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We demonstrate an interrelation between the magnetic properties and optical conductivity ���� for 3d
electron systems with active orbital degree of freedom at a transition-metal ion: t2g in d1 and eg in d7

configuration. Both systems are described within the two-band Hubbard model which we analyze using exact-
diagonalization technique for a two-site molecule at quarter filling. We highlight the main features of the
low-temperature optical conductivity spectra for eg and t2g electrons, in the presence of the crystal-field
splitting and show that these spectra provide a way to determine both Hund’s exchange JH and intraorbital
Coulomb interaction U. The orbital polarization and the entanglement between spin and orbital degrees of
freedom are also discussed, together with possible violations of the Goodenough-Kanamori rules.
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I. INTRODUCTION

Interest in strongly correlated electron systems keeps on
increasing, fueled both by fundamental issues and applica-
tions. The need to accurately characterize these systems also
leads to a broad range of new very sensitive and comprehen-
sive experiments, the results of which are calling for better
interpretation of the experimental data. With that purpose, a
promising tool is provided by the local-density approxima-
tion �LDA� combined with the dynamical mean-field theory
�DMFT�, so-called LDA+DMFT approach.1 It has been suc-
cessfully applied to a variety of situations, including the cel-
ebrated Mott transition in V2O3,2–4 magnetic and orbital or-
dering in various perovskites, see, e.g., Ref. 5, the negative
thermal expansion of �-Pu,6 to quote a few. Though mostly
ab initio, the computed quantities depend in strongly corre-
lated materials on external parameters, such as the Hubbard
U or Hund’s exchange coupling JH. As the LDA+DMFT
scheme is not devised to determine them, they are typically
estimated from experiment.

For example, one uses data resulting from spectroscopy7

performed on NiO to estimate these parameters for the lay-
ered nickelates La2NiO4.8 This, however, keeps an empirical
flavor, especially since the DMFT needs to be supplemented
by bare parameter values, while experiment provides the
renormalized ones, and the relationship among them is not
systematically mastered. A possible route to overcome this
difficulty consists in optimizing these parameters in order to
improve the agreement with experiment but as the calcula-
tions are rather involved this does not turn very convenient.
Thus extracting the parameters U and JH from experimental
data by means of analytical expressions �or using simple nu-
merical tools� is expected to help improving common under-
standing of the modeling of strongly correlated systems. This
is the goal of the paper. While this is an ambitious task in
general, we argue that useful insight can be gained by study-
ing simpler problems, namely, when only a few bands cross
the Fermi energy.

With that aim, one quickly notices that multiband Hub-
bard Hamiltonians can cover a wealth of situations,9 even
when restricting the number of bands �i.e., active 3d states

per site� to two.10–13 The anisotropic degenerate two-orbital
Hubbard model was studied within DMFT at low
temperatures14 and it was established that the orbital-
selective Mott transition occurs in a broad parameter
regime.15 A recent investigation of the orbital-selective Mott
transition using the dynamical cluster approximation com-
bined with a continuous-time quantum Monte Carlo algo-
rithm confirmed that this transition is stabilized at half
filling.16 However, at quarter filling a band insulator state for
both orbitals is stabilized instead at low temperatures. For a
metallic system close to quarter filling it was shown that a
heavy quasiparticle band is formed by the Hubbard interac-
tion with the effective mass being only weakly dependent on
the orbital splitting and Hund’s exchange coupling.14 Impor-
tance of Hund’s exchange at quarter filling has also been
emphasized recently using the cellular DMFT.17 While the
models studied in this context until now conserve the orbital
flavor and are thus designed to describe t2g electrons, the
orbital flavor is not conserved for eg electrons,18 and one
may expect that the magnetic properties and excitations are
different. In addition, their response to a �an additional� sym-
metry breaking term in the orbital space representing the
crystal-field splitting �CFS� may differ as well.

Various aspects of the physics of the quarter-filling case
have already been studied, either by exact diagonalization,19

or on the mean-field level,8,10,20 pointing toward a rich phase
diagram, especially for the square lattice. Indeed, for vanish-
ing CFS and large JH, weak-coupling approach predicts the
leading instability to be toward a C-type antiferromagnetic
�AF� phase, while for small JH a homogeneous ferromag-
netic �FM� ground state is favored.10 On the contrary, strong-
coupling expansion leading to the celebrated Goodenough-
Kanamori rules21 point toward a staggered FM ground state
for large JH, in agreement with the mean-field results. How-
ever, under certain circumstances the Goodenough-Kanamori
rules are violated in spin-orbital systems and the spin-orbital
entanglement takes place.22

The purpose of this paper is to extract generic properties
of eg and t2g electrons in the itinerant regime, where charge
fluctuations are still allowed but gradually decrease under
increasing electron correlations. The correlations depend on
the ratio between the intraorbital Coulomb interaction U and
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the hopping element t. The first of the models considered
here is the widely used doubly degenerate Hubbard model
which, as we explain, stands also for t2g electrons while the
second one describes eg electrons. Investigating these models
we focus on: �i� increasing local moments and intersite spin
and orbital correlations, and �ii� the interplay between the
magnetic ground state and the optical spectra, when the ratio
U / t is increased. As we show, the optical spectra are deter-
mined by the actual interaction parameters which can be
therefore deduced from the charge excitations to the upper
Hubbard bands measured in the optical spectroscopy.23 We
shall also investigate the dependence of magnetic correla-
tions on the CFS and show that the boundaries between mag-
netic phases strongly depend on the actual CFS. Finally, we
provide another example of the spin-orbital entanglement
and violation of the Goodenough-Kanamori rules in the re-
gime of parameters where this appears surprising and was
not expected before.22

The paper is organized as follows. The models for t2g and
eg electrons are introduced in Sec. II. In Sec. III we analyze
the consequences of Hund’s exchange and the CFS on the
properties of the system. First, the spectra of the Hamilto-
nians are presented in Sec. III A. Next we analyze and dis-
cuss the magnetic phase diagrams in Sec. III B and the or-
bital polarization in Sec. III C. We then turn to the optical
spectra, and show in Sec. IV that the energies of the optical
excitations �at ��U� are strongly influenced by the mag-
netic ground state and we determine their characteristic en-
ergies analytically. We also discuss the temperature depen-
dence of the spin autocorrelation function in Sec. V. With the
orbital autocorrelation function and the entanglement of both
spin and orbital degrees of freedom presented in Sec. VI, we
show a case of clear violation of the Goodenough-Kanamori
rules. A short summary and conclusions are presented in Sec.
VII.

II. MODEL HAMILTONIAN FOR eg AND t2g ORBITALS

Most intriguing properties of transition-metal oxides are
ruled by strongly interacting d electrons, which can be found
in either t2g or eg orbitals. Besides, the geometrical environ-
ment of the transition-metal ion plays a key role. Accord-
ingly we consider Hamiltonians consisting of three contribu-
tions which read as follows:

H = Hkin + Hint + Hcf. �2.1�

The first contribution corresponds to the kinetic energy, the
second one to the electron-electron interaction, and the last
one stands for the often neglected CFS. More specifically,
when considering a model involving orbital degeneracy, the
kinetic energy is described by

Hkin = �
�ij�

�
���

tij
��ci��

† cj��, �2.2�

where ci��
† is the respective electron creation operator with

spin � in orbital � at site i. The structure of the hopping
matrix tij

�� depends on the orbitals one is considering, direc-
tion in the cubic lattice, and on system dimension. For eg

electrons one may introduce a basis in the orbital space pro-
vided by two-orbital flavors, such as

�x� � �x2 − y2�/	2, �z� � �3z2 − r2�/	6, �2.3�

and this orbital flavor is in general not conserved along the
hopping processes—the orbitals may be changed for the hop-
ping along the bonds in ab planes in the perovskite structure.
In this case one obtains

tij
�� = −

t

4

 3 �	3

�	3 1
� , �2.4�

where t stands for an effective �dd�� hopping matrix ele-
ment. For more details see Refs. 18 and 24. In contrast, for
t2g orbitals in a particular plane, there are two degenerate
orbitals which are coupled by the hopping tij

��=−t��� for the
bond �ij�, so the hopping matrix is diagonal. Here t is the
effective �dd�� hopping matrix element. In addition, the
hopping is one-dimensional �1D�, as, for instance, the yz and
zx orbitals in ab planes.25 However, in the two-site cluster
model considered below there are two equivalent t2g orbitals
which allow for the diagonal hopping, for instance, for yz
and zx orbitals along the c axis. Hence, we shall call this case
of the degenerate Hubbard model also the t2g orbital model.
Eventually, the third one �xy� may be empty, as, for instance,
in ab planes of Sr2VO4, and therefore neglected.25

The electron-electron interaction may be written as
follows:9

Hint = Uloc�
i

�nix↑nix↓ + niz↑niz↓� +
1

2
Unloc�

�ij�
�nix + niz�

��njx + njz� + 
Uloc −
5

2
JH��

i

nixniz − 2JH�
i

S� ix · S� iz

+ JH�
i

�cix↑
† cix↓

† ciz↓ciz↑ + ciz↑
† ciz↓

† cix↓cix↑� . �2.5�

Here Uloc and JH stand for the on-site intraorbital Coulomb
and Hund’s exchange elements. The energy Unloc represents
the intersite Coulomb repulsion, which relevance has been
emphasized by several authors,26–28 especially when address-
ing molecules. We also used ni�=��ni�� for total electron
density operators, given by the sum of densities in orbitals
�=x ,z, defined in Eq. �2.3�. Let us here emphasize that this
interaction term is spin-rotation invariant and invariant under
a rotation around Ty in the orbital space. For eg electrons, this
can be made use of in order to simplify the hopping matrix
Eq. �2.4�. Indeed, one may introduce the set of orbitals �	�
and �
� as18


�	�
�
�

� = e−i��/2��y
�x�
�z�
� , �2.6�

where �y is a Pauli matrix. If one uses �=2� /3, this trans-
formation is equivalent to rotating a two-site molecule along
the a axis to a two-site molecule along the c axis. Accord-
ingly the kinetic energy, Eq. �2.2�, simplifies into
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Hkin = − t�
�ij�

�
�

ci
�
† cj
� �2.7�

with the hopping allowed only between the directional orbit-
als 
 oriented along the bond.

