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An exact solution is found for the problem of the center-of-band �E=0� anomaly in the one-dimensional
Anderson model of localization. By deriving and solving an equation for the generating function ��u ,�� we
obtained an exact expression in quadratures for statistical moments Iq= ���E�r��2q� of normalized wave func-
tions �E�r� which show violation of one-parameter scaling and emergence of an additional length scale at
E�0.
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I. INTRODUCTION

Anderson localization �AL� enjoys an unusual fate of be-
ing a subject of advanced research during a half of century.
The seminal paper by Anderson1 opened up a direction of
research on the interplay of quantum mechanics and disorder
which is of fundamental interest up to now.2 The one-
dimensional �1D� tight-binding model with diagonal disor-
der, the Anderson model �AM�, which is the simplest and the
most studied model of this type, became a paradigm of AL

Ĥ = �
i

�ici
†ci + �

i

ti�ci
†ci+1 + ci+1

† ci� . �1�

In this model the hopping integral is deterministic ti= t=1
and the on-site energy �i is a random Gaussian variable un-
correlated at different sites and characterized by the variance
����i�2�=w.

The best studied is the continuous limit of this model in
which the lattice constant a→0 at ta2 remaining finite.3,4

There was also a great deal of activity5 aimed at a rigorous
mathematical description of 1D AL. However, despite con-
siderable efforts invested, some subtle issues concerning 1D
AM still remain unsolved. One of them is the effects of
commensurability between the de-Broglie wavelength �E
�which depends on the energy E� and the lattice constant a.

It was known for quite a while6,7 that at weak disorder
w	1 the Lyapunov exponent takes anomalous values at the
ratio f = 2a

�E
equal to 1

2 and 1
3 �compared to those at f beyond

the window of the size w around f = 1
2 and f = 1

3 �. The
Lyapunov exponent sharply decreases at f = 1

2 �which is usu-
ally associated with increasing the localization length� and
may both increase or decrease at f = 1

3 depending on the third
moment of the on-site energy distribution.7 More recently8,9

it was found that the statistics of conductance in 1D AM is
anomalous at the center of the band that corresponds to
f = 1

2 . We want to stress that all these anomalies were
observed for the AM Eq. �1� in which the on-site energy �i is
random. This Hamiltonian does not possess the chiral
symmetry2,10 which is behind the statistical anomalies at the
center of the band E=0 in the Lifshitz model described by
Eq. �1� with the deterministic �i=0 and a random hopping

integral ti. Thus the statistical anomaly at f = 1
2 , 1

3 raises a
question about a hidden symmetry that does not merely re-
duce to the two-sublattice division.2,9,10

A similar phenomenon may occur in dynamical systems.
An elegant analogy between the 1D localization and the clas-
sical system of kicked oscillator was studied in Ref. 11. Ac-
cording to this analogy the energy-dependent de-Broglie
wavelength �E is encoded in the frequency of the oscillator
and the lattice constant a determines the period of the
�-function “kicks” of the external force, their amplitude be-
ing proportional to disorder.

The interest to one-dimensional Anderson localization is
greatly increased recently after several groups reported about
successful experiments on localization of cold atoms,12,13

where even tiny details of localized wave functions were
observed. Kicked rotors and kicked oscillator can also be
realized in systems of cold atoms.14

There are numerous questions concerning physics behind
the anomalies. One of puzzles is the sign of the variation in
the Lyapunov exponent which corresponds to weaker local-
ization at f = 1

2 . Such a tendency can be considered as a rem-
nant of the chiral symmetry spoiled by fluctuating on-site
energy. There is, however, a completely different view on the
problem which predicts the stronger localization at the band
center. It involves the notion of Bragg mirrors15 created by
disorder realizations with alternating on-site energies which
double the period, at least locally. A possible resolution of
this conflict between different mechanisms of the center-of-
band anomaly could be a typical wave-function sketched in
Fig. 1. It contains two length scales: one of them �loc which
is somewhat larger than the localization length � away from
the anomaly is due to remnants of the chiral symmetry while
the other, much smaller one d	�loc �but d
a� is due to the
formation of the Bragg mirror fluctuation. If the weight of
the narrow peak p	1 is small, the statistical moments
Iq= ����r��2q� of the normalized wave functions ��r� with
relatively small q will follow the standard16 behavior �L is
the length of the chain�

Iq
�st� = �q − 1�!�loc

1−qL−1 �2�

while at large q, the higher and more narrow peak will domi-
nate in Iq, leading to the d−�q−1� instead of �loc

−�q−1� behavior of
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moments. The simplest crossover between the two regimes is
described by

Iq = Iq
�st��1 + p	 p�loc

d

q−1� . �3�

Equation �3� can be obtained from the following qualitative
arguments. The average moment is the sum of two contribu-
tions. The first one leading to the standard moment Eq. �2�, is
equal to the qth power of the typical amplitude
���r��2�1 /�loc inside the localization radius but outside of
the narrow peak, multiplied by the probability ��loc /L that
the observation point r falls inside this region. The second
contribution �p /d�qd /L arises when with small probability
d /L the observation point falls inside the narrow peak where
the amplitude ���r��2� p /d. It is this contribution which cor-
responds to the d-dependent term in Eq. �3�.

In general, the information about a typical shape of local-
ized wave functions is encoded in statistical moments Iq. In
this paper, we solve exactly the problem of statistical mo-
ments Iq at E=0 for the 1D Anderson disordered chain Eq.
�1� of the length L→� and show that the behavior Eq. �3�
indeed emerges.

II. GENERATING FUNCTION (GF), MOMENTS OF 
�
2,
AND THE PROBABILITY DISTRIBUTION

FUNCTION (PDF) OF PHASE

Moments Iq of normalized eigenfunctions with integer
q�1

Iq�r� = ���E�r��2q�

=
2


L�q − 2�!�0




d� cos2q����
0

�

dzzq−2

��r−1�z,� − k��N−r�z,− � − k�,�E = 2 cos k� �4�

can be expressed17 in terms of a generating function � j�u ,��
on the lattice site j. The starting point of our analysis is the
recursive equation for GF which can be derived elementary18

starting from Eq. �1� as well as using the supersymmetry
method19

� j+1�z,�� =
sin ke−z cos2 �

�2
w cos2 �
�

0




d��

�exp�−
sin2 k

2w
�tan � − tan ���2�

�� j	z
cos2 �

cos2 ��
,�� − k
 ,

� j=0�z,�� = ��� − 
/2� . �5�

This equation is exact and holds both for weak and strong
disorder controlled by the parameter w for any energy
E=E�k� parametrized by E�k�=2 cos k.

The way the variables z and � enter Eq. �4� suggests their
physical meaning:6 they determine the values of a wave
function ��i+1� and ��i� on a link �i , i+1�

��i� = �zi cos��i�, ��i + 1� = �zi cos��i − k� . �6�

It is remarkable that both the “elementary”18 and the
“supersymmetric”19 derivations of eigenfunction statistics in-
volve naturally the two link variables Eq. �6�. In contrast to
the moments Iq, the Lyapunov exponent

� = lim
N→�

1

N�
i=1

N

ln���i + 1�
��i� � �7�

depends on only one of the two sets of variables,
� ���i+1� /��i�=cos��i−k� /cos��i��, which determines
completely its statistics.6,7 That is why the problem of mo-
ments is more complicated and more general than that of the
Lyapunov exponent.

The integrand in Eq. �4� is bilinear in �. This effectively
takes into account the boundary conditions at the two ends of
the chain16 which is necessary to describe the normalized
eigenfunctions. In contrast to that in the problem of
Lyapunov exponent6 one considers essentially a semi-infinite
chain and does not require of the solution to Eq. �1� to be an
eigenfunction.

Despite the fact that � j�z ,�� is not the joint PDF of z and
�, its descender � j�z=0,�� is the PDF of phase

� j�z = 0,�� = Pj���, �
0




Pj���d� = 1. �8�

This statement can be formally proven18 but the key proper-
ties of PDF, the positivity of Pj��� and the conservation of
normalization, are easily seen directly from Eq. �5� and the
boundary condition �0���=���−
 /2�.

