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In contrast to semiconductors doped with transition metal magnetic elements �e.g., Ga1−xMnxAs�, which
become ferromagnetic at temperatures below �102 K, semiconductors doped with nonmagnetic ions �e.g.,
silicon doped with phosphorous� have not shown evidence of ferromagnetism down to millikelvin tempera-
tures. This is despite the fact that for low densities the system is expected to be well modeled by the Hubbard
model, which is predicted to have a ferromagnetic ground state at T=0 on two-dimensional �2D� or three-
dimensional bipartite lattices in the limit of strong correlation near half-filling. We examine the impurity band
formed by hydrogenic centers in semiconductors at low densities, and show that it is described by a generalized
Hubbard model which has, in addition to strong electron-electron interaction and disorder, an intrinsic electron-
hole asymmetry. With the help of mean-field methods as well as exact diagonalization of clusters around half
filling, we can establish the existence of a ferromagnetic ground state, at least on the nanoscale, which is more
robust than that found in the standard Hubbard model. This ferromagnetism is most clearly seen in a regime
inaccessible to bulk systems but attainable in quantum dots and 2D heterostructures. If observed, this would be
the first experimental realization of a system exhibiting Nagaoka ferromagnetism. We present extensive nu-
merical results for small systems that demonstrate the occurrence of high-spin ground states in both periodic
and positionally disordered 2D systems. We examine how properties of real doped semiconductors, such as
positional disorder and electron-hole asymmetry, affect the ground state spin of small 2D systems, and use the
results to infer properties at longer length scales.
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I. INTRODUCTION

The utility of introducing impurities into semiconductors
can hardly be understated and technology utilizing doped
semiconductors is pervasive. One might expect from this that
the underlying physics is well understood and while this is
true for many aspects of the system there are several myster-
ies that require further study. This work looks at one of these
mysteries: the apparent absence of ferromagnetism in semi-
conductors that are doped with nonmagnetic elements, at all
dopant and carrier densities.

We consider semiconductors with shallow hydrogenic
dopants that are randomly positioned within bulk semicon-
ductor. At low dopant densities, such a system can be de-
scribed by a Hubbard-type model. The Hubbard model on a
lattice has two parameters: a hopping amplitude t and an
on-site Coulomb repulsion U �see below for details�. In the
case of half-filling �when the number of electrons is equal to
the number of impurities�, the Hubbard model can be re-
duced to a Heisenberg model1 with an exchange energy that
has the correct exponential decay and a prefactor of the cor-
rect order of magnitude2 for hydrogenic systems. Of central
importance to this work is that the Hubbard model has a
ferromagnetic �FM� ground state for certain parameter
ranges. In particular, a rigorous result of Nagaoka3 shows
that a bipartite system with a single hole away from half-
filling will have a FM ground state in the strong-correlation
limit �U� t�. A mean-field treatment4,5 corroborates this, and
predicts a ferromagnetic phase for small �but finite� devia-
tions from half-filling and large U / t �Fig. 1�. Since compen-
sated doped semiconductors are less than half-filled and have

tunable U / t �because the hopping parameter varies strongly
with dopant density�, one might expect them to show FM
behavior. However, ferromagnetism is not seen experimen-
tally in compensated semiconductors.6 One possible cause
for this is disorder, coming from the random placement of
dopants, since the FM in the Hubbard model is proven only
for lattice models. For the half-filled case, randomness in the
dopant positions is essential for understanding the
magnetism,7 and the same model works for the compensated
case6 as we discuss later. Blaming the lack of FM entirely on
disorder may be premature, however, since disorder does not
necessarily destroy FM in other systems. For example, dilute
magnetic semiconductors such as Ga1−xMnxAs, which are
even more disordered �with antisite defects and interstitials
in addition to the randomness of the dopants�, can possess
macroscopic FM up to temperatures in excess of 100 K.8,9