Finally we also consider a uniform CFS between the �x�
and �z� orbitals,

Hcf =
1

2
E0�

i�

�nix� − niz�� . �2.8�

Physically such a splitting may result from a tetragonal Jahn-
Teller distortion of MO6 octahedra, as realized for geometri-
cal reasons in layered manganites,29 or in the two-
dimensional �2D� Sr2VO4 compound,25 or from the
GdFeO3-like tilting of MO6 octahedra in the perovskite
structure.30 Modelwise the combined effect of Hcf and Hint is
shown below to trigger a strong competition between FM
and AF ground states and violations of the Goodenough-
Kanamori rules, as anticipated in Ref. 19. Here we focus on
the quarter-filled band case, where this competition is clearly
visible.10 For a two-site molecule the basis of the Hilbert
space is made up of 12 even states and of 16 odd states.
Moreover, for each parity, these states can also be distin-
guished according to the value of the total spin S� =�iS� i and
its zth component Sz. We follow below the classification of
the states introduced in Ref. 19. The corresponding Hamil-
tonian matrix can be found in the Appendix.

Let us also emphasize that, while the square of the total
spin operator S� and its zth component Sz commute with the
Hamiltonian, and can be thus used to label the eigenstates,
this does not hold for the total orbital pseudospin operator
T� =�iT� i, where, at site i, the three components of T� i may be
defined as follows:

Ti
+ = �

�

cix�
† ciz�,

Ti
− = �

�

ciz�
† cix�,

Ti
z =

1

2�
�

�nix� − niz�� . �2.9�

Accordingly, the CFS term Eq. �2.8�, which can be written as

Hcf = E0Tz = �
i

Ti
z �2.10�

breaks the rotational symmetry in orbital space. For eg elec-
trons the CFS term takes its simplest form in the ��x� , �z�
basis in contrast to the kinetic energy, and hence may play an
important role in the competition between the FM and AF
ground states.

III. CONSEQUENCES OF HUND’S EXCHANGE

A. Spectrum of the Hamiltonian

Let us now proceed with the diagonalization of the
Hamiltonian. While, as shown in the Appendix, this can be

performed analytically in the atomic limit �t=0�, or for van-
ishing CFS �E0=0�, this is not the case anymore for the
general models, and we display the 16 different eigenener-
gies in Fig. 1. The renormalized Coulomb interaction U used
in the following is defined in the Appendix, see Eq. �A.4�.
There are three striking features associated with these spec-
tra.

First of all, when increasing the ratio JH /U �while keep-
ing it smaller than 1/3 to avoid unphysical attractive interac-
tions�, the ground state evolves from AF to FM one, both for
eg and t2g model. As will be shown below, the location of this
quantum phase transition strongly depends on the value of
the CFS. Note that for JH=0 the ground-state energy is close
to −2E0 for both models and that it can be further reduced by
large JH.

Second, switching on Hund’s exchange interaction affects
the high-energy part of the spectra more strongly, in contrast
to the ground state. More specifically, when considering the
high-energy odd triplet state for both orbitals, its energy de-
creases with increasing JH /U as U−3JH, in close analogy to
the atomic limit. Regarding the three high-energy odd singlet
states, the energy of the upper one increases with increasing
JH. The energies of the other two, which are degenerate for
E0=0, roughly decrease as U−JH, as one might anticipate
from the atomic limit. Besides, the high-energy even singlet
states follow the same trends. Note also that the gap between
the low-energy states and the high-energy ones obtained for
JH=0 rapidly shrinks with increasing JH.

B. Magnetic phase diagram

The above discussed competition between FM and AF
order in the ground states is summarized in Fig. 2. For eg
electrons and vanishing CFS the FM ground state is only
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FIG. 1. �Color online� Spectrum of Hamiltonian �2.1� for: �a� eg

electrons and �b� t2g electrons. The full �dashed� black lines corre-
spond to the even �odd� singlet states while the full �dashed� gray
�green� lines correspond to the even �odd� triplet states. Parameters:
U=8t and E0= t. The vertical dotted lines correspond to JH=U /3
and indicate the limit of the physically relevant regime. For t2g

electrons, the lowest odd singlet state is degenerate with the second
odd triplet state.
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stabilized in the vicinity of the physically relevant upper
limit of very large Hund’s exchange coupling JH�U /3, see
Fig. 2�a�. The FM domain rapidly vanishes for negative CFS
�E00�. On the contrary, for positive CFS �E0�0�, the size
of the FM region first rapidly increases with increasing E0
and the critical JH above which the ground state is FM can be
as small as U /5 for �E0�1.6t�. When E0 is further increased,
the FM region shrinks again and finally vanishes �e.g., at
U=16t for large CFS E0�11t�. In that case one recovers the
AF correlation characterizing the large U regime of the non-
degenerate Hubbard model at half filling. In this respect it is
worth noting that the relevance of such a model is restricted
to values of the CFS larger than U, especially in the large U
regime. Altogether, the asymmetry of the magnetic phase
diagram between positive and negative values of E0 reflects
the anisotropy of eg orbitals.

For the degenerate Hubbard model the shape of the phase
diagram is quite different, see Fig. 2�b�. On top of its sym-
metry with respect to E0=0, the FM ground state extends
down to JH=0 for E0=0. This follows from the diagonal
hopping which favors the states with the same spins. The
role of an increasing CFS is merely to reduce the range of JH
for which the ground state is FM—AF states occur for large
�E0� due to large amplitude of local singlets �double occupan-
cies� at each site in this regime.

C. Orbital polarization

Another characterization of the above found phase transi-
tion is provided by the orbital polarization, which represents
the response to the symmetry breaking term represented by
the CFS, Eq. �2.10�. For t2g electrons the CFS is necessary to
induce an orbitally polarized ground state while orbital po-
larization can spontaneously appear in eg systems.10,31,32

For eg electrons, the ground state is orbitally polarized,
irrespective of the magnetic correlations and the value of the
CFS, as shown in Fig. 3�a�. For vanishing CFS, the occu-
pancy of the �z� orbital clearly exceeds the one of the �x�
orbital, a trend which is enhanced when U is increased in the
AF phase. When U is further increased, the magnetic transi-
tion takes place and the orbital polarization undergoes a dis-
continuous jump. The size, and even the sign, of the jump
strongly depends on the CFS. For example, for JH=0.22U,
we obtain that the jump vanishes for E0=E0

crit=1.6675t while
it is positive and small �negative and substantial� for
E0�E0

crit�E0E0
crit�. This gives a strong indication that the

phase transition is continuous at E0
crit when U increases. This

is further supported by the fact that the partial derivative of
the ground-state energy with respect to E0 is also continuous
at E0

crit. We therefore identified a critical point.
As shown in Fig. 3�b� the situation is qualitatively differ-

ent for t2g electrons. First of all the phase diagram is sym-
metric with respect to E0=0. We therefore concentrate on
E0�0. Second, a fully orbitally polarized ground state is
obtained for an arbitrarily small CFS at U�0. When U is
increased �Tz� is slightly reduced in the AF phase, and van-
ishes in the FM phase. Eventually one reenters the AF phase
under a further increase in U, here for E0�1.1t, in which
case the ground state regains its large orbital polarization.
Finally, for t2g electrons, the critical point is located at
�E0 ,JH�= �0,0�, irrespective of the value of U.