III. EVOLUTION EQUATION FOR WEAK DISORDER

Equation �5� is valid for an arbitrary strength of disorder.
However, the anomaly we are going to study is sharp only at
weak disorder and is rounded off as disorder increases. For
weak disorder when the localization length �= 2a sin2 k

w is large
compared to the lattice constant a, one can reduce Eq. �5� to
a partial differential equation �DE� of the Fokker-Planck-
type, where the coordinate x= ja /� along 1D chain plays a

FIG. 1. �Color online� The cartoon of the standard �blue� and the
E=0 anomalous �red� wave functions. At the E=0 anomaly the
second scale d emerges.
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role of time and the two-dimensional space of variables
u=�z and � stands for the coordinate space.

In the first order in a /�	1 one obtains by a proper ex-
pansion in Eq. �5�

� j+1�u,�� = 	1 +
a

�
�L̂��� − c1���u�
� j�u,� − k� , �9�

where the evolution operator �1+ a
� �L̂���−c1���u�� contains

the differential part

L̂��� = c2���u2�u
2 + c3����u�u − 1� + c4���u�u�� + c5�����

+ c6�����
2 �10�

and ci��� are certain linear combinations of 1, sin�2��,
cos�2��, and sin�4��, cos�4��.

The formal reason for the center-of-band anomaly at
k= 


2 �as well as of the weaker anomaly at any k=
p /q,
where p ,q are positive integers� is the shift by k of the �
argument in right hand side �rhs� of Eq. �9�. Because of this
shift and the periodicity � j�u ,��=� j�u ,�+
�, one has to
apply the evolution operator q times in order to get a closed
recursive equation which expresses � j+q�u ,�� in terms of
� j�u ,�� and its derivatives. For weak disorder and
not very large q	� /a, one can expand � j+q−� j
��aq /�����u ,� ;x� /�x, where we introduce a function
��u ,� ;x�=��x/a�u ,�� of a continuous dimensionless coor-
dinate x= ja /�. Thus in the lowest order in a /� we obtain for
k=
p /q

�x� = ��
s=0

q−1

L̂	� −
s
p

q

 − u�

s=0

q−1

c1	� −
s
p

q

�� . �11�

The sum over s arises because the small corrections to the
evolution operator proportional to a /� add up in the product
of q evolution operators, each time entering with a shift
ci���→ci��−k� according to Eq. �9�. The crucial point for
emergence of anomaly at k= 


2 �q=2, p=1� is the identity

�
s=0

q−1

e2i�−2is
p/q = 0, �
s=0

q−1

e4i�−4is
p/q = � 0 q � 2

qe4i� q = 2.
�

�12�

One observes that at k=
p /q with all q but q=2 the
�-dependent terms disappear from the rhs of Eq. �11�. At
k= 


2 , however, one obtains the anomalous, � dependent,
evolution equation. It appears to have a nice SL�2� group
structure

�x��u,�;x� = �L̂1
2 + L̂3

2 − u���u,�;x� ,

L̂1 = cos� �� + sin� u�u, L̂3 = ��, �� = 2�� , �13�

where L̂1 and L̂3 and L̂2= �L̂3 , L̂1�=−sin� ��+cos� u�u form a
closed sl�2� algebra.

Note that Eq. �13� contains all the known particular re-
sults. For instance, omitting all the �-dependent terms one
obtains the standard equation for GF away from the

anomaly16 which allows for the �- and x-independent
�zero-mode� solution6,7

��st��u� =
2



�uK1�2�u� . �14�

Alternatively, in agreement with Eq. �8�, by setting u=0 in
Eq. �13� one arrives at the second-order ordinary DE for the
nontrivial phase-distribution function P0��� at the k= 


2
anomaly with the zero-mode solution

P0��� = ��0,�� =
C

�3 + cos�4��
, C =

4�


�2	1

4

 �15�

resulting in the anomaly of the Layapunov exponent6,7

��E = 0�
��E � 0�

= �
0




�1 + cos�4���P0��� =

8�2	3

4



�2	1

4

 � 0.9139.

�16�

Derivation of Eq. �13� and its exact solution is the main
result of this paper.

