
Insulating phases of electrons on a zigzag strip in the orbital magnetic field

Hsin-Hua Lai and Olexei I. Motrunich
Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

�Received 17 August 2010; published 12 November 2010�

We consider electrons on a two-leg triangular ladder at half filling and in an orbital magnetic field. In a
two-band regime in the absence of the field, the electronic system remains conducting for weak interactions
since there is no four-fermion umklapp term. We find that in the presence of the orbital field there is a
four-fermion umklapp and it is always relevant for repulsive interactions. Thus in this special ladder, the
combination of the orbital magnetic field and interactions provides a mechanism to drive metal-insulator
transition already at weak coupling. We discuss properties of the possible resulting phases C0S2 and various
C0S1 and C0S0.
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I. INTRODUCTION

This paper complements our earlier work Ref. 1 on the
effects of Zeeman field on a spin Bose-metal �SBM� phase2

�the reader is referred to Refs. 1 and 2 for general introduc-
tion�. Here we consider the orbital magnetic field on the
electronic two-leg triangular ladder.

Previous studies of ladders with orbital field were done on
a square two-leg case and mainly focused on generic density
�see Refs. 3–6 and citations therein�, while the triangular
two-leg case has not been considered so far. In the context of
Mott insulators at half filling, microscopic orbital fields were
shown to give rise to interesting scalar chirality terms oper-
ating on triangles in the effective spin Hamiltonian.7–10 On
the other hand, it was also argued11–13 that if a Mott insulator
develops a noncoplanar magnetic order with nontrivial
chiralities, this can imply spontaneous orbital electronic cur-
rents.

In this paper, we focus on the simplest ladder model with
triangles, the zigzag strip, and discuss instabilities due to
existence of orbital magnetic field and properties of the re-
sulting phases. Our main findings are presented as follows.
In Sec. II, we determine the electron dispersion in the orbital
field and perform weak-coupling renormalization-group
�RG� analysis in a two-band regime.2,14–16 Unlike the case
with no field, we find that there is a four-fermion umklapp
interaction which is always relevant for repulsively interact-
ing electrons and provides a mechanism to drive the metal-
insulator transition. This umklapp gaps out all charge modes
and produces a C0S2 state. In Sec. III we describe physical
observables in this phase, and in Sec. IV we analyze possible
further instabilities in the spin sector and properties of the
resulting phases. We conclude with discussion of the orbital
field effects in the context of the spin Bose-metal phase of
Ref. 2 where the Mott insulator is first produced by an eight-
fermion umklapp and the new four-fermion umklapp appears
as a residual interaction.

II. WEAK-COUPLING APPROACH TO ELECTRONS ON A
ZIGZAG STRIP WITH ORBITAL FIELD

Let us apply weak-coupling RG to study effects of elec-
tronic interactions in the presence of the orbital magnetic
field. We start with free electrons hopping on the triangular

strip with uniform flux � passing through each triangle.
Figure 1 illustrates our gauge choice,

tx,x+1 = t1, �1�

tx,x+2 = t2ei� cos��x�. �2�

Here and throughout, we refer to sites by their one-
dimensional �1D� chain coordinate x. Since the second-
neighbor hopping depends on whether x is even or odd, the
unit cell has two sites which we label A and B. The Hamil-
tonian for such an interacting electron system is H=H0
+HV, with

H0 = − �
x;�

�t1c�
†�x�c��x + 1� + H.c.� �3�

− �
x�A;�

�t2e−i�cA�
† �x�cA��x + 2� + H.c.�

�4�

− �
x�B;�

�t2ei�cB�
† �x�cB��x + 2� + H.c.� , �5�

HV =
1

2 �
x,x�

V�x − x��n�x�n�x�� . �6�

In the first and last lines, we suppressed the sublattice labels
and n�x����c�

†�x�c��x�. We assume that HV is small and

� � � � � � �� � � � �

FIG. 1. �Color online� Top: zigzag strip with uniform flux �
penetrating each triangular plaquette. Bottom: convenient represen-
tation of the model as a 1D chain with first- and second-neighbor
hoppings. We choose a gauge such that tx,x+1= t1 and tx,x+2

= t2ei�cos��x�. The unit cell consists of two sites labeled A and B.
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treat it as a perturbation to H0. The free electron dispersion is

��k� = � 2��t1 cos�k��2 + �t2 sin���sin�2k��2

− 2t2 cos���cos�2k� − � . �7�

We are focusing on the regime with two partially filled bands
as shown in Fig. 2. For small flux, this regime appears when
t2 / t1�0.5. We denote Fermi wave vectors for the right-
moving electrons as kF1 and kF2 and the corresponding Fermi
velocities as v1 and v2. The half-filling condition reads kF1
+kF2=� /2.