IV. OPTICAL CONDUCTIVITY

We now turn to the discussion of the interplay between
the magnetic ground state and the optical spectra close to
zero temperature. It is well known that magnetic correlations
influence the optical spectra in correlated systems33 and the
changes may be quite dramatic in systems with orbital
degeneracy.23
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FIG. 2. Magnetic phase diagram obtained in the �E0 ,JH plane
from Hamiltonian �2.1� for: �a� eg electrons and �b� t2g electrons.
The full, dotted, dashed, and dashed-dotted lines correspond to U
=5t, 8t, 12t, and 16t, respectively.
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FIG. 3. �Color online� Ground-state orbital polarization for: �a�
eg electrons and E0=E0

crit �solid line�, E0=E0
crit−0.5t �upper dotted

line�, E0=E0
crit−0.75t �upper dashed line�, E0=E0

crit+0.5t �lower
dotted line�, and E0=E0

crit+ t �lower dashed line�, and �b� t2g elec-
trons and E0=0.2t �left dashed line�, E0=0.5t �left solid line�,
E0=0.8t �right solid line�, and E0=1.1t �right dashed lines�. Param-
eter: JH /U=0.22.
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A. General formalism

Using the Kubo formula the complex optical conductivity
�� ��� results as

�� ��� =
i

�Z
�
m,n

e−�Em − e−�En

� − ��n − �m� + i�
���m��̂x��n��2, �4.1�

where Z is the canonical partition function and ��m� is an
eigenstate of Hamiltonian �2.1� with eigenenergy Em,
�=1 /kBT is inverse temperature, and ��0 is a small param-
eter. The above sums run over all eigenstates of H. For the
models under consideration the current operator is given by

�̂x = − ita�
�

�c1
�
+ ,c1	�

+ �
1 0

0 A
�
c2
�

c2	�
� + H.c., �4.2�

with �= ↑ ,↓, a is the distance between both sites, and either
A=0 or A=1 for eg and t2g electrons, respectively. This op-
erator couples only states with the same spin projection and
with different parities. For our purpose it is convenient to
expand the current operator as

�̂x = �̂S + �
m=−1

1

�̂T,m �4.3�

with

�̂S = − ita�2A��3
−���4

−� − 2��1
−���2

−� + �1 + A���7
−���8

−�

+ �1 − A���7
+���8

+� + H.c.,

�̂T,0 = − ita �
�=�1

�1 − A����5
����6

�� + H.c.,

�̂T,�1 = − ita �
�=�1

�1 − A����2�1
� ���1�1

� � + H.c. �4.4�

The operator �̂S acts on the singlet subspace, while the three

operators �̂T,m couple odd and even triplet states, in their
respective subspaces.

According to the above decomposition, the real part of the
optical conductivity can be also expanded as

���� = �S��� + �
m=−1

1

�T,m��� . �4.5�

This form will later on turn out to be very convenient since,
depending on the parameter values, the ground state may
both belong to the singlet or to the triplet subspaces, in
which case the low-temperature optical conductivity is either
given by the first or the second contribution. We also note
that, when making use of the hermiticity of the current op-
erator, the real part ���� may be written as

���� =
1

Z
�

En�Em

���m��̂x��n��2�e−�Em − e−�En�Fmn���

�4.6�

with

Fmn��� =
4��mn

��2 − �mn
2 − �2�2 + 4�2�2 , �4.7�

where �mn=�n−�m= 1
� �En−Em��0. As the parameter � is

small, the functions Fmn��� exhibit sharp maxima for
���mn, and one finds the amplitude Fmn��mn��1 /��mn.
One can notice that the matrix representing the current op-
erator is the same in the three triplet subspaces �m=0, �1�,
each of them being generated by six states �two even and
four odd�. Moreover, the three Hamiltonian blocks HTm

odd, on
the one hand, and HTm

even, on the other hand, are identical.
Therefore the three contributions �T,m��� �m=0, �1� are
identical, yielding ����=�S���+3�T,0���. At high tempera-
ture, ���� shows a priori 32 different peaks, 24 of them
originating from transitions between singlet states, while the
remaining eight ones are due to transitions between triplet
states. The amplitudes of these peaks depend not only on the

value of the matrix elements ��m��̂x��n�, but also on the
statistical weights �e−�Em −e−�En� /Z.

B. Influence of the Hund’s exchange coupling on the low-
temperature optical spectra

At sufficiently low temperature, only the transitions from
the ground state contribute to the optical spectrum. Depend-
ing on the value of JH one has to consider two cases. For
JHJH

c , the ground state is AF and is an eigenstate of the
singlet block HS

even, both for eg and t2g electrons. Accord-
ingly, the real part of the conductivity simplifies into

�S��� =
1

Z
e−�EAF�

m

���AF��̂S��S,m
odd��2FAF,m��� . �4.8�

For JH�JH
c , the ground state is FM. While it possesses odd

parity for eg electrons, it is even for t2g electrons. As a result,
in the regime of JH�JH

c , the low-temperature optical con-
ductivity reduces to

�T,0��� �
1

Z
e−�EFM�

m

���FM��̂T,0��T,0,m
even ��2FFM,m��� ,

�4.9�

for eg electrons, and to

�T,0��� �
1

Z
e−�EFM�

m

���FM��̂T,0��T,0,m
odd ��2FFM,m��� ,

�4.10�

for t2g electrons. Here m labels the eigenstates resulting from
the model Hamiltonian �A.12� and �A.14�, respectively. The
real part of the conductivity is depicted in Fig. 4 for four
representative values of Hund’s exchange JH located in the
physical interval JH� �0,U /3�.

C. Results for eg electrons

Here we analyze the optical spectra obtained for eg elec-
trons for increasing value of JH, see Figs. 4�a�–4�d�. First, for
JH�JH

c , one notices in Fig. 4�a� that the optical spectra con-
sist of two main peaks. From the position of the maxima it is
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possible to unambiguously identify the levels involved in the
corresponding optical transitions. According to Fig. 1�a�, the
two observed transitions occur from the ground state of HS

even

toward the second and the third levels of HS
odd, represented

by dashed black lines in Fig. 1�a�. Note that the most pro-
nounced peak corresponds to the third level. In addition, a
small contribution resulting from the transition to the first
level of HS

odd can also be identified.
When increasing JH, the main peak both shifts to lower

energy and loses its weight, while the second main peak
shifts to higher energy and rather gains weight, as shown in
Fig. 4�b�. Besides, the above-mentioned tiny peak acquires a
substantial weight as well. Under a further increase in JH, the
optical spectrum keeps on exhibiting the same qualitative
behavior, up to the very vicinity of JH

c .
For JH�JH

c , the optical spectrum is manifestly different
and consists mainly of a single peak at lower energy, see Fig.
4�d�, associated to a transition from the lowest odd triplet
state toward the second level of HT0

even �full gray/green curve
in Fig. 1�a��. A crossover between this regime and the small
JH one �JHJH

c � is found for JH�JH
c . There, the weight of

all transitions from the lowest singlet state is suddenly
strongly suppressed and, at JH

c , it is a transition from the
lowest triplet state that dominates the optical spectrum.
When JH=JH

c , the ground state is degenerate, AF and FM
contributions are comparable and the optical spectrum at
zero temperature consists of four peaks for eg electrons, see
Fig. 4�c�. When temperature increases above zero, there ap-
pears a finite JH domain where this feature is robust.

The frequency dependence of the peaks in the optical
spectra on JH can be explained semiquantitatively by consid-
ering the eigenvalues of the Hamiltonian given in the Appen-

dix. While it is difficult to discuss analytically the eigenval-
ues of the Hamiltonian in the singlet subspace, it can be seen
in Fig. 1�a� that, in the AF phase, the ground-state energy
weakly depends on JH. In addition, for moderate CFS ��E0�
�1.5t�, it corresponds well to the first excited state for t2g
electrons in the same subspace. Regarding the involved ex-
cited state, the second excited level of HS

odd, its energy is well
approximated by U−JH. Hence,

�AF �
1

2
U − JH +

1

2
	U2 + 64t2. �4.11�

In the FM regime the ground-state energy can be approxi-
mated by �1,−, see Eq. �A.16�, while the energy of the excited
state of HT

even can be gained from Eq. �A.12�. Hence,

�FM � 	�U − 3JH�2 + 16t2. �4.12�

Equations �4.11� and �4.12� hold for larger values of U as
well. This behavior explains the drop of the excitation energy
by about 2JH

c which can be observed when the Hund’s ex-
change coupling passes through the critical value JH

c .
For JH�JH

c the energy difference between the first excited
state and the ground state is small. Accordingly the finite-
temperature optical spectra consists of the thermally
weighted superposition of excitations in the singlet and trip-
let subspaces. This, using the results displayed in Fig. 5�a� or
following Eqs. �4.11� and �4.12�, gives a direct access to JH,
and then to U.

The dependence of the spectral weight of the main peaks
in ���� for eg electrons on JH and U is displayed in Fig. 6�a�.
In the AF phase the weight shows little dependence on JH in
the regime of large U while it strongly suppressed for in-
creasing JH for intermediate values of U. This reflects the JH
dependence of Fmn��mn��1 /��mn, see Eq. �4.7�, with �mn
represented in Fig. 5�a�, while the matrix elements of the
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FIG. 4. �Color online� Real part of the optical conductivity ����
at low temperature �t=103 for ��a�–�d�� eg electrons and ��e�–�h��
t2g electrons, as obtained for increasing values of JH: ��a� and �e��
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subspace.