Moreover, in some models disorder may even enhance the
ferromagnetic transition temperature.10,11

Our study focuses exclusively on semiconductors doped
with hydrogenic donors, though is may be generalized to
apply to acceptor doped materials as well. For our system,
the Hubbard model is particularly appropriate at low densi-
ties �i.e., in the insulating phase, where carriers are bound to
a few sites and the Coulomb interaction is large compared to
the kinetic energy�. In this low density limit, each site is
treated as an effective hydrogen atom with a corresponding
effective Rydberg and Bohr radius

Ry� =
m�e4

2�2�2 aB
� = ��2/m�e2, �1�

where m� is the effective mass in the appropriate band and �
is the dielectric constant of the host material. In doped semi-
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conductors, typically ��10–20 and m� is 0.05–0.5 times the
free electron mass, so that aB

� �10–500 Å and Ry�

�1–50 meV. Since the Ry� is usually much smaller than
the band gap of the host semiconductor, the lattice lacks
low-energy electronic excitations on the energy scale of the
impurity electrons and essentially plays the role of an inert
vacuum. Realistic effects such as valley degeneracy and
mass anisotropy must be included for quantitative calcula-
tions but are not essential for the qualitative phenomena of
interest to us.12,13 We will assume that all relevant energy
scales are much smaller than the gap between the lowest and
higher orbital states on an isolated donor so that we need
only care about the 1s orbital of each dopant, which consists
of two electronic spin-degenerate states at energy denoted
E0. A hydrogenic center, like a hydrogen atom, is known to
bind up to two electrons.14 With a single electron the prob-
lem is that of atomic hydrogen �H�, and the electron is bound
with 1 Ry�. The two electron case corresponds to the H− ion,
which has a spin singlet ground state bound by
0.0555 Ry�.15–17

Within this “hydrogenic approximation,” we seek to better
understand why FM is not seen in compensated semiconduc-
tors by developing a generalized Hubbard model which is
more accurate for the doped semiconductor system. Analyz-
ing this model, we find a strong asymmetry in the magnetic
behavior of systems doped above and below half-filling; this

suggests a way that the effects of disorder may be overcome,
and FM observed, in such conventional doped semiconduc-
tors.

Throughout this paper, we refer to the phenomenon of
ferromagnetism due to kinetic �hopping� terms in the Hamil-
tonian as “Nagaoka” ferromagnetism, in recognition of Na-
gaoka’s original result, though establishing the true magnetic
character of the phase in disordered systems of the type we
address requires several further considerations. First, the
mean-field treatment of the Hubbard model on the two-
dimensional �2D� square and three-dimensional �3D� simple
cubic lattices shown in Fig. 1, especially for a disordered
structure, are meant as a guide to the physics at short length
scales. For the lattice problem, such a treatment does not
take into account the possibility of phase separation into car-
rier rich ferromagnetic and carrier poor antiferromagnetic re-
gions, as has been suggested for 2D.18 The spatial scale of
such a “polaronic” phase may be determined by terms in the
Hamiltonian left out of the simple Hubbard Hamiltonian. For
the positionally disordered systems we consider, in fact, the
precise magnetic structure will be dictated by the disorder;
nevertheless, ferromagnetism is possible if clusters on the
nanoscale show predominantly large spin ground states �as
opposed to singlets�, which can percolate at long lengths.
Since the basic microscopic mechanism for the occurrence of
such a magnetic order �at any length scale nano, meso, or
macro� is similar to the one responsible for Nagaoka’s origi-
nal result, we still refer to it as Nagaoka ferromagnetism.