The electron operators are expanded in terms of con-
tinuum fields,

cM��x� = �
P,a

eiPkFaxUPa
M cPa�, �8�

where P=R /L=+ /− denotes the right and left movers, a
=1,2 denotes the two Fermi seas, and M=A or B denotes
the sublattices. In the specific gauge, the wave functions UPa

M

are

UR1
A = cos��kF1

2
	, UL1

A = sin��kF1

2
	 ,

UR2
A = − sin��kF2

2
	, UL2

A = cos��kF2

2
	 ,

UR1
B = sin��kF1

2
	, UL1

B = cos��kF1

2
	 ,

UR2
B = cos��kF2

2
	, UL2

B = − sin��kF2

2
	 �9�

with


sin��k�,cos��k�� 	 
t1 cos�k�,t2 sin���sin�2k�� . �10�

Note that k belongs to the reduced Brillouin zone
�−� /2,� /2�.

Few words about physical symmetries. The present prob-
lem has SU�2� spin rotation symmetry �R� but lacks time
reversal because of the orbital field. It also lacks inversion
symmetry and translation by one lattice spacing. However,
the system is invariant under combined transformations such
as inversion plus complex conjugation �I� :x→−x , i→−i�
and translation by one lattice spacing plus complex conjuga-
tion �T1

� :x→x+1, i→−i�. Table I lists transformation prop-
erties of the continuum fields under these two discrete trans-
formations and under the SU�2� spin rotation. Since the
symmetries are reduced compared to the case without the
orbital field,14–16 we need to scrutinize interactions allowed
in the continuum field theory.

Using symmetry considerations, we can write down the
general form of the four-fermion interactions which mix the
right and left moving fields,

H
 = �
a,b

�wab

 JRabJLab + �ab


 JRaaJLbb� , �11�

H� = − �
a,b

�wab
� J�Rab · J�Lab + �ab

� J�Raa · J�Lbb� , �12�

Hu = u4�cR2↑
† cR2↓

† cL1↑cL1↓ − cL2↑
† cL2↓

† cR1↑cR1↓ + H.c.� ,

�13�

where we defined

JPab � cPa�
† cPb�, �14�

J�Pab �
1

2
cPa�

† �� �
cPb
. �15�

Note that besides the familiar momentum-conserving four-
fermion interactions H
 and H�, there is also an umklapp-
type interaction Hu.

Using the symmetries of the problem, we can check that
all couplings are real and satisfy w12=w21 and �12=�21, and
we also use convention w11=w22=0. Thus there are nine in-
dependent couplings: w12


/�, �11

/�, �22


/�, �12

/�, and u4.

With all terms defined above, we can derive weak-
coupling RG equations,

R1 R2L1L2
Π
2- Π2
k

�3

�2

�1

1

2

Ξ�k�

FIG. 2. �Color online� Free-electron spectrum in the presence of
the orbital field, cf. Fig. 1. Here ��k� is given by Eq. �7� with two
branches and we focus on the regime when both bands are partially
populated; we take t1=1, t2=1, and �=� /100 for illustration. The
half-filling condition requires kF1+kF2=� /2.

TABLE I. Transformation properties of the continuum fields
under I� �inversion plus complex conjugation�, T1

� �translation by
one lattice spacing plus complex conjugation�, and R �SU�2� spin
rotation about arbitrary axis n� by an angle ��. We also show trans-
formation properties of bilinears E1,2 defined in Eqs. �41� and �42�.