0 0.2 0.4 0.6 0.8 1
3J

H
/ U

0.4

0.6

0.8

1

Ω
/Ω

A
F

(a) (b)

0 0.2 0.4 0.6 0.8 1
3J

H
/ U

0.4

0.6

0.8

1

FIG. 5. �Color online� Normalized position of the main peaks �
in the optical conductivity ���� as obtained in the ground state
�black curves� and the first excited state �gray/green curves� for: �a�
eg electrons with �AF given by Eq. �4.11� and �b� t2g electrons with
�AF given by Eq. �4.13�. Parameter: E0= t. The full, dotted, dashed,
and dashed-dotted lines correspond to U=5t, 8t, 12t, and 16t,
respectively.

BOGDANSKI et al. PHYSICAL REVIEW B 82, 195125 �2010�

195125-6



current are only weakly depending on JH. In the FM phase
�mn shows a stronger JH dependence, which in turn is re-
flected in the weight. One observes a rapid increase in the
spectral weight when JH increases in the FM configuration
beyond JH=JH

c .

D. Results for t2g electrons

In the case of t2g electrons, one notices in Figs. 4�e� and
4�f� that the optical spectra are dominated by a single peak
for small JH�JH

c . According to Fig. 1�b�, the transition oc-
curs from the ground state of HS

even toward the second level
of HS

odd, as shown by black dashed lines in Fig. 1�b�. In
addition, a small contribution resulting from the transition to
the fourth level of HS

odd can also be noticed. For increasing
JH, the main peak slowly shifts toward smaller energies
while its weight remains mostly unaffected. On the contrary,
the higher peak gains weight and is shifted toward higher
energies.

As already encountered for eg electrons, the weight of
these peaks is dramatically suppressed when JH is further
increased up to JH

c , and the overwhelming peak follows from
the transition involving the lowest triplet state. Under a fur-
ther increase in JH, the latter one takes over, its weight in-
creases, while its energy decreases. Note that the transition
involves the ground state of HT0

even and the fourth level of
HT0

odd, as depicted in Fig. 1�b�. In contrast to the eg case with
four distinct structures at JH=JH

c �Fig. 4�c��, one finds here
only three maxima �Fig. 4�g�� which follow from the struc-
ture of the excited states.

Considering the eigenvalues of the Hamiltonian allows
one to explain quite accurately the frequency dependence of
the peaks in the optical spectra. First, in the AF phase, the
ground-state energy in Fig. 1�b� is seen to depend only very
weakly on JH. It is given by �1,−, see Eq. �A.7�. The energy
of the involved excited state is given by U−	E0

2+JH
2 , as can

be read off below Eq. �A.9�. To a very good approximation

we then obtain the involved excitation energies in the AF
regime as

�AF � E0 +
U

2
− 	E0

2 + JH
2 +

1

2
	U2 + 64t2. �4.13�

As shown in Fig. 5, Eqs. �4.11� and �4.13� give a good ac-
count of the excitation energies in the AF phase, especially
for t2g electrons.

In the FM regime the ground-state energy can be obtained
from Eq. �A.12� while the energy of the involved excited
state is given by �3, see Eq. �A.15�. We thus find the exact
excitation energies as

�FM =
1

2
�U − 3JH + 	�U − 3JH�2 + 64t2 . �4.14�

In the vicinity of JH
c , the above two expressions lead to the

following drop of the excitation energy:

�� = 3JH − 	E0
2 + JH

2 . �4.15�

Thus, for vanishing CFS, this coincides to the result obtained
for eg electrons.

The dependence of the weight of the main peak on JH is
shown in Fig. 6�b� for a few representative values of U. In
the AF phase, stable in the regime of low values of JH, the
weight shows little dependence on JH for both intermediate
and large U. This reflects the JH dependence of Fmn��mn�
�1 /��mn, see Eq. �4.7�, with �mn represented in Fig. 5�b�,
while the matrix elements of the current are only weakly
dependent on JH. In the FM phase �mn exhibits a stronger
dependence on JH, which in turn is reflected in the weight,
especially for large U. As compared to the eg electrons case,
the jump in the spectral weight at the magnetic transition is
here more significant and the values of the spectral weight
are considerably larger. This follows from the matrix ele-
ments of the current operator in the different ground states.

E. Discussion

In order to discuss the relevance of the above results to
lattice problems it seems necessary to perform the calcula-
tions for larger clusters as well. Unfortunately the dimension
of the Hilbert space increases very rapidly with the cluster
size L, and the task is beyond reach for today’s computers for
L�10. Yet, studies of finite-size effects can be better per-
formed in the one-band case. For example, the optical con-
ductivity has been calculated for 4�4 clusters,34,35 and for
1D chains.36 At half filling, the optical spectra exhibit a high-
frequency broad peak at the energy which corresponds to the
upper Hubbard subband. In the two-site approximation the
peak loses its width but its position and the spectral weight
are rather well reproduced in the regime of large U as it
originates from the superexchange determined by charge ex-
citations on individual bonds.23 It is located at

�U =
1

2
�U + 	U2 + 64t2� �4.16�

using periodic boundary conditions which rescale the hop-
ping from t to 2t. Analyzing the results obtained by Dagotto
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et al.34–36 reveals that �U quite accurately represents the lo-
cation of the high-frequency peak, especially in the strong-
coupling regime. Hence, we consider that the location of the
various high-frequency peaks for the two-orbital models is
expected to be given in the lattice case by one of Eqs.
�4.11�–�4.14�, when appropriate.

V. SPIN AUTOCORRELATION FUNCTION

In order to obtain a complete characterization of the mag-
netic properties of the considered cluster at finite tempera-
ture, we also determined the intersite spin autocorrelation
function S12��S�1 ·S�2�. In the canonical ensemble it may be
expressed as

S12 = �S�1 · S�2� =
1

Z
�
m

e−�Em��m�S�1 · S�2��m� . �5.1�

Calculations were performed by adding the contributions
originating from all subspaces. In Fig. 7 we present the de-
pendence of the thermal average �S�1 ·S�2�, Eq. �5.1�, on
Hund’s exchange JH for several values of temperature in the
physically relevant parameter regime for U=8t and E0= t
�with t=0.2 eV the highest temperature for �t=5 corre-
sponds to �460 K�. Also at finite temperature the change of
spin correlations at the critical value of Hund’s exchange JH

c

is well visible. For JHJH
c , negative �S�1 ·S�2� reflects the AF

nature of the ground state, whereas the correlation between
spins becomes FM for JH�JH

c . As expected, the lower the
temperature is, the stiffer the magnetic transition. Remark-
ably, for eg electrons, and for small JH and low temperature,
the spin autocorrelation function is close to its limiting value
−3 /4, indicating that double occupancy is here very effi-
ciently suppressed already for this rather moderate value of
U. Besides, it is worth noting that, for this moderate value of

U, the spin autocorrelation function is far from saturation in
the FM regime, and that it even decreases for increasing JH.
These two points are discussed below. One can also notice
that all the curves intersect at the same point which confirms
that the transition occurs due to level crossing in this system.

Let us characterize more precisely the point of intersec-
tion of all the curves for �S�1 ·S�2� and determine the location
of the plateaus which one observes at low temperature in the
range of JH�JH

c . With this aim, we denote the lowest two
eigenenergies of Hamiltonian �1� as EAF and EFM, and we
restrict our considerations to sufficiently low temperatures,
so that the relevant contributions to �S�1 ·S�2� follow only from
these lowest eigenstates. For both �eg and t2g� orbital models,
EAF follows from the diagonalization of a single block HS

even.
Consequently, EAF appears to be a nondegenerate level. The
eigenstate ��AF� is a linear combination of the basis states
belonging to the corresponding six-dimensional subspace.

While the triplet states are threefold degenerate in both
�eg and t2g� cases, the origin of these degenerate values is
different. For t2g electrons, the energy EFM comes from the
diagonalization of the three identical blocks HT,m

even given by
Eq. �A.12�, with the lowest energy,

EFM =
1

2
�U − 3JH − 	�U − 3JH�2 + 64t2 . �5.2�

Each of the three eigenstates ��FM
�m�� associated to this energy

are linear combinations of the basis states belonging to the
corresponding 2D subspace. For eg electrons, EFM is the low-
est eigenvalue of the three identical blocks HT,m

odd given by Eq.
�A.14�.