We begin with a review of the Hubbard model and its
magnetic properties in Sec. II. We formulate the model
Hamiltonian for lattice and disordered systems and focus
particularly on conditions and implications of Nagaoka’s
theorem. However, the Hubbard model in its original formu-
lation neglects an important aspect of a hydrogenic center,
namely, that the doubly occupied state is much larger in spa-
tial extent than the singly occupied state. This additional
physics, which is a pure correlation effect, is not included in
the standard Hubbard model. Adding this to the Hubbard
model in Sec. III, results in a generalized Hubbard Hamil-
tonian appropriate for doped semiconductors. After motivat-
ing this model, we compute the magnetic ground state in
parameter ranges of interest. We present the results of our
model in the following two sections: Sec. IV gives results on
small systems �finite lattices, selected symmetric clusters,
and small random clusters� while Sec. V considers large sys-
tems of random impurities which are divided into smaller,
exactly solvable clusters. Finally, Sec. VI highlights our ma-
jor conclusions and discusses topics for continued work. A
short note on the work has appeared previously,19 and given
the extensive study carried out, even the current paper omits
some details; interested readers are referred to Ref. 5 for
those.

II. BACKGROUND: THE HUBBARD MODEL

This section gives a definition and overview of the Hub-
bard model originally proposed in the early 1960s �Refs.
20–23� and focus particularly on the Nagaoka’s conditions
for FM in this model. The Hubbard model combines tight-
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FIG. 1. Zero-temperature mean-field theory phase diagram of
the Hubbard model on a 10�10 square lattice �top� and 8�8�8
�512 sites� simple cubic lattice �bottom�. Doping �horizontal axis� is
defined as the number of extra electrons �above half-filling� per site.
Results from Ref. 5, in agreement with Ref. 4.
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binding hopping between nearest neighbors on a lattice with
an on-site Coulomb repulsion between electrons in a single
orbital state. Though it is one of the simplest interacting
models, its on-site correlations are believed to capture the
most important source of correlations in solids. Indeed, the
Hubbard model displays great diversity of transport and
magnetic properties, giving rise to insulating, metallic, and
superconducting phases as well as FM, antiferromagnetic
�AF�, and paramagnetic spin order. It has been used to
study a wide range of correlated systems, including Mott-
insulator oxides and chalcogenides,15,24–31 high-Tc
superconductors,32–35 hydrogenic centers in doped
semiconductors,36,37 and quantum dots.38 Such great interest
and applications have resulted in analyses of the model on
different lattices,39,40 with multiple41 and degenerate42,43

bands, and with binary alloy disorder.44 Many studies restrict
themselves to the infinite U / t limit,45,46 which can be real-
ized most effectively in optical lattices,47 but can be ap-
proached in semiconductor systems as well.

The Hamiltonian of the Hubbard model on a lattice with
Ns sites is given by

H = − t �
�i,j��

�ci�
† cj� + H.c.� + U�

i=1

Ns

ni↑ni↓, �2�

where i and j range from 1 to Ns, and the first sum is over all
distinct nearest-neighbor pairs. Operators ci�

† and ci� create
and annihilate, respectively, an electron of spin �� �↑ ,↓	 on
site i. The parameter t is the quantum mechanical hopping
amplitude between �nearest-neighbor� sites, and U is the
strength of the on-site Coulomb repulsion. We include a mi-
nus sign in front of the kinetic term so that for the familiar
example of the tight-binding model with hydrogenic wave
functions,48 t�r�=2�1+r /aB�exp�−r /aB� is positive, and re-
strict ourselves to U�0 �repulsive interaction�.

When sites are randomly positioned, a site dependence
must be added to the hopping amplitude in Eq. �2�. Specifi-
cally, tij is a function of the site separation: tij = t�
ri−rj
� and
the resulting Hamiltonian is

Hrdm = − �
i	j,�

�tijci�
† cj� + H.c.� + U�

i

ni↑ni↓ �3�

where i , j=1, . . . ,Ns. This accounts for the random position-
ing of donors found in both uncompensated and compen-
sated bulk semiconductors with 
1 electron per donor site
�in the latter case, a more rigorous treatment would addition-
ally include random on-site energies reflecting the random
fields generated by the positively charged acceptor sites�.

