbital case, we find that the next-nearest-neighbor
interaction stabilizes D3 order. Therefore, when the on-site
intraorbital and interorbital interactions satisfy U ,U2� t, the
D3-CDW ordering should be favored at 1/4 filling.

To get a TDW insulator, finite M2 is required in addition
to D3. As shown in Sec. II B, the M2 order parameter is
equivalent to a staggered spin-orbit coupling, ��i�
−1�ixSi,zLi,z. One can show that when spin-orbit interaction is
present, an M2 term can be induced as long as D3 sets in
since D3 leads to unequal density between dxz and dyz orbit-
als. Therefore, we expect that the TDW insulator can be ob-
tained by tuning V2B when U ,U2� t at 1/4 filling in the
presence of spin-orbit coupling.

VI. TOPOLOGICAL INSULATORS IN THREE-BAND
SYSTEMS

In the preceding sections, we have focused on a two-band
tight-binding Hamiltonian, which consists of dxz and dyz or-

bitals. However, the main idea for realizing topological insu-
lators using two density-wave order parameters with oppo-
site symmetries under reflections is valid in general and
applicable to more realistic multiorbital systems. Here we
extend our analysis to a three-band model composed of dxz,
dyz, and dxy orbitals. In particular, we apply our idea to a
more realistic model Hamiltonian relevant to the iron pnic-
tide system, which is a representative itinerant multiband
system manifesting a density-wave ground state with the or-
dering wave vector Q= �� ,0�.35,38–41 Here we adopt the
three-orbital model proposed by Daghofer et al.,38 which
captures the main physical properties of the Fe-pnictide sys-
tems. In momentum space, the effective three-band tight-
binding Hamiltonian is given by

H3band = �
k,�

�
�,�

d�,�
† �k�T���k�d�,��k� , �39�

where

T11 = 2t2 cos kx + 2t1 cos ky + 4t3 cos kx cos ky − �c,

T22 = 2t1 cos kx + 2t2 cos ky + 4t3 cos kxcos ky − �c,

T33 = 2t5�cos kx + cos ky� + 4t6 cos kx cos ky − �c + �xy ,

T12 = T21 = 4t4 sin kx sin ky ,

T13 = �T31�� = 2it7 sin kx + 4it8 sin kx cos ky ,

T23 = �T32�� = 2it7 sin ky + 4it8 sin ky cos kx. �40�

Here we use the unfolded Brillouin zone satisfying −�
�kx ,ky �� as before, which corresponds to one iron atom
per unit cell. In real iron pnictide materials, the unit cell
contains two Fe atoms due to the buckling of the As atoms.
Therefore the unit translations along the x�Tx� and y�Ty� di-
rections by the nearest-neighbor Fe-Fe distance, are not the
symmetries of the system. However, as pointed out in Ref.
39, the system is invariant under translation combined with
the reflection Pz with respect to the xy plane, i.e., PzTx and
PzTy. Then the eigenstates can be labeled by a pseudocrystal
momentum corresponding to the eigenvalues of the com-
bined operations PzTx and PzTy with one iron atom per unit
cell. We use this pseudocrystal momentum to label states for
the momentum space representation of the Hamiltonian in
Eq. �39�.

In Eqs. �39� and �40�, �=1, 2, 3 indicate dxz, dyz, and dxy
orbitals, respectively. �xy represents the atomic potential of
dxy orbital relative to dxz and dyz orbitals. The chemical po-
tential is given by �c. The hopping parameters are displayed
in Table V, which are determined in Ref. 38. For 2/3 filling,38

there are two hole pockets near the 
 point and two electron
pockets at the X and Y points, which are consistent with the

TABLE V. Parameters for the three-band tight-binding Hamiltonian �Ref. 42�.

t1 t2 t3 t4 t5 t6 t7 t8 �xy

0.02 0.06 0.03 −0.01 0.2 0.3 −0.2 0.12 0.4

M - SDWM - SDW TDWTDW
(D + M )(D + M )

D - CDWD - CDW

M - SDWM - SDW

00
2233

22

33

UU22
66 77 88

VV2,eff2,eff

-1-1

33

22

11

00

FIG. 9. �Color online� Mean-field phase diagram with the hop-
ping parameters given by t1=−1.0, t2=1.3, and t3= t4=−0.85. Here
we set U=5, JH=0 and plot the ground state phase diagram varying
the interorbital on-site repulsion U2 and the effective next-nearest-
neighbor repulsion V2,eff=V2B−2V2A. There is a finite range be-
tween D3 charge-density-wave phase �D3-CDW� and M2 spin-
density-wave phase �M2-SDW� where the topological density-wave
�TDW� phase becomes the ground state. Solid �dotted� lines indi-
cate the first �second� order phase transitions.
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local-density approximation �LDA� calculations and angle-
resolved photoemission spectroscopy �ARPES� measurement
for LaOFeAs.