The particular form of the operators S�1 ·S�2 �see the Appen-
dix� greatly simplifies the calculation of each contribution.
For the AF state one finds,

��AF�S�1 · S�2��AF� � −
3

4
��AF�1̃6�6

�3� ��AF� = −
3

4
��̃AF��̃AF� ,

�5.3�

where ��̃AF� stands for the ground-state wave function pro-
jected onto the singly occupied subspace. In this particular
case, it results from the sum of the square modulus of the
first three components of the normalized state ��AF�. We

further refer to ��̃AF ��̃AF� as the reduced norm.
The contribution of each of the three FM states is

��FM
�m��S�1 · S�2��FM

�m�� �
1

4
��̃FM

�m���̃FM
�m�� . �5.4�

For this state, the reduced norm contains only the first com-
ponent for t2g electrons and the three first ones for eg elec-
trons. Due to symmetry, the value of the reduced norm is
independent of m. Using these results, the low-temperature
intersite spin correlation function can be written as
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FIG. 7. Intersite spin autocorrelation function S12, Eq. �5.1�, as
obtained at finite temperature for increasing JH for: �a� eg electrons
and �b� t2g electrons. Different lines correspond to: �t=5 �solid
lines�, �t=10 �dotted lines�, �t=20 �dashed line, left panel�,
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Parameters: U=8t and E0= t. The dotted vertical line corresponds to
JH /U=1 /3.
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�S�1 · S�2� �
3

4
�− ��̃AF��̃AF� + e−����̃FM

�0� ��̃FM
�0� �

1 + 3e−�� � ,

�5.5�

where we introduced the excitation energy from the singlet
state, ��EFM−EAF. Considering the behavior of the correla-
tion function far from the phase boundary we obtain

�S�1 · S�2� � −
3

4
��̃AF��̃AF� , �5.6�

for JH�JH
c and ��0, and

�S�1 · S�2� �
1

4
��̃FM

�0� ��̃FM
�0� � , �5.7�

for JH�JH
c and �0. For t2g electrons in the FM regime,

one finds the following analytical expression:

�S�1 · S�2� �
4t2

EFM
2 + 16t2 �5.8�

with EFM given by Eq. �5.2�. These results confirm that the
ground state is indeed AF for JHJH

c and FM for JH�JH
c .

The reduced norms, ��̃AF ��̃AF� and ��̃FM
�0� ��̃FM

�0� �, obtained
for U=8t and E0= t, are shown in Fig. 8. As explained below,
one can check that, on the one hand, for JH�JH

c , the AF
reduced norm is very close to 1, which yields

�S�1 · S�2� � −
3

4
, �5.9�

and, on the other hand, for JH�JH
c , that the FM reduced

norm is lower than one, implying

�S�1 · S�2� 
1

4
. �5.10�

The behavior of these reduced norms, as functions of Hund’s
exchange JH, can be explained qualitatively by considering

the states which define the blocks HS
even, HT,m

even, or HT,m
odd.

Let us examine the AF ground state first. For JH�U, only
the states ���4

−� , ��1
−� , ��8

−� �one electron per site with oppo-
site spin� contribute to the ground state, while the probabili-
ties �occupancy� of the three remaining states
���3

+� , ��2
+� , ��7

+� are very small owing to the strong intraor-
bital Coulomb repulsion. The slight reduction in the AF re-
duced norm with increasing JH which can be observed in
Fig. 8 is related to the enhancement of the modulus of the
��7

+� component. This state, built out of local pairs becomes
gradually populated due to the decrease of the energy cost
U−JH.

Concerning the FM state, the behavior of the reduced
norm can be addressed using similar arguments: for large U
and low values of JH, the ground state is predominantly built
out of the delocalized states, either ���	m� , ��
m� , ��1m

+ � or
���4

+� , ��1
+� , ��6

+� �one electron per site, triplet states�. As JH
increases, the FM reduced norm is stronger suppressed than
the AF one because the energy cost of the states ��2m

− � and
��5

−� �built out of local pairs� is now U−3JH. Therefore, for
the same set of parameters, double occupancy is stronger
reduced in the AF configuration than in the FM one in the
regime of large JH. As a result, S12 will be further away from
its saturating value in the FM phase than in the AF one, as
seen in Fig. 7.

Finally, we consider the behavior of the correlation func-
tion near the level crossing. When the eigenenergies EAF and
EFM are very close to one another, one may expand e−�� to
first order in �, yielding

�S�1 · S�2� �
3

16
���̃FM

�0� ��̃FM
�0� � − ��̃AF��̃AF�

−
��

4
�3��̃AF��̃AF� + ��̃FM

�0� ��̃FM
�0� ��� .

�5.11�

This formula explains the linear dependence of �S�1 ·S�2� on JH
in the immediate vicinity of the transition at JH

c , after ex-
panding � to lowest order in JH. Furthermore, it shows that
when �→0, all the curves have to cross for the same value
of

�S�1 · S�2� �
3

16
���̃FM

�0� ��̃FM
�0� � − ��̃AF��̃AF�� , �5.12�

which vanishes for U→�.

VI. ORBITAL AND SPIN-ORBITAL CORRELATIONS

A. Orbital autocorrelation function

Further characterization of the two-site cluster is provided
by the orbital and the composite spin-orbital correlation
functions. We characterize the orbital pseudospin state at
T=0 using the intersite orbital autocorrelation function,

T12 � �T�1 · T�2� . �6.1�

As shown in the Appendix, the matrix elements of the opera-
tor T�1 ·T�2 strongly resemble the ones of the operator S�1 ·S�2.
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Indeed they are proportional to one another in each subspace
but with different coefficients. Therefore, the above dis-
cussed magnetic transitions are intimately related to the in-
tersite orbital autocorrelation function but we observed that
the actual changes are different for eg and for t2g electrons.

The magnetic transition for eg electrons is accompanied
by a jump of the orbital correlation function, see Figs. 9�a�
and 9�b�, but the orbital correlation does not change its sign.
Moreover, the amplitude of the jump decreases with increas-
ing U, as both phases are nearly orbitally ordered ferro-
orbital �FO� phases. Thus, the Goodenough-Kanamori rules
are obeyed here only in the regime of small JH while in the
regime of large JH they are not. Interestingly, this shows that
violation of the Goodenough-Kanamori rules may happen in
an itinerant system in the FM phase, in contrast to the strong-
coupling �localized� regime,22 where the spins always de-
couple from orbitals when the spin order is FM. In contrast,
the violation of the Goodenough-Kanamori rules was found
before in the spin-orbital SU�2� � SU�2� chain,37 and in the
t2g spin-orbital models for the perovskites,22 where the AF
order coexists with alternating orbital �AO� order in a range
of parameters. Here this surprising result could be obtained
because FO order of eg orbitals was selected by the kinetic
energy favoring the occupancy of the directional orbitals
along the bond which permit the hopping in the 1D system.38

For t2g electrons the situation is qualitatively different. As
revealed by Figs. 9�d� and 9�e�, the magnetic transition is
accompanied by an orbital transition, from a nearly orbitally
ordered FO phase for small JH, to a rather disordered AO
phase for large JH. As T12 slowly decreases in the AO phase
when U increases, a nearly orbitally ordered AO phase will
only be realized in the regime of very large U, while the
Goodenough-Kanamori rules are obeyed in both magnetic
phases.

B. Spin-orbital entanglement

Further information on the nature of spin-orbital state in
the involved phases can be gained from the spin-orbital cor-
relation function,22

C12 = ��S�1 · S�2��T�1 · T�2�� − �S�1 · S�2��T�1 · T�2� . �6.2�

It quantifies the quality of the mean-field-type decoupling
��S�1 ·S�2��T�1 ·T�2����S�1 ·S�2��T�1 ·T�2� and vanishes when the
above mean-field decoupling becomes exact. Qualitatively it
resembles the behavior of S12, however with the important
difference that its sign remains unaltered at the magnetic
transition for t2g electrons.

Recalling the reduced norms, Eqs. �5.3� and �5.4�, allows
one to quantify the degree of entanglement of the ground
state of the various phases. Indeed, in the AF phases we get

C12 �
3

16
��̃AF��̃AF����̃AF��̃AF� − 1� , �6.3�

for both models. In the FM phase one finds for eg electrons,

C12
e �

1

16
��̃FM

�0� ��̃FM
�0� ��1 − ��̃FM

�0� ��̃FM
�0� �� �6.4�

and for t2g electrons,

C12
t �

3

16
��̃FM

�0� ��̃FM
�0� ����̃FM

�0� ��̃FM
�0� � − 1� . �6.5�

Using these relations, it is easy to show that C12 neither
vanishes in the AF phase nor in the FM one in the regime of
finite U, though its magnitude clearly decreases in the AF
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the nearly horizontal dotted �gray/blue� line in �a�, and for the cor-
responding values of JH approximately given by Eq. �6.6�, the
phase transition is continuous. In �b�, the dotted lines represent the
approximate phase boundaries given by Eq. �6.7�.
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phase with increasing U, and weakly decreases in the FM
phase, as shown in Figs. 9�c� and 9�f�. This behavior is dif-
ferent from the one found in the spin-orbital superexchange
models, where spin and orbital operators factorize in FM
states.22

A summary of the above discussed phase transitions is
presented in Fig. 10. Here we plot the phase diagram for both
models in the �E0 ,U� plane for several values of JH /U. As
seen in Fig. 10�a� for eg orbitals and JH=U /3, the size of the
FM region increases linearly with U for large U, while it
closes rather abruptly for U�5t. In this respect, ferromag-
netism appears as a strong-coupling property, as already em-
phasized by several authors in various context.39 When re-
ducing the ratio JH /U the FM region gradually shrinks
around E0�1.66t and is pushed toward larger U. Remark-
ably, we found that in this case FM order coexists with FO
order for large values of JH, quantum fluctuations are
quenched, and the Goodenough-Kanamori rule predicting the
complementary behavior of spin and orbital correlations is
violated.