In the strong correlation limit U� tij and at half-filling
�i.e., one electron per site� the single particle �charge� spec-
trum has a gap, and the system is insulating �Fig. 2�a��. The
system can have low lying spin excitations and reduces to an
effective Heisenberg model.1 Away from half-filling, where
there are carriers �see Fig. 2�b��, one must use a more general
low-energy theory that includes a kinetic term called the t-J
model49,50

HtJ = − �
i	j�

tij��1 − ni�̄�ci�
† cj��1 − nj�̄� + H.c.�

+ �
i	j

JijS� i · S� j −
1

4
ninj� , �4�

which operates on the restricted Hilbert space which ex-
cludes doubly occupied sites. The AF exchange Jij =4tij

2 /U
and the spin operator S� i gives the spin on site i.

For a bipartite lattice at half-filling, the exchange directly
gives rise to an antiferromagnet. When the system is above
or below half-filling, however, the kinetic term plays a com-
peting role by favoring a ferromagnetic spin configuration.
This is so because as carriers hop from site to site they do not
disturb an underlying FM spin configuration whereas they
necessarily scramble an AF one �see Fig. 3�. This scrambling
leads to an unfavorable increase in energy and thus the pref-
erence for ferromagnetism.51,52 Relative to an AF state, a FM
system with carrier �electron or hole� density � gains kinetic
energy of order t� due to carrier delocalization and loses
magnetic energy of order is J=4t2 /U. Thus, at a fixed small
�, when U is large enough, t��J, and the system prefers a
FM configuration over the AF one because it allows carriers
to be less confined. Understanding the applicability and va-
lidity of this argument, and more generally the factors that
govern the magnetic competition found in the Hubbard
model, has led to several mathematically rigorous results.

Most striking among them is the result of Nagaoka,3

which states that in the infinite correlation limit U / t→�, the
Hubbard model on certain finite lattices of dimension d2
with periodic boundary conditions, t	0, and a single hole
�away from half-filling�, has a FM ground state �i.e., the total
spin S2, where S� =�iS� i, attains its maximal value�. This re-
sult, dubbed the Nagaoka theorem, applies to most standard
lattices, including the square, simple cubic, triangular,
kagomé, bcc, and fcc �hcp�.3,53 In the case of bipartite lat-
tices, such as the square, simple cubic, and bcc, t can be
taken positive �the physical sign in the tight binding model�
by using electron-hole symmetry of the Hubbard Hamil-

N(E)
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Upper band (partially full)

Lower band (full)

N(E)
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E

Upper band (empty)

Lower band (full)
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FIG. 2. �Color online� �a� Schematic showing a system at half-
filling and �b� slightly above half-filling �b�. At half-filling the lower
impurity band is completely full and there is a gap to charge exci-
tations. Above half-filling there are electrons present in the upper
�unfilled� band that can act as carriers if they occupy extended
states �as they do in a lattice�. Note also that each band’s density of
states N�E� is not actually semicircular but drawn this way for
convenience.
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tonian. Along with the rigorous proofs in Nagaoka’s and
Thouless’ work, simpler and more modern mathematical
proofs are given by Tian54 and Tasaki.55

Though the stability of the Nagaoka state has been studied
extensively and is seen to exist in the Hubbard model, such
ferromagnetism has not been observed experimentally. In
many Mott-insulator oxides and chalcogenide systems this
may be explained by an insufficient U / t to allow for ferro-
magnetism �and finding a naturally occurring material with
large enough U / t seems unlikely�. However, in doped semi-
conductors at low dopant densities, U / t is tunable over sev-
eral orders of magnitude due to the exponential dependence
of the hopping t on the dopant spacing �e.g., t�r��exp�
−r /aB� in the tight-binding model�. This versatility makes
doped semiconductors a promising candidate for Nagaoka
ferromagnetism, as it allows U / t to become large �
�100–1000�, achieving for all practical purposes the limit
U / t→� required by Nagaoka’s theorem. Despite this, the
absence of ferromagnetism in experiments on a variety of
doped semiconductors, both uncompensated13,56–59 and
compensated,6 is quite clear. In these experiments, the near-
est neighbor coupling, though distributed broadly, had a me-
dian value of 1–10 K, and the magnetic susceptibility was
searched for down to much lower �mK� temperatures to
probe the T=0 behavior. The most prominent distinction be-
tween the doped semiconductor and the axioms of the Na-
gaoka theorem is the presence of positional disorder, which
thus seems to interfere with ferromagnetic order.