R I� T1
�

cPa�→ �e−i�/2n� ·����
cPa
 cPa� eiPkFac−P,a�

Ej→ Ej Ej −iEj
†

Ej
†→ Ej

† Ej
† iEj
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�̇11

 = −

1

2�v2
��w12


 �2 +
3

16
�w12

� �2
 , �16�

�̇22

 = −

1

2�v1
��w12


 �2 +
3

16
�w12

� �2
 , �17�

�̇12

 =

1

��v1 + v2���w12

 �2 +

3

16
�w12

� �2 + �u4�2
 , �18�

�̇11
� = −

1

2�v1
��11

� �2 −
1

4�v2
��w12

� �2 + 4w12

 w12

� � , �19�

�̇22
� = −

1

2�v2
��22

� �2 −
1

4�v1
��w12

� �2 + 4w12

 w12

� � , �20�

�̇12
� = −

1

��v1 + v2����12
� �2 +

�w12
� �2 − 4w12


 w12
�

2
� , �21�

ẇ12

 = − �
w12


 −
3

16
��w12

� , �22�

ẇ12
� = − ��w12


 − ��
 +
��

2
+

2�12
�

��v1 + v2�
w12
� , �23�

u̇4 =
4�12


 u4

��v1 + v2�
. �24�

Here Ȯ��O /��, where � is logarithm of the length scale.
We have also defined

�
/� =
�11


/�

2�v1
+

�22

/�

2�v2
−

2�12

/�

��v1 + v2�
. �25�

We can obtain bare values of the couplings for any electronic
interactions by expanding in terms of the continuum fields.
In the case of small flux, the couplings �
/� and w
/� in Eqs.
�11� and �12� are only modified slightly and can be treated as
the same as in Ref. 14 with extended repulsion. For the cou-
pling u4 in Eq. �13�, the bare value of u4 in the small flux
limit is �x�V�x−x��ei�/2�x−x���

t2

t1
�sin�kF1�+sin�kF2���	�,

where x and x� belong to the same sublattice �A or B�.
Therefore, we can see that the parameter u4 which measures
the strength of the umklapp process is linearly proportional
to the flux and goes to zero if we gradually switch off the
flux. For repulsive interactions, we generally expect positive
�
 �see, e.g., Ref. 14 with extended repulsion�. Then accord-
ing to the RG, Eq. �24�, positive initial �12


 will drive u4 to
increase exponentially. Thus we conclude that the starting
two-band metallic phase is unstable due to the new umklapp
term.

To analyze the resulting phase�s�, we use bosonization to
rewrite fermionic fields in terms of bosonic fields,

cPa� � �a�ei��a�+P�a�� �26�

with canonically conjugate boson fields,

��a��x�,�b
�x��� = ��a��x�,�b
�x��� = 0, �27�

��a��x�,�b
�x��� = i��ab��
��x − x�� , �28�

where ��x� is the Heaviside step function. Here we use Ma-
jorana fermions 
�a� ,�b
�=2�ab��
 as Klein factors, which
assure that the fermion fields with different flavors anticom-
mute.

It is convenient to introduce new variables

�
� �
1

2
��1↑ + �1↓ � ��2↑ + �2↓�� , �29�

�a� �
1
�2

��a↑ − �a↓�, a = 1 or 2, �30�

��� �
1
�2

��1� � �2�� , �31�

and similarly for � variables. We can then write compactly
all nonlinear potentials obtained upon bosonization of the
four-fermion interactions,

Hu = 4u4�̂ sin�2�
−�sin�2�
+� , �32�

W � �w12

 JR12JL12 − w12

� J�R12 · J�L12� + H.c. �33�

=cos�2�
−�
4w12

 �cos�2��−� − �̂ cos�2��−��

− w12
� �cos�2��−� + �̂ cos�2��−� + 2�̂ cos�2��+��� ,

�34�

V� � − �
a

�aa
�

2
�JRaa

+ JLaa
− + JRaa

− JLaa
+ � �35�

−
�12

�

2
�JR11

+ JL22
− + JR11

− JL22
+ + �R ↔ L�� �36�

=�
a

�aa
� cos�2�2�a�� �37�

+ 2�12
� �̂ cos�2��+�cos�2��−� , �38�

where

�̂ � �1↑�1↓�2↑�2↓. �39�

We will not analyze the RG flows in all cases. Our main
interest is in exploring the orbital magnetic field effects on
the C2S2 metallic phase and nearby C1�
−�S2 spin liquid.
Therefore we consider the situation where in the absence of
the u4 term we have the stable C2S2 phase described by RG
flows such that �ab


 reach some fixed point values, w12

/� are

irrelevant, and �ab
� are marginally irrelevant—this is realized,

for example, in Ref. 14 for sufficiently long-ranged repul-
sion.