Regarding the critical point it is exactly located at the left
tip of the FM/FO lobe. E0

crit shows little dependence on U,
being, for instance, 1.57t for U=5t and 1.64t for U=20t,
while we numerically determined JH

crit to be very well ap-
proximated by

JH
crit � 0.15U + 0.83t . �6.6�

On the contrary, for the degenerate Hubbard model and
JH=U /3, the phase boundary saturates to E0= �4t for large
U, and extends to zero for U→0. When reducing the ratio
JH /U the FM region also gradually shrinks but around
E0=0. Also, the phase boundary passes over a maximum,
which is directly linked with the re-entrant behavior of �Tz�
encountered in Fig. 3�b�. Nevertheless the phase boundary
still extends to E0=0 for U→0.

For t2g electrons, the phase boundary associated with a
given JH can be approximately obtained in the following
fashion: in the triplet even subspace, the ground-state energy
can be obtained in analytical form by diagonalizing the
Hamiltonian matrix Eq. �A.12�, while Fig. 1�b� shows that
the singlet even ground-state energy weakly depends on JH.
Hence, it is well approximated by �1,− for E0�0 �and by �3,−
for E00� given by Eq. �A.7�. Solving the resulting equation
for the phase boundary with respect to E0

crit yields

E0
crit = �

1

2
�3JH − 	U2 + 64t2 + 	�U − 3JH�2 + 64t2� .

�6.7�

It is represented in Fig. 10�b�, which shows that the agree-
ment with the exact result is very good. In particular, this
approximate phase boundary also extends to E0=0 for van-
ishing U. While this is a generic property of the degenerate
Hubbard model, following from the SU�4� symmetry at that
point, the location of the critical point for eg orbitals is likely
to be somewhat different for larger systems or different ge-
ometries. Yet, for both models, these phase boundaries coin-
cide with the ones resulting from strong-coupling expansion
for the chain case in the large-U limit.

VII. DISCUSSION AND SUMMARY

The present study provides further evidence that optical
spectra are intimately related to the magnetic properties in
strongly correlated electron systems. When FM states are
stabilized for relatively large values of JH, the high-spin
charge excitations lead to peaks in the optical conductivity at
energies �U−3JH. In contrast, the low-spin excitations ac-
tive in the AF phase result into peaks in the optical conduc-
tivity at energies �U−JH �or higher�. The AF states occur at
lower values of JH than their FM counterparts. This implies
the spectral weight transfer from high to low energies under
increasing JH. Interestingly, in the crossover regime between
these two types of magnetic order, the excitations character-
istic for both phases were obtained. Although the parameter
JH is not directly accessible in a single experiment, by vary-
ing temperature one will redistribute the spectral weight over
the low-spin and high-spin excitations, as observed, for in-
stance, in the optical spectroscopy for LaVO3,40 LaMnO3,41

as well as for YTiO3 and SmTiO3.42 This, together with Fig.
5 or Eqs. �4.11�–�4.14�, thus provides a way to estimate both
U and JH experimentally.

We would like to emphasize the advantage of the sug-
gested procedure of deducing the effective parameters from
experiment rather than, as done frequently, from the LDA
+DMFT calculations. In fact, the meaning of these param-
eters is transparent in a model Hamiltonian and they are in-
herently associated to a given Hamiltonian.43 Therefore, the
effective parameters deduced from experiment are frequently
reduced as compared with their values used in the LDA
+DMFT calculations. For instance, in LaMnO3 one finds
from the optical spectra U=3.1 eV and JH=0.6 eV,41 while
these parameters deduced from the LDA+DMFT calcula-
tions are: U=5 eV and JH=0.75 eV.44

Finally, by looking at the phase diagrams of Figs. 2 and
10, we conclude that the FM states can be realized more
easily in case of t2g electrons than in case of eg ones. The
range of FM states is broader for t2g electrons and the FM
state is favored for degenerate t2g orbitals already for infini-
tesimal values of JH�0. It may be expected that easier FM
polarization in t2g electron systems could survive in the ther-
modynamic limit, while in eg systems electrons may change
the orbitals and the kinetic energy is larger for the same
value of the hopping t, so the conditions for FM states are
there also less favorable,18 although we have shown that a
moderate positive crystal field splitting can also trigger a FM
ground state. We have also found that in this case FM order
coexists with FO order for large values of JH, and the
Goodenough-Kanamori rule predicting the complementary
behavior of spin and orbital correlations is violated. It re-
mains a challenge to search for a transition-metal oxide sys-
tem that could serve as an experimental example of this be-
havior.
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APPENDIX: EXACT SOLUTION FOR TWO ELECTRONS

Here we derive the Hamiltonian matrix in the two-particle
subspace, as well as that part of the spectrum that can be
brought to a simple analytical form. We also derive the ma-
trix elements of the operators S�1 ·S�2 and T�1 ·T�2, adopting the
notation introduced in Ref. 19. Since the Hamiltonian com-
mutes with the parity operator and the spin operators S2 and
Sz, the Hilbert space decomposes into one even and one odd
S=0 subspaces, and into three even and three odd S=1 sub-
spaces. In order to simplify the notation we introduce
Ec=−E0 /2 and Es=	6E0 /4, the hopping parameters
t		= �t+− t−� /2, and t

= �t++ t−� /2, as well as t+= t−=2t for
eg orbitals and t+=4t , t−=0 for t2g orbitals.

1. Direct Coulomb interaction

For a two-site molecule with periodic boundary condi-
tions, the nonlocal term has to account for the interaction of
a given electron with those located on the two neighboring
sites. Hence, in each of the four n-dimensional subspaces
introduced above, the matrix elements of the direct on-site
and intersite Coulomb interaction may be written as

HC
d = Uloc�1n�n − 1̃n�n

�p� � + 2Unloc1̃n�n
�p� , �A.1�

where 1n�n is the n-dimensional identity matrix. The trun-

cated identity matrix 1̃n�n
�p� is a diagonal n�n matrix, the first

p diagonal matrix elements of which are one, while the
n− p remaining ones are zero. It represents the projector on
the subspace involving singly occupied sites only, and may
be expressed as

�1̃n�n
�p� �ij = �

k=1

p

�i,k� j,k. �A.2�

Writing the above matrix elements in the form

HC
d = 2Unloc1n�n + �Uloc − 2Unloc��1n�n − 1̃n�n

�p� � , �A.3�

shows that the intersite Coulomb interaction can simply be
taken into account by renormalizing the on-site one,

U = Uloc − 2Unloc, �A.4�

and by shifting the zero of energy by 2Unloc. Note that this
shift of origin has no impact on the correlation functions. As
�Unloc��Uloc is often realized in a solid, we use here the
symbol U for the renormalized on-site interaction.

2. Singlet even subspace

Using periodic boundary conditions and
���4

−� , ��1
−� , ��8

−� , ��3
+� , ��2

+� , ��7
+� as a basis of the even sin-

glet subspace we obtain

HS
even =�

Ec 0 Es 2t		 0 0

0 − Ec Es 0 2t

 0

Es Es 0 0 0 t+

2t		 0 0 Ec + U JH Es

0 2t

 0 JH − Ec + U Es

0 0 t+ Es Es U − JH

� .

�A.5�

Remarkably, for t2g electrons, two eigenvalues of HS
even can

be obtained in a simple analytical form. They read
�U−JH�	�U−JH�2+64t2� /2 and correspond to the second
and fifth lowest states. In the atomic limit the spectrum sim-
plifies to �−E0 ,0 ,E0 ,U−	JH

2 +E0
2 ,U−JH ,U+	JH

2 +E0
2 while

for vanishing CFS it reads

�1,� =
1

2
�U − JH � 	�U − JH�2 + 64t2� ,

�2,� =
1

2
�U + JH � 	�U + JH�2 + 64t2� , �A.6�

with the first two eigenvalues �1,� being twofold degenerate.
For JH=0 the six eigenenergies can also be obtained in

analytical form

�1,� =
1

2
�U − 2E0 � 	U2 + 64t2� ,

�2,� =
1

2
�U � 	U2 + 64t2� ,

�3,� =
1

2
�U + 2E0 � 	U2 + 64t2� . �A.7�

For eg electrons, none of the eigenvalues of HS
even can be

obtained in a simple analytical form in the general case. In
the atomic limit the spectrum coincides with the above spec-
trum for t2g electrons while for vanishing CFS three simple
eigenvalues read ��U−JH−	�U−JH�2+16t2� /2,0 , �U−JH