The lack of ferromagnetism in doped semiconductors
�whether uncompensated or compensated� can be understood
within the framework of the standard Hubbard model with
positional disorder �Eqs. �3� and �4��, starting with the half-

filled �uncompensated� case. At low densities, U� tij, Bhatt
and Lee7 showed, using the disordered Heisenberg model,
the low energy physics is very well captured by forming
singlets out of strongly coupled pairs of spins in a hierarchi-
cal manner, to form what has been variously dubbed a
valence-bond glass,60,61 random singlet,62 or Bhatt-Lee
phase,63,64 which is quite distinct from the long range anti-
ferromagnetic state on a bipartite lattice. In such a picture,
the holes introduced by compensating the system would tend
to get localized on one �or a few� valence bonds. Their con-
sequent inability to move long-enough distances precludes
any gain in kinetic energy that results from a spin-polarized
background hence the lack of any evidence of ferromag-
netism from experiments.6 Thus, even though doped semi-
conductors give one the ability to tune U / t over several or-
ders of magnitude, Nagaoka ferromagnetism has remained
elusive.

III. HUBBARD MODEL FOR HYDROGENIC SYSTEMS

A shortcoming of Hrdm �Eq. �3�� for hydrogenic centers,
both for the lattice and random case, is that it does not ac-
count for a fundamental property of hydrogen: the two-
electron wave function of the H− ion has much greater extent
than the one-electron wave function of the H atom. This is
reflected in the binding energy of H− being only 0.0555 Ry�,
which has been well substantiated for hydrogenic centers in
semiconductors65–67 whereas 1 Ry� is necessary to remove
the electron of H.15,16 Indeed, using that an effective Bohr
radius a� scales as 1 /�Ebinding, we find that the ratio of Bohr
radii for H− and H, aH−

� /aH
� =�1.0 /�0.0555�4, showing that

the wave function of H− is several times larger than that of
H. Variational treatments of the H− ion,16 as well as an ef-
fective pseudopotential calculation,68 determine the ratio to
be in the range 2–4. This large ratio is consistent with the
observation of charge-transfer excitations in the far infrared
spectra of donor pairs.12,69 This affects the Hubbard descrip-
tion of the system because it is much easier for an electron
on a doubly occupied hydrogenic center to hop away than it
is for the electron on a singly occupied site to make a similar
hop. This implies that the hopping amplitude seen by an
itinerant electron, hopping around in a background of singly
occupied sites, is larger than that seen by a hole in a similar
background. The fact that the ratio of the two radii is sub-
stantial �2–4�, and the hopping amplitude is exponentially
dependent on the radius �in the low-density regime�, suggest
that a doped semiconductor above half-filling is in a quite
different regime of parameters than the conventional com-
pensated semiconductor �a system below half-filling�. Such a
regime, while not obtainable in bulk doped semiconductors,
should be realizable in semiconductor heterostructures, as
well as quantum dots. In Hubbard model parlance, near half-
filling the hopping amplitude for an electron is much larger
than for a hole. At the very least, the different radii of the
doubly vs singly occupied sites suggest that we modify lat-
tice Hubbard Hamiltonian �2� to become

H� = − �
�i,j��

�tij�ni,nj�ci�
† cj� + H.c.� + U�

i

ni↑ni↓, �5�

where ni is the total occupation of site i and the hopping now
has occupation dependence given by the piecewise function