As we have already discussed, for repulsive interactions
we expect �12


 �0 and hence any nonzero u4 will increase
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quickly. In this setting it is then natural to focus on the ef-
fects of the Hu first. From the bosonized form Eq. �32�, we
see that it pins

sin�2�
+� = − sign�u4�sin�2�
−� = � 1. �40�

Thus, both “
−” and “
+” modes become gapped and the
system is an insulator. This insulator arises because of the
combined localizing effects of the orbital field and repulsive
interactions.

Having concluded that u4 becomes large, if we were to
continue using the weak coupling RG Eqs. �16�–�24�, we
would find that u4 drives �12


 to large positive value, which in
turn drives �
 to negative values and destabilizes couplings
w12


/�, and all couplings eventually diverge. If we do not make
finer distinctions as to which couplings diverge faster, we
would conclude that the ultimate outcome is a fully gapped
C0S0. We will analyze different C0S0 phases arising from
the combined effects of u4 and �� later. Here we only note
that the bosonized theory suggests that a C0S2 phase can in
principle be stable. Indeed, once we pin �
− to satisfy Eq.
�40�, the W interaction vanishes leaving only the effective ��

couplings in the spin sector. The stability in the spin sector is
then determined by the signs of the �� couplings. If �ab

� �0,
the spin sector is stable and we have the C0S2 phase. In what
follows, we will identify all interesting physical observables
in this phase and will use it as a starting point for analysis of
possible further instabilities and features of the resulting
phases.

III. OBSERVABLES IN THE MOTT-INSULATING PHASE
IN ORBITAL FIELD

To characterize the induced insulating phase�s�, we con-
sider observables constructed out of the fermion fields. The
only important bilinear operators are

E1 =
1

2
cR1�

† cL2� +
1

2
cR2�

† cL1�, �41�

E2 =
1

2
cL2�

† cR1� −
1

2
cL1�

† cR2�, �42�

V� 1 =
1

2
cR1�

† �� �
cL2
 +
1

2
cR2�

† �� �
cL1
, �43�

V� 2 =
1

2
cL2�

† �� �
cR1
 −
1

2
cL1�

† �� �
cR2
, �44�

and their Hermitian conjugates. All other bilinears contain
field �
− and hence have exponentially decaying correlations
once �
− is pinned. Here and below, repeated spin indices
imply summation. Operators E1 and E2 are scalars and V� 1

and V� 2 are vectors under spin SU�2�. One can check that E1
and E2 have identical transformation properties under all
symmetries and therefore are not independent observables,
and the same holds for V� 1 and V� 2.

The scalar bilinears E1 and E2 appear, e.g., when express-
ing fermion hopping energies and currents. Specifically,

consider a bond �x ,x�=x+n� �we will focus on n=1 or 2�,

B�n��x� � tx,x+nc�
†�x�c��x + n� + H.c., �45�

J�n��x� � i�tx,x+nc�
†�x�c��x + n� − H.c.� , �46�

where we have suppressed “sublattice” site labels A or B and
tx,x+n is defined in Eqs. �1� and �2�. In general, we need to
consider separately cases �x�A , x��A�, �x�B , x��B�,
�x�A , x��B�, and �x�B , x��A�. After expansion in
terms of the continuum fields in each case, we find that all
cases can be summarized by a single form that requires only
the physical coordinate x but not the sublattice labels,

B�n��x�:ei�/2xein/2·�/2�A1
�n�E1

† + A2
�n�E2

†� + H.c., �47�

J�n��x�:ei�/2xein/2·�/2�A3
�n�E1 + A4

�n�E2� + H.c., �48�

where A1,2,3,4
�n� are some real numbers. The above concise

form is possible because of the T1
� symmetry involving trans-

lation by one lattice spacing.
In our analysis below, we will also use a scalar spin

chirality defined as

��x� = S��x� · �S��x − 1� � S��x + 1�� . �49�

From the perspective of symmetry transformation properties,
the scalar spin chirality and the so-called “site-centered” cur-
rents

��x�, J�2��x − 1�, J�1��x − 1� + J�1��x� �50�

have the same transformation properties. �Note that the
above currents are named site centered because they get in-
verted under inversion about site x. Similarly, we can also
call J�1��x� to be “bond centered” since it is inverted under
inversion about x+1 /2, the center of the bond between x and
x+1.�

Thus, up to some real factors, we can deduce that the
scalar spin chirality in Eq. �49� contains the following con-
tributions �focusing on terms that have power-law correla-
tions�:

��x�:ei�/2x�A3�E1 + A4�E2� + H.c. �51�

The vector bilinears V� 1 and V� 2 appear when expressing
spin operator,

S��x� =
1

2
c�

†�x��� �
c
�x� . �52�

We consider separately two cases x�A and x�B. After ex-
panding in terms of the continuum fields, we find that both
cases can be summarized by a single form that requires only
the physical coordinate x,

S��x� � ei�/2x�A1�V� 1
† + A2�V� 2

†� + H.c., �53�

where A1,2� are some real factors.
The bosonized expressions for E1,2 are

E1 = e−i�
+�− i�1↑�2↑e
−i��+ sin��
− + ��−�

− i�1↓�2↓e
i��+ sin��
− − ��−�� , �54�
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E2 = ei�
+��1↑�2↑e
i��+ cos��
− + ��−�

+ �1↓�2↓e
−i��+ cos��
− − ��−�� . �55�

The bosonized expressions for V� 1 and V� 2 are similarly
straightforward. Since we have SU�2� spin invariance, for
simplicity, we only write out Vz,

V1
z = e−i�
+�− i�1↑�2↑e

−i��+ sin��
− + ��−�

+ i�1↓�2↓e
i��+ sin��
− − ��−�� , �56�

V2
z = ei�
+��1↑�2↑e

i��+ cos��
− + ��−�

− �1↓�2↓e
−i��+ cos��
− − ��−�� . �57�

Besides the bilinears considered above, we have also
identified important four-fermion operators,

Bstagg,I
�1� = i�cR1

† �0cL1��cR2
† �0cL2� + H.c.

� �cos�2��+� + cos�2��−��sin�2�
+� , �58�

Bstagg,II
�1� = i�cR1

† �� cL1� · �cR2
† �� cL2� + H.c.

� �cos�2��+� − cos�2��−� + 2�̂ cos�2��−��

�sin�2�
+� , �59�

Sstagg,I
z = �cR1

† �zcL1��cR2
† �0cL2� + H.c.

� �sin�2��+� + sin�2��−��sin�2�
+� , �60�

Sstagg,II
z = �cR1

† �0cL1��cR2
† �zcL2� + H.c.

� �sin�2��+� − sin�2��−��sin�2�
+� . �61�

�0 above is the 2�2 identity matrix and �� are the usual
Pauli matrices. The label “staggered” informs how they con-
tribute to the spin and bond energy observables,

B�1��x�:ei�x�AIBstagg,I
�1� + AIIBstagg,II

�1� � , �62�

Sz�x�:ei�x�AI�Sstagg,I
z + AII�Sstagg,II

z � . �63�

As an example, the above contributions to the bond energy
arise from expanding nearest-neighbor energies n�x�n�x+1�
and S��x� ·S��x+1� in terms of the continuum fields. Again, we
need to consider separately cases x�A or x�B but we find
that both can be summarized by the form that requires only
the physical coordinate x.

Note that we have only listed observables containing
sin�2�
+�. Expressions that contain cos�2�
+� vanish because
of the pinning condition Eq. �40�; in particular, there is no
Bstagg

�n=even�. Also, for brevity we have only listed the bosonized
form of the z component of the spin observable.

There are several other nonvanishing four-fermion terms.
Thus, there is a term which can be interpreted as a staggered
scalar spin chirality; however, it is identical to Hu, Eq. �13�,
and is always present as a static background in our system. In
addition, there is a spin-1 observable which can be inter-
preted as a spin current, and a spin-2 �i.e., spin-nematic�
observable. In the C0S2 phase, these will have the same
power laws as Bstagg

�1� and S�stagg. However, in our model, they

become short ranged if any spin mode gets gapped, and we
do not list them explicitly as the main observables.