+	�U−JH�2+16t2� /2.
Regarding the matrix elements of S�1 ·S�2 and T�1 ·T�2 we

obtain in this subspace,

S�1 · S�2 = − 3T�1 · T�2 = −
3

4
1̃6�6

�3� . �A.8�

3. Singlet odd subspace

Using ���8
+� , ��3

−� , ��2
−� , ��7

−� as a basis of the odd singlet
subspace we obtain

HS
odd =�

0 0 0 t−

0 Ec + U JH Es

0 JH − Ec + U Es

t− Es Es U − JH

� . �A.9�

For t2g electrons, the spectrum reads: �0,U−	E0
2+JH

2 ,
U−JH ,U+	E0

2+JH
2 . For eg electrons, none of the eigenval-
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ues of HS
even can be obtained in a simple analytical form in

the general case. In the atomic limit the spectrum coincides
with the above one for t2g electrons while for vanishing CFS
it reads

�1,� =
1

2
�U − JH � 	�U − JH�2 + 16t2� ,

�2,� = U � JH. �A.10�

In this subspace the matrix elements of S�1 ·S�2 and T�1 ·T�2 op-
erators are given by

S�1 · S�2 = T�1 · T�2 = −
3

4
1̃4�4

�1� . �A.11�

4. Triplet even subspace

Using the eigenstates of Sz �with eigenvalue 0�
���6

−� , ��5
+� as a basis of the even triplet subspace we obtain

HT,m
even = 
0 t+

t+ U − 3JH
� . �A.12�

The very same matrix would have been found had we chosen
either the eigenstates of Sz �with eigenvalue 1� ���1↑

− � , ��2↑
+ �

or the eigenstates of Sz �with eigenvalue −1� ���1↓
− � , ��2↓

+ � as
basis. The matrix elements of the operators S�1 ·S�2 and T�1 ·T�2
in this subspace read

S�1 · S�2 = −
1

3
T�1 · T�2 =

1

4
1̃2�2

�1� . �A.13�

5. Triplet odd subspace

Using the Sz eigenstates �with eigenvalue 0�
���4

+� , ��1
+� , ��6

+� , ��5
−� as a basis of the odd triplet subspace

we obtain

HT,m
odd =�

Ec 0 Es 0

0 − Ec Es 0

Es Es 0 t−

0 0 t− U − 3JH

� . �A.14�

Again, choosing the eigenstates of Sz �with eigenvalue 1�
���	↑� , ��
↑� , ��1↑

+ � , ��2↑
− � or the eigenstates of Sz �with ei-

genvalue −1� ���	↓� , ��
↓� , ��1↓
+ � , ��2↓

− � as basis delivers the
same answer. Let us notice that, for t2g electrons, the eigen-
values are given by

�1,� = � E0,

�2 = 0,

�3 = U − 3JH, �A.15�

while no simple analytical form can be obtained for eg elec-
trons in the general case. Still, the same spectrum is obtained
in the atomic limit, while, for vanishing CFS, the spectrum
reads

�1,� =
1

2
�U − 3JH � 	�U − 3JH�2 + 16t2� ,

�2 = 0, �A.16�

with the energy �2 being twofold degenerate. Regarding the
matrix elements of S�1 ·S�2 and T�1 ·T�2 operators we obtain in
this subspace,

S�1 · S�2 = T�1 · T�2 =
1

4
1̃4�4

�3� . �A.17�

Remarkably, in the limit of vanishing CFS, the lowest
2�2 block of the Hamiltonian matrix, Eq. �A.14�, and the
Hamiltonian matrix, Eq. �A.12�, are identical for eg orbitals.
This leads to a higher symmetry of the ground state along the
red line in Fig. 10�a� and possibly to richer optical spectra.
Yet it turns out not to be the case, as the matrix elements of
the current operator between the lowest even triplet state and
the two intermediate odd triplet states vanish. Accordingly
this higher symmetry has no genuine impact on the optical
conductivity.

1 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Par-
collet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 �2006�.

2 K. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov,
Phys. Rev. Lett. 86, 5345 �2001�; F. Rodolakis, P. Hansmann,
J.-P. Rueff, A. Toschi, M. W. Haverkort, G. Sangiovanni, A.
Tanaka, T. Saha-Dasgupta, O. K. Andersen, K. Held, M. Sikora,
I. Alliot, J.-P. Itié, F. Baudelet, P. Wzietek, P. Metcalf, and M.
Marsi, ibid. 104, 047401 �2010�.

3 G. Keller, K. Held, V. Eyert, D. Vollhardt, and V. I. Anisimov,
Phys. Rev. B 70, 205116 �2004�.

4 A. I. Poteryaev, J. M. Tomczak, S. Biermann, A. Georges, A. I.

Lichtenstein, A. N. Rubtsov, T. Saha-Dasgupta, and O. K.
Andersen, Phys. Rev. B 76, 085127 �2007�.

5 Y. Otsuka and M. Imada, J. Phys. Soc. Jpn. 75, 124707 �2006�.
6 S. Savrasov, G. Kotliar, and E. Abrahams, Nature �London� 410,

793 �2001�.
7 J. Zaanen and G. A. Sawatzky, J. Solid State Chem. 88, 8

�1990�.
8 M. Raczkowski, R. Frésard, and A. M. Oleś, Phys. Rev. B 73,

094429 �2006�.
9 A. M. Oleś, Phys. Rev. B 28, 327 �1983�.

10 R. Frésard, M. Raczkowski, and A. M. Oleś, Phys. Status Solidi

OPTICAL CONDUCTIVITY IN THE VICINITY OF A… PHYSICAL REVIEW B 82, 195125 �2010�

195125-13

http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/PhysRevLett.86.5345
http://dx.doi.org/10.1103/PhysRevLett.104.047401
http://dx.doi.org/10.1103/PhysRevB.70.205116
http://dx.doi.org/10.1103/PhysRevB.76.085127
http://dx.doi.org/10.1143/JPSJ.75.124707
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1016/0022-4596(90)90202-9
http://dx.doi.org/10.1016/0022-4596(90)90202-9
http://dx.doi.org/10.1103/PhysRevB.73.094429
http://dx.doi.org/10.1103/PhysRevB.73.094429
http://dx.doi.org/10.1103/PhysRevB.28.327
http://dx.doi.org/10.1002/pssb.200460038


B 242, 370 �2005�.
11 A. Romano, C. Noce, and M. E. Amendola, J. Phys.: Condens.

Matter 20, 465216 �2008�.
12 R. Peters and T. Pruschke, Phys. Rev. B 81, 035112 �2010�.
13 S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C. Zhang,

Phys. Rev. B 77, 220503 �2008�; A. Moreo, M. Daghofer, J. A.
Riera, and E. Dagotto, ibid. 79, 134502 �2009�.

14 Y. Imai and N. Kawakami, J. Phys. Soc. Jpn. 70, 2365 �2001�.
15 C. Knecht, N. Blümer, and P. G. J. van Dongen, Phys. Rev. B

72, 081103 �2005�; L. de’Medici, A. Georges, and S. Biermann,
ibid. 72, 205124 �2005�.

16 H. Lee, Y.-Z. Zhang, H. O. Jeschke, R. Valentí, and H. Monien,
Phys. Rev. Lett. 104, 026402 �2010�.

17 T. Kita, T. Ohashi, and S.-i. Suga, Phys. Rev. B 79, 245128
�2009�.

18 L. F. Feiner and A. M. Oleś, Phys. Rev. B 71, 144422 �2005�.
19 M. Raczkowski, R. Frésard, and A. M. Oleś, J. Phys.: Condens.

Matter 18, 7449 �2006�.
20 J. Chaloupka and G. Khaliullin, Phys. Rev. Lett. 100, 016404

�2008�.
21 J. Kanamori, J. Phys. Chem. Solids 10, 87 �1959�; J. B. Good-

enough, Magnetism and the Chemical Bond �Wiley-Interscience,
New York, 1963�.

22 A. M. Oleś, P. Horsch, L. F. Feiner, and G. Khaliullin, Phys. Rev.
Lett. 96, 147205 �2006�.

23 G. Khaliullin, P. Horsch, and A. M. Oleś, Phys. Rev. B 70,
195103 �2004�; A. M. Oleś, G. Khaliullin, P. Horsch, and L. F.
Feiner, ibid. 72, 214431 �2005�.

24 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 �1954�.
25 M. Daghofer, K. Wohlfeld, A. M. Oleś, E. Arrigoni, and P.

Horsch, Phys. Rev. Lett. 100, 066403 �2008�; K. Wohlfeld, M.
Daghofer, A. M. Oleś, and P. Horsch, Phys. Rev. B 78, 214423
�2008�; K. Wohlfeld, A. M. Oleś, and P. Horsch, ibid. 79,
224433 �2009�.

26 P. Pou, R. Pérez, F. Flores, A. Levy Yeyati, A. Martin-Rodero, J.
M. Blanco, F. J. García-Vidal, and J. Ortega, Phys. Rev. B 62,
4309 �2000�.