(a) (b)

(c)

FIG. 3. �Color online� Diagrams showing why the kinetic term
favors a ferromagnetic state: in �a� the down spin on the single
doubly occupied site can move freely without disturbing the under-
lying FM background. However, if the background is AF as in �b�,
motion of electrons on doubly occupied sites scramble the Neel
order. Diagram �c� shows the result of the doubly occupied site in
�b� moving two sites to the right.
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�the hopping corresponding to the different amplitudes t and
t̃ is shown pictorially on the right�

t�ni,nj� = � t̃ nj = 1,ni = 2

t otherwise

,

t̃

t

t

�6�

where t̃ is larger �and as we will see, can be much larger�
than t.19 In Eq. �6�, there is also the dependence of t̃ and t on
i and j, which we have omitted to show explicitly. This
model enhances the hopping from a doubly occupied site to
an already singly occupied site �which will become doubly
occupied after the hop�. One may question why the hopping
from a doubly occupied site to an empty site �the middle
picture of Eq. �6�� is not also enhanced. The primary reason
is that the present formulation is the only way, within the
single-band Hubbard model, to preserve the asymptotic spa-
tial dependence of the effective exchange interaction: J�r�
�e−2r/aB

�

�recall J� t2 /U and t�e−r/aB
�

�. This is of essential
importance since this relation for J has been shown to be
asymptotically exact.70 In the disordered case, Eq. �5� be-
comes

Hrdm
� = − �

i,j,�
�tij�ni,nj�ci�

† cj� + H.c.� + U�
i

ni↑ni↓, �7�

where tij�ni ,nj�= t̃i j when nj =1 and ni=2 and otherwise
tij�ni ,nj�= tij. Note that Eq. �5� is in general not electron-hole
symmetric �Only when t̃= t and the system is on a bipartite
lattice is electron-hole symmetry preserved.71�. Hirsch has
investigated a similar Hubbard model with occupation-
dependent hopping but in a different regime with its focus on
superconducting pairing.72

This asymmetry is clearly seen in the low-energy theories,
where above half-filling Eq. �5� reduces to a t̃-J model

HtJ = − �
�ij��

t̃i j��1 − ni�̄�ci�
† cj��1 − nj�̄� + H.c.�

+ �
�ij�

JijS� i · S� j −
1

4
ninj� �8�

whereas below half-filling the effective low-energy model is
the t-J model �t̃ replaced by t�.

It is important to remember that the electron creation and
annihilation operators in these models act on a system with a
fixed number and arrangement of sites. In a semiconductor,
each site corresponds to a dopant atom and when we speak
of adding electrons or holes to the system we mean addition
or subtraction of carriers while leaving the underlying dop-
ant configuration fixed. Thus, the electron-hole asymmetry
here is not an asymmetry between n-type and p-type semi-
conductors but an asymmetry between a doped semiconduc-
tor which has more electrons than dopant atoms and one
which has less electrons dopant atoms.

One way to view the manifest electron-hole asymmetry of
models in Eqs. �5� and �7� is that systems above half-filling
are effectively less random, and hold greater hope for the
Nagaoka phenomenon to take place. This reasoning follows

from electrons having more extended wave functions than
holes and the concomitant existence of two distinct length
scales. Because the electron wave functions average over
much more of the disorder, systems with a small percentage
of extra electrons experience a greatly reduced effect of the
positional disorder when compared with corresponding hole-
doped �i.e., compensated� systems and so behave more like
the uniform lattice. The large difference of length scales be-
tween the carrier �hole� wave function’s Bohr radius and the
d-electron wave function of a Mn dopant in GaAs is crucial
for the ferromagnetism in the diluted magnetic semiconduc-
tor Ga1−xMnxAs.