Let us briefly describe treatment of the Klein factors �see,
e.g., Ref. 17 for more details�. We need this in the next
section when determining “order parameters” of various
phases obtained as instabilities of the C0S2 phase. The op-

erator �̂=�1↑�1↓�2↑�2↓ has eigenvalues �1. For concrete-

ness, we work with the eigenstate corresponding to +1: �̂�
+�= �+�. We then find the following relation:

�+ ��1↑�2↑�+ � = �+ ��1↓�2↓�+ � = pure imaginary, �64�

and the scalar bilinears are expressed as

E1 = − e−i�
+�+ ��1↑�2↑�+ ��cos��
−�sin���+�sin���−�

+ i sin��
−�cos���+�cos���−�� , �65�

E2 = ei�
+�+ ��1↑�2↑�+ ��cos��
−�cos���+�cos���−�

− i sin��
−�sin���+�sin���−�� . �66�

For repulsively interacting electrons, the umklapp term
Hu appearing in the presence of the orbital field is always
relevant and pins �
+ and �
− as in Eq. �40�. As already
discussed, for such pinning the W term Eq. �33� vanishes.
Therefore, as far as further instabilities of this C0S2 Mott
insulator are concerned, we need to discuss the V� terms Eq.
�38� that can gap out fields in the spin sector.

The instabilities depend on the signs of the couplings �11
� ,

�22
� , and �12

� , so there are eight cases. The simplest case is
when all three �ab

� �0 and are all marginally irrelevant. In
this case, the phase is C0S2�1� ,2�� with two gapless modes
in the spin sector. SU�2� spin invariance fixes the Luttinger
parameters in the spin sector, g1�=g2�=1. After pinning the
�
+ and �
−, the scaling dimensions for the observables are

��E1,2� = ��V� 1,2� = 1/2, �67�

��Bstagg
�1� � = ��S�stagg� = 1. �68�

Thus we have spin and bond energy correlations oscillating
with period 4 and decaying with power law 1 /x.

IV. SPIN-GAPPED PHASES IN ORBITAL FIELD

Besides the spin-gapless phase, C0S2, there are other
cases in which the spin sector is partially or fully gapped.
Below we discuss each case in detail and summarize the
main properties in Table II.

A. �11
� �0, �22

� �0, and �12
� �0

In this case, only �11
� is relevant and flows to strong cou-

pling. We pin �1� such that cos�2�2�1��=1 and the phase is
C0S1�2��. We have Sstagg

z �sin��2�2�� and Bstagg
�1�

�cos��2�2��, so both show 1 /x power-law correlations.

B. �11
� �0, �22

� �0, and �12
� �0

In this case, we pin �2� such that cos�2�2�2��=1. The
phase is C0S1�1�� and is qualitatively similar to the previ-
ous case.
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C. �11
� , �22

� �0, and �12
� �0

In this case, �11
� and �22

� are marginally irrelevant while
�12

� is marginally relevant and flows to strong coupling. To
minimize the energy associated with �12

� , cf. Eq. �38�, we pin
��+ and ��− to satisfy

cos�2��+�cos�2��−� = 1. �69�

To characterize the resulting C0S0 fully gapped phase, we
note that Ej and Bstagg

�1� gain expectation values. We calculate
the first- and second-neighbor bond energies,

�B�1��x� � ei�/2xei�/4�A1
�1�E1

† + A2
�1�E2

†� + H.c. + ei�xBstagg
�1�

� Ã cos��

2
x +

�

4
+ �	 + C̃ cos��x� , �70�

�B�2��x� � ei�/2xei�/2�A1
�2�E1

† + A2
�2�E2

†� + H.c.

� Ã� cos��

2
x +

�

2
+ �	 , �71�

where Ã, C̃, and Ã� are some nonuniversal real numbers
while � is fixed to one of the values 
� �

4 , �
3�
4 �. We see that

this phase has translation symmetry breaking with period 4
as illustrated in Fig. 3. The four independent values of �
correspond to four translations of the bond pattern along x.

To further characterize the state, we also calculate the
scalar chirality,

��x� � Ã� cos��

2
x −

�

2
+ �	 + C̃� cos��x� , �72�

where Ã� and C̃� are some nonuniversal real amplitudes
while � is the same as in Eqs. �70� and �71�. The period-4
pattern induced in the chirality is also shown in Fig. 3 and is
consistent with the spontaneous period-4 bond order on top
of the staggered chirality background present from the out-
set.

D. �11
� , �22

� �0, and �12
� �0

In this case, �11
� and �22

� are marginally relevant and flow
to strong coupling while �12

� is marginally irrelevant. To
minimize the relevant interactions, we pin

cos�2�2�1�� = cos�2�2�2�� = 1. �73�

This is a different C0S0 fully gapped phase where only
Bstagg

�n=odd� gain expectation values. The nearest-neighbor bond
energy is

�B�1��x� � ei�xBstagg
�1� = C̃ cos��x� . �74�

The physical picture of this phase is shown in Fig. 4.