Density-wave order parameters with the momentum Q
= �� ,0� can be described by the following Hamiltonian:

ĤCDW = �
i,�

�
a,b=1

3

�− 1�ixDabdi,a,�
† di,b,�,

ĤSDW = �
i,�1�2

�
a,b=1

3

�− 1�ixMabdi,a,�1

† s�1�2

z di,b,�2
. �41�

The order parameter represented by the 3�3 Hermitian ma-

trix D̂�M̂� has nine independent components Dij�Mij�. The
transformation properties of these density-wave order param-
eters under the reflections PxPz and PyPz, inversion I, and
time reversal T are summarized in Tables VI and VII. Notice
that the reflections Px and Py are not symmetries of the sys-
tem. The Hamiltonian is invariant only under the combined
transformations PxPz and PyPz.

To obtain a nodal spin-density-wave ground state, we con-
sider the simplest uniform charge-density-wave order param-

eter, D̂uniform�diag�d0 ,d0 ,d0� with the finite diagonal com-
ponents of D11=D22=D33=d0. This generates many Dirac
points along an axis with a reflection symmetry in the mo-
mentum space, whenever a band touching occurs between
two bands with opposite reflection parities. Now let us intro-
duce another density-wave order parameter to get a gapped
phase. To open a full gap between neighboring bands we
need a density-wave order parameter which is odd under the
reflection symmetries PxPz and PyPz. Imposing the time-
reversal symmetry, the imaginary part of the spin density-
wave order parameter M12

I � Im�M12� is the unique choice to
obtain a topological insulator.

In Fig. 10�a� we plot the band structure of the uniform
charge-density-wave state with nonzero Duniform�0 along
the ky axis. Since Duniform preserves the PxPz reflection sym-
metry, each band has a definite reflection parity under PxPz.
The reflection parities of the bands are also indicated in Fig.
10�a�. Notice that nodal points exist between a pair of bands
with opposite reflection parities, which are indicated by red
dotted circles in Fig. 10�a�. However, once we introduce a
nonzero M12

I , these nodal points disappear and a fully gapped
phase with well-separated bands emerges. The band structure
of the resulting gapped phase is described in Fig. 10�b�.

To investigate the topological property of the gapped
phase, we compute the spin Chern numbers of the bands.
Since the z component of the spin Sz is still conserved, the
spin Chern number is a well-defined quantity. In Table VIII,
we show the distribution of the spin Chern numbers for sev-
eral values of M12

I supporting fully gapped phases. Here CS,n
indicates the spin Chern number of the nth band defined as
CS,n=NC,n,↑−NC,n,↓, where NC,n,↑�=−NC,n,↓� denotes the
Chern number of the nth spin-up band. We choose a labeling
such that the band 1 has the highest energy and the band
index n increases as the energy eigenvalue decreases. In the
case of the gapped phase that is obtained by adding a small
M12

I on the nodal charge-density-wave state with Duniform
�0, only the fourth and fifth band support nonzero-spin
Chern numbers shown in the second column of Table VIII.
Interestingly, however, as the magnitude of M12

I increases,
band gap closing and reopening occur successively. For in-
stance, for the uniform density-wave state with Duniform
=0.5, the first gap closing happens between the bands 1 and
2 for M12

I �0.15. As M12
I increases further, another fully

gapped phase is obtained with the spin Chern numbers dis-
played in the third column of Table VIII. It is interesting to
notice that after the gap closing and reopening process, the
number of the bands supporting finite spin Chern numbers
has increased. Similar gap closing happens again for M12

I

TABLE VI. Symmetry of the charge density order parameters with the momentum �� ,0�. Here “+” �“−”� indicates “even” �“odd”� parity
of order parameters under the corresponding symmetry operation. The complex off-diagonal components Dij�i� j� are decomposed as Dij

=Dij
R + iDij

I .

D11 D22 D33 D12
R D12

I D13
R D13

I D23
R D23

I

PxPz + + + − − − − + +

PyPz + + + − − + + − −

I + + + + + − − − −

T + + + + − + − + −

TABLE VII. Symmetry of the spin-density order parameters with the momentum �� ,0�. Here “+” �“−”� indicates “even” �“odd”� parity
of order parameters under the corresponding symmetry operation. The complex off-diagonal components Mij�i� j� are decomposed as
Mij =Mij

R + iMij
I .