To find values of U / t and t̃ / t appropriate for doped semi-
conductors, upper and lower impurity bands were calculated
for donors placed on a simple cubic lattice for a spin-
polarized configuration. We follow Bhatt and Rice,17 and use
pseudopotentials and a sphericalized Wigner-Seitz method
on a �cubic� superlattice. Details of the band calculation can
be found elsewhere.17,68 We extract the dependence of t and
t̃ on the impurity density �or equivalently, on the lattice con-
stant� by fitting the calculated bandwidths to a tight-binding
model using the relationship 2zt=W, where t is the hopping
parameter, W is the bandwidth, and z is the lattice coordina-
tion number. The upper band is used to give t̃ and the lower
band t. U is given by the gap between the bands at zero
density, which we find to be approximately 1 Ry�. Figure 4
shows the dependence of the dimensionless Hubbard param-
eter ratios on the superlattice spacing �lower axis� and impu-
rity density �upper axis�. It shows clearly that the range of
U / t and t̃ / t can be varied substantially in the doped semi-
conductors. The large span of U / t has its origin in the expo-
nential dependence of the hopping parameter on the atomic
spacing, and the variation in t̃ / t from the relatively large size
of the two-electron wave function appearing as a factor in
this exponential.

In the results that follow, we either use the exact param-
eter ratios found here or consider the effect of varying the
parameter ratios within the ranges U / t= �5,100� and t̃ / t
= �1,10�, which are conservative when compared to the
physically attainable ranges.
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3 4 5 6 7 8 9

2.0 1.0 0.5 0.2 0.1

R/aB (lattice spacing)

ρ/ρ3D
c

U
t
t̃
t

FIG. 4. Variation in ratios U / t and t̃ / t with the dopant spacing
�related to the dopant density � by �= 1

R3 so the metal-insulator
occurs at Rc /aB=4�.
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IV. RESULTS FOR GROUND STATE SPIN
IN FINITE SYSTEMS

In this section we present the results of diagonalizing the
Hubbard Hamiltonians �5� and �7� for finite systems. The
results and discussion are divided into units based on the
amount of structure present in the system, and what types of
boundary conditions were used. In Sec. IV A–IV C, the ki-
netic �hopping� amplitudes �t , t̃� are simply the treated as
parameters, whereas in Sec. IV D, which studies ensembles
of random clusters, they are taken to be specific functions of
the distances between sites. Section IV A considers systems
with finite lattice structure and periodic boundary conditions.
Only nearest-neighbor links are kept in the model �see Eq.
�5�� so that there is a single pair �t , t̃� of kinetic parameters.
We refer to a lattice as being bipartite or nonbipartite if the
corresponding Hubbard model with only nearest-neighbor
hopping is, respectively, bipartite or not. Section IV B pre-
sents results from clusters with open boundary conditions
and selected structures for which all nearest neighbors are
equidistant �so there is again a single pair of kinetic param-
eters�. We use the term cluster to refer to a finite system
possessing less symmetry than a finite lattice. In Sec. IV C,
clusters constructed to have only two or three pairs of kinetic
parameters are considered with open boundary conditions.
Finally, in Sec. IV D we analyze ensembles of random clus-
ters. We generate these ensembles with a fixed density and
exact diagonalization results of the individual clusters are
averaged to produce our final results.

A. Finite lattices

We have solved the nearest-neighbor Hubbard and corre-
sponding t̃-J models on finite square �8, 10, and 16 sites�,
honeycomb �6 and 10 sites�, and triangular �7 and 9 sites�
lattices. Choice of the unit cell in the former two bipartite
structures allows a classical Neel state spin assignment,
which is important since a finite bipartite lattice that is mag-
netically frustrated due to boundary conditions may have an
exaggerated preference for FM.