E. �12
� �0 and either �11

� �0 or �22
� �0

Here, we do not know how to minimize the relevant in-
teractions due to the competition of the pinning conditions in
V�, Eq. �38�. However, we expect that, depending which
terms grow faster under the RG and win, the final outcome
reduces to one of the phases discussed above.

V. DISCUSSION

In this paper, we considered the effects of orbital field on
the half-filled electronic two-leg triangular ladder. In weak
coupling, the umklapp Hu �Eqs. �13� and �32�� always makes
the system Mott insulating, and we described in detail pos-
sible phases.

We would like to conclude by indicating a connection
with the SBM theory in Ref. 2 and discussing effects of the
orbital field on the SBM. It turns out that our present elec-
tronic results translate readily to this case. The SBM can be
viewed as an intermediate coupling C1�
−�S2 phase and is
obtained in the absence of the field by gapping out the over-

TABLE II. Summary of the properties of the phases from dif-
ferent instabilities in the spin sector.

�11
� �22

� �12
� Static order Power-law correlations

+ + + None E1, E2; V� 1, V� 2; S�stagg, Bstagg
�1�

− + + None S�stagg, Bstagg
�1�

+ − + None S�stagg, Bstagg
�1�

+ + − E1, E2; Bstagg
�1� None

− − + Bstagg
�1� None

� � − ? ?

− − − ? ?

� � � �� � � �

FIG. 3. �Color online� Top: period 4 translational symmetry
breaking when �11

� , �22
� �0, and �12

� �0, drawn in the 1D chain
picture. The bond energy pattern is given by Eqs. �70� and �71� and
the chirality pattern by Eq. �72�. Thicker lines represent stronger
bond; “+” and “−” symbols of varying boldness schematize the
scalar chirality associated with sites �or equivalently with site-
centered loops�; and arrows on the links show the bond currents.
Bottom: the same pattern in the two-leg triangular ladder drawing.

� � � � � � � �� � � � � � �

FIG. 4. �Color online� Top: static period-2 VBS when �11
� , �22

�

�0, and �12
� �0, drawn in the 1D chain picture. Note that the back-

ground staggered chirality is present from the outset due to the
orbital field. Bottom: the same pattern in the two-leg triangular
ladder drawing.
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all charge mode using an eight-fermion umklapp term, whose
bosonized form is2

H8 = 2v8 cos�4�
+� . �75�

Reference 2 argued that v8�0 is appropriate for the elec-
tronic case that corresponds to a spin-1/2 system with ring
exchanges on the zigzag ladder. This gives pinning condition
for the overall charge mode,

4�
+ = ��mod 2�� . �76�

Note that this pinning condition is compatible with the pin-
ning Eq. �40� due to the new four-fermion umklapp Hu aris-
ing in the presence of the orbital field, so the two umklapps
lead to similar Mott insulators.

We can consider situations where the main driving force
to produce Mott insulator is the eight-fermion umklapp while
the orbital field is a small perturbation onto the SBM phase.
Formulated entirely in the spin language, the underlying
electronic orbital fields give rise to new terms in the Hamil-
tonian of a form S�1 · �S�2�S�3� on each triangle circled in the
same direction.7–9 In the 1D chain language, this becomes a
staggered spin chirality term �−1�xS��x−1� · �S��x��S��x+1��.
Starting from the SBM theory in the absence of the field, this
gives a new residual interaction of the same form as Hu

�similar to �� in Ref. 2�. In principle, this Hu can be irrel-

evant in the SBM phase if the one Luttinger parameter g
− in
the SBM theory2 is less than 1/2, and in this case the orbital
effects will renormalize down on long length scales. On the
other hand, if this terms is relevant and pins �
−, then the
resulting phases are precisely as already considered in the
electronic language. In this simple-minded approach, all the
phases we discussed in the paper are proximate to the SBM
phase. It would be interesting to explore spin models realiz-
ing the SBM in the presence of such additional chirality
terms.2,18

The presented physics appears to be rather special to the
two-leg ladder case, but is quite interesting in the context of
such models. Perhaps the most intriguing finding is the C0S2
phase with two gapless spin modes. Note that the relevant
chirality interaction involves both chains and the system is
far from the regime of decoupled chains. Our characteriza-
tion of this state comes from the formal bosonization treat-
ment but it would be interesting to develop a simpler intui-
tive picture.
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