M11 M22 M33 M12
R M12

I M13
R M13

I M23
R M23

I

PxPz + + + − − − − + +

PyPz + + + − − + + − −

I + + + + + − − − −

T − − − − + − + − +
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�0.22 leading to the redistribution of the spin Chern num-
bers shown in the last column of Table VIII. Note that all
cases with 1/3 filling give TDW insulators, while the TDW
phase with 5/6 filling occurs only for M12

I =0.2 and 0.3.

VII. SUMMARY AND DISCUSSION

In this paper, we investigate theoretically if topological
insulators can be achieved from a nodal density-wave state
with broken translational symmetry. While a nonzero
density-wave order parameter in general opens a gap be-
tween the degenerate states connected by the ordering wave
vector, nodal density-wave phases occur in multiorbital sys-
tems via translational symmetry breaking due to the distinct
symmetry properties of orbitals. Such a nodal density-wave
state supports a large number of Dirac nodes between neigh-
boring bands. We have explicitly proved that a pair of inver-
sion symmetric Dirac points share the same topological
winding numbers in nodal density-wave states contrary to
the Dirac points in the honeycomb lattice. If we introduce an
additional order parameter whose transformation property
under reflection symmetries is opposite to that of the under-
lying order parameter, the system can be a gapped insulator
at certain filling factors. Among those insulators, time-
reversal invariant TDW insulators with helical edge states
are identified.

The existence of a nodal density-wave ground state is
experimentally verified in a recent ARPES measurement on

BaFe2As2 �Ref. 43� and quantum oscillation experiments on
BaFe2As2 and SrFe2As2.44–46 It is interesting to notice that,
according to these experimental studies, the velocity of Dirac
fermions is estimated to be 14–20 times slower than that in
graphene.46 This implies that the Dirac fermions in nodal
density-wave states are more susceptible to interaction ef-
fects. However, according to our mean-field calculation, it
seems to be difficult to realize quantum spin Hall insulators
in Fe pnictides system, as it favors a conventional spin-
density-wave state �M0�.

Our results in general imply that transition metal materials
with two-dimensional square lattice structure possessing par-
tially filled t2g orbitals are good candidates for TDW insula-
tors. In particular, in the case of the effective two-orbital
�three-orbital� model, the 1/4 filled �1/3 filled� system is the
most promising for the realization of TDW insulators. How-
ever, to make a prediction on real materials with layered
perovskite structure, it is important to generalize our study to
three dimensional systems taking into account interlayer cou-
plings. Stacking of two-dimensional TDW insulators simply
leads to a weak topological insulator.47 Therefore identifying
three-dimensional TDW phases with a nontrivial strong to-
pological invariant in the layered perovskite structure is an
interesting but challenging future work.

Finally, it is worthwhile to comment on the emergence of
spontaneous Hall conductance in a broken time-reversal
symmetry state. When an imaginary charge-density-wave
state �D2� breaking time- reversal symmetry occurs in the
presence of a nodal density-wave state, a gapped topological
phase carries topologically protected edge modes. In contrast
to the case of the quantum spin Hall insulator, here the
spin-up and spin-down bands have the same Chern number,
which gives rise to an insulator with finite Hall conductance.
Interestingly, the imaginary charge-density-wave state is one
of the competing ground states in iron-pnictide
systems,16,36,48 which is expected to be achieved in real
materials.49 Thus searching for gapped phases proximate to
nodal density-wave states is an avenue to topological phases.
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TABLE VIII. The spin Chern numbers of the bands for a gapped
density-wave phase with Duniform�0 and M12

I �0. Here we set
Duniform=0.5 and change the magnitude of M12

I .

M12
I =0.1 M12

I =0.2 M12
I =0.3

CS,1 0 −2 −2

CS,2 0 +2 +2

CS,3 0 0 −4

CS,4 −2 −2 +2

CS,5 +2 +2 +2

CS,6 0 0 0

(a)(a)

(b)(b)

--ππ kkyyππ

E(k)E(k)

--ππ kkyyππ

E(k)E(k)

++

++

--
--

--
--

FIG. 10. �Color online� The band structures of the density-wave
states with the momentum k= �� ,0� along ky axis. �a� For the uni-
form charge density-wave state with Duniform=0.5. The locations of
Dirac nodes are indicated by red dotted circles. The parities of the
bands under the PxPz symmetry are indicated by + �even� and −
�odd�. �b� A density-wave phase with Duniform�0 and M12

I �0 at the
same time. Here we take Duniform=0.5 and M12

I =0.1. Each band is
well-separated from the other bands.
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