Each finite lattice is given periodic boundary conditions
and doped with up to two electrons or holes away from half-
filling. Denoting the number of sites by Ns and electrons by
Ne, this means that Ns−2
Ne
Ns+2. The Hubbard model
depends on the two dimensionless ratios U / t and t̃ / t,
whereas the t̃-J model depends only on t̃ /J= 1

4 �t̃ / t��U / t�.
Thus, the value of t̃ /J marking the onset of the Nagaoka state
defines a straight line in log U / t vs log t̃ / t space with slope
−1. We consider each lattice in turn below.

1. Square lattice

Figure 5 shows the ground-state spin phase diagram for
the 8-, 10-, and 16-site square lattices doped with one elec-
tron, up to t̃ / t=5. One sees that an increase in t̃ / t causes the
region where the ground state attains its maximum spin to
increase. This confirms that a FM ground state is more likely
when the carriers �an extra electron in this case� have greater
hopping amplitude. Up to t̃ / t=5, the minimal U / t needed for
a fully polarized ground state falls roughly as a power law

with t̃ / t. The t̃-J model gives a fairly accurate fit to the
Hubbard data �predicting a power law with exponent −1,
shown by the lines in Fig. 5�. The fit is especially good at
low t̃ / t, which coincides with larger U / t values and thus is
where we expect the t̃-J model to be most accurate.

A comparison of these electron-doped systems with cor-
responding hole-doped systems reveals a pronounced
electron-hole asymmetry. This is expected from the model,
since for t̃� t the Hamiltonian is not electron-hole symmet-
ric: electrons hop with t̃ whereas holes hop with amplitude t.
Figure 6 compares the Hubbard model with Ne=Ns�1 �one
extra electron or one hole� on finite square lattices. In the
larger 10- and 16-site lattices with one hole we see very little
dependence of the ground-state spin on t̃ / t, as would be na-
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FIG. 5. �Color online� Ground-state spin diagram resulting from
the exact diagonalization of Eq. �5� on 8-,10-, and 16-site square
lattices �periodic b.c.� with 9, 11, and 17 electrons respectively.
Hubbard model results are displayed as open symbols. Lines show
the result of the corresponding t̃-J model as described in the text.
Smax denotes the region of largest allowed spin �actual value de-
pends on the lattice size� and Slow marks the region of unsaturated
�usually minimal� ground state spin.
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FIG. 6. �Color online� Ground-state spin diagram for the 8-, 10-,
and 16-site square lattices showing the asymmetry between doping
with a single hole �dashed line� and a single electron �solid line�.
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ively expected. It is clear that the asymmetry between the
electron- and hole-doped results originates from the elec-
tronic states having greater radius than the hole states since
for equal radii �t̃= t� the square lattice is bipartite and the
problem is electron-hole symmetric. Figure 6 is the first of
many cases where high-spin ground states are attained at
much lower U / t in the electron-doped case than in the hole-
doped case.

2. Honeycomb lattice

The honeycomb lattice is bipartite and thus the Hubbard
model is electron-hole symmetric on it for t̃= t. The mean-
field ground-state phase diagram of the t̃= t Hubbard model
for hole-doped systems shows the existence and stability of
the Nagaoka phase at large U / t near half-filling.73 The mag-
netic ground-state diagrams for Hamiltonian �5� on 6- and
10-site honeycomb lattices with one electron or hole away
from half-filling �Ne=Ns�1� are shown in Figs. 7 and 8,
respectively.

We find similar qualitative behavior to that of the square
lattices: for systems with Ne=Ns+1, increasing t̃ / t expands
the region of phase space for which the spin is maximal.
Again, the t̃-J model result agrees well with the Hubbard
results for low t̃ / t. In the case of single hole-doping �Ne

=Ns−1�, there is little dependence on t̃ / t in the 10-site lattice
whereas there is the opposite t̃ / t dependence in the smaller
6-site lattice, similar to the case of the 8-site square lattice.

3. Triangular lattice

The triangular lattice is a Bravais lattice of particular in-
terest since it magnetically frustrated �not bipartite�. A recent
study of the triangular lattice74 using a many-body expansion