IV. SEPARATION OF VARIABLES AND THE ZERO-MODE
SOLUTION

The variables u and � are entangled in Eq. �13�.
However, there is a hidden symmetry which allows to sepa-
rate variables in this equation, provided that the term
�x��u ,� ;x�=0. This zero-mode solution is sufficient to de-
scribe anomalous eigenfunction statistics in a very long
chain L
� far from its ends.

“Correct variables” � and � are suggested by Eq. �6�

� = u cos2 �, � = u sin2 � . �17�

Defining also the “correct function”

�̃��,�� =
����1/4

�� + ��
��u��,��,���,��� �18�

one casts the zero-mode variant of Eq. �13� in the form of the
Schroedinger equation

�Ĥ��� + Ĥ�����̃ = 0, Ĥ��� = − ��
2 −

3

16�2 +
1

4�
. �19�

Note that the singular operator Ĥ��� is not Hermitian for
generic wave function. Its spectrum is continuous and, in
general, complex. The zero-mode solution corresponds to a
zero sum of the two eigenvalues ���� of the 1D Hamilto-

nians Ĥ��� and Ĥ���. Thus the solution to Eq. �19� emerges
as an integral over a continuous variable ��1 /�� which can
be taken real without loss of generality.18 The integrand in-
volves the product of two eigenfunctions ����� and �−����
and an arbitrary function C���. Yet, one can find this function
C��� uniquely18 using the conditions of �i� smoothness of
��u ,�� at �=0 and �= 


2 and �ii� normalization of the
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phase-distribution function P0���=��u=0,��

�an�u,�� =
u1/2

�4	1

4

�cos � sin ��1/2

��
0

�

d�

�	1

4
+ ��
�	1

4
+ �̄�


�3/2

�Re�W−��,1/4	 �̄�

4�

W−�̄�,1/4	 ��

4�

� , �20�

where W�,1/4�x� is the Whittaker’s function, ��x� is the Euler
Gamma function, and �=ei
/4, �̄=e−i
/4. Equation �20� is the
main analytic result of the paper.

V. MOMENTS OF NORMALIZED EIGENFUNCTIONS

A convenient way to present the results is to plot the
reduced moments Rq= Iq�E=0� / Iq�E�0�

Rq = Cq�
0

�

du�
0


/2

d� cos2q���uq−2�an
2 �u,�� . �21�

Here Iq�E�0�=L−1�q−1� !�1−q are the moments away from
the anomaly, where ��u ,��=��st��u� is given by Eq. �14�
and Cq= 
4q

�q−1�!�q−2�! . Using the solution Eq. �20� we evaluated
the reduced moments Rq numerically up to q=10. The results
are given in Fig. 2. One can see that at E=0 the moments
Rq��� /�loc�q−1 with small q follow Eq. �2�, albeit with a
localization length �loc larger than that away from the
anomaly. The best exponential fit of moments with q�6
gives �loc /��1.252. This reflects the same tendency as Eq.
�16�. However, larger moments are significantly greater than
the prediction of one-parameter scaling Eq. �2�. The excess
factor Sq= Iq�E=0� / Iq

�st� which should be compared with that
in the square brackets of Eq. �3�, is plotted in the insert of
Fig. 2. A comparison with Eq. �3� shows a very satisfactory
�for a crude qualitative interpretation in terms of two scales
sketched in Fig. 1� agreement for moments up to q=10
which can be interpreted as an emergence of a very narrow
�but still much wider than the lattice constant� peak in an
“average” eigenfunction at the anomaly.

In conclusion, we solved exactly the problem of statistical
moments Iq of the amplitude ��E�r��2 of random wave func-

tions in the 1D Anderson model at energies E�0. It is
shown that the statistics of such wave functions is anomalous
which anomaly does not merely reduce to the variation in the
localization length or the Lyapunov exponent. The enhance-
ment of the localization length �loc /��1.252 derived from
Iq��loc

1−q with q�6 is different from that obtained from the
inverse Lyapunov exponent ��E�0� /��E=0��1.094. This
fact together with the anomalous enhancement of moments
with large q�6 implies a significant change in the form of
the typical eigenfunction at E�0 which requires more than
one characteristic length for its description.
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