27 J. E. Hirsch, Phys. Rev. B 65, 184502 �2002�.
28 G. Chiappe, E. Louis, E. SanFabián, and J. A. Vergés, Phys. Rev.

B 75, 195104 �2007�.
29 M. Daghofer, A. M. Oleś, D. M. Neuber, and W. von der Linden,

Phys. Rev. B 73, 104451 �2006�; M. Daghofer and A. M. Oleś,
Acta Phys. Pol. A 111, 497 �2007�; K. Rościszewski and A. M.

Oleś, J. Phys.: Condens. Matter 20, 365212 �2008�.
30 M. Mochizuki and M. Imada, J. Phys. Soc. Jpn. 73, 1833 �2004�;

E. Pavarini, Y. Yamasaki, J. Nuss, and O. K. Andersen, New J.
Phys. 7, 188 �2005�.

31 F. Mack and P. Horsch, Phys. Rev. Lett. 82, 3160 �1999�; J.
Bała, P. Horsch, and F. Mack, Phys. Rev. B 69, 094415 �2004�;
J. Bała and P. Horsch, ibid. 72, 012404 �2005�.

32 A. Koizumi, S. Miyaki, Y. Kakutani, H. Koizumi, N. Hiraoka, K.
Makoshi, N. Sakai, K. Hirota, and Y. Murakami, Phys. Rev.
Lett. 86, 5589 �2001�.

33 M. Aichhorn, P. Horsch, W. von der Linden, and M. Cuoco,
Phys. Rev. B 65, 201101 �2002�.

34 E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera,
Phys. Rev. B 45, 10741 �1992�.

35 J. A. Riera and E. Dagotto, Phys. Rev. B 50, 452 �1994�.
36 H. Eskes and A. M. Oleś, Phys. Rev. Lett. 73, 1279 �1994�; H.

Eskes, A. M. Oleś, M. B. J. Meinders, and W. Stephan, Phys.
Rev. B 50, 17980 �1994�.

37 A. M. Oleś, P. Horsch, and G. Khaliullin, Phys. Status Solidi B
244, 2378 �2007�.

38 M. Daghofer, A. M. Oleś, and W. von der Linden, Phys. Rev. B
70, 184430 �2004�.

39 C. Lacroix-Lyon-Caen and M. Cyrot, Solid State Commun. 21,
837 �1977�; K. Held and D. Vollhardt, Phys. Rev. Lett. 84, 5168
�2000�; R. Frésard and M. Lamboley, J. Low Temp. Phys. 126,
1091 �2002�; M. Stier and W. Nolting, Phys. Rev. B 75, 144409
�2007�; H. Park, K. Haule, C. A. Marianetti, and G. Kotliar, ibid.
77, 035107 �2008�.

40 S. Miyasaka, Y. Okimoto, and Y. Tokura, J. Phys. Soc. Jpn. 71,
2086 �2002�.

41 N. N. Kovaleva, A. V. Boris, C. Bernhard, A. Kulakov, A. Pi-
menov, A. M. Balbashov, G. Khaliullin, and B. Keimer, Phys.
Rev. Lett. 93, 147204 �2004�; N. N. Kovaleva, A. M. Oleś, A.
M. Balbashov, A. Maljuk, D. N. Argyriou, G. Khaliullin, and B.
Keimer, Phys. Rev. B 81, 235130 �2010�.

42 A. Gössling, R. Schmitz, H. Roth, M. W. Haverkort, T. Lorenz,
J. A. Mydosh, E. Müller-Hartmann, and M. Grüninger, Phys.
Rev. B 78, 075122 �2008�.

43 J. A. Vergés, E. SanFabián, G. Chiappe, and E. Louis, Phys. Rev.
B 81, 085120 �2010�.

44 A. Yamasaki, M. Feldbacher, Y.-F. Yang, O. K. Andersen, and K.
Held, Phys. Rev. Lett. 96, 166401 �2006�; Y.-F. Yang and K.
Held, Phys. Rev. B 76, 212401 �2007�.

BOGDANSKI et al. PHYSICAL REVIEW B 82, 195125 �2010�

195125-14

http://dx.doi.org/10.1002/pssb.200460038
http://dx.doi.org/10.1088/0953-8984/20/46/465216
http://dx.doi.org/10.1088/0953-8984/20/46/465216
http://dx.doi.org/10.1103/PhysRevB.81.035112
http://dx.doi.org/10.1103/PhysRevB.77.220503
http://dx.doi.org/10.1103/PhysRevB.79.134502
http://dx.doi.org/10.1143/JPSJ.70.2365
http://dx.doi.org/10.1103/PhysRevB.72.081103
http://dx.doi.org/10.1103/PhysRevB.72.081103
http://dx.doi.org/10.1103/PhysRevB.72.205124
http://dx.doi.org/10.1103/PhysRevLett.104.026402
http://dx.doi.org/10.1103/PhysRevB.79.245128
http://dx.doi.org/10.1103/PhysRevB.79.245128
http://dx.doi.org/10.1103/PhysRevB.71.144422
http://dx.doi.org/10.1088/0953-8984/18/31/036
http://dx.doi.org/10.1088/0953-8984/18/31/036
http://dx.doi.org/10.1103/PhysRevLett.100.016404
http://dx.doi.org/10.1103/PhysRevLett.100.016404
http://dx.doi.org/10.1016/0022-3697(59)90061-7
http://dx.doi.org/10.1103/PhysRevLett.96.147205
http://dx.doi.org/10.1103/PhysRevLett.96.147205
http://dx.doi.org/10.1103/PhysRevB.70.195103
http://dx.doi.org/10.1103/PhysRevB.70.195103
http://dx.doi.org/10.1103/PhysRevB.72.214431
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRevLett.100.066403
http://dx.doi.org/10.1103/PhysRevB.78.214423
http://dx.doi.org/10.1103/PhysRevB.78.214423
http://dx.doi.org/10.1103/PhysRevB.79.224433
http://dx.doi.org/10.1103/PhysRevB.79.224433
http://dx.doi.org/10.1103/PhysRevB.62.4309
http://dx.doi.org/10.1103/PhysRevB.62.4309
http://dx.doi.org/10.1103/PhysRevB.65.184502
http://dx.doi.org/10.1103/PhysRevB.75.195104
http://dx.doi.org/10.1103/PhysRevB.75.195104
http://dx.doi.org/10.1103/PhysRevB.73.104451
http://dx.doi.org/10.1088/0953-8984/20/36/365212
http://dx.doi.org/10.1143/JPSJ.73.1833
http://dx.doi.org/10.1088/1367-2630/7/1/188
http://dx.doi.org/10.1088/1367-2630/7/1/188
http://dx.doi.org/10.1103/PhysRevLett.82.3160
http://dx.doi.org/10.1103/PhysRevB.69.094415
http://dx.doi.org/10.1103/PhysRevB.72.012404
http://dx.doi.org/10.1103/PhysRevLett.86.5589
http://dx.doi.org/10.1103/PhysRevLett.86.5589
http://dx.doi.org/10.1103/PhysRevB.65.201101
http://dx.doi.org/10.1103/PhysRevB.45.10741
http://dx.doi.org/10.1103/PhysRevB.50.452
http://dx.doi.org/10.1103/PhysRevLett.73.1279
http://dx.doi.org/10.1103/PhysRevB.50.17980
http://dx.doi.org/10.1103/PhysRevB.50.17980
http://dx.doi.org/10.1002/pssb.200674619
http://dx.doi.org/10.1002/pssb.200674619
http://dx.doi.org/10.1103/PhysRevB.70.184430
http://dx.doi.org/10.1103/PhysRevB.70.184430
http://dx.doi.org/10.1016/0038-1098(77)91166-8
http://dx.doi.org/10.1016/0038-1098(77)91166-8
http://dx.doi.org/10.1103/PhysRevLett.84.5168
http://dx.doi.org/10.1103/PhysRevLett.84.5168
http://dx.doi.org/10.1023/A:1013815313109
http://dx.doi.org/10.1023/A:1013815313109
http://dx.doi.org/10.1103/PhysRevB.75.144409
http://dx.doi.org/10.1103/PhysRevB.75.144409
http://dx.doi.org/10.1103/PhysRevB.77.035107
http://dx.doi.org/10.1103/PhysRevB.77.035107
http://dx.doi.org/10.1143/JPSJ.71.2086
http://dx.doi.org/10.1143/JPSJ.71.2086
http://dx.doi.org/10.1103/PhysRevLett.93.147204
http://dx.doi.org/10.1103/PhysRevLett.93.147204
http://dx.doi.org/10.1103/PhysRevB.81.235130
http://dx.doi.org/10.1103/PhysRevB.78.075122
http://dx.doi.org/10.1103/PhysRevB.78.075122
http://dx.doi.org/10.1103/PhysRevB.81.085120
http://dx.doi.org/10.1103/PhysRevB.81.085120
http://dx.doi.org/10.1103/PhysRevLett.96.166401
http://dx.doi.org/10.1103/PhysRevB.76.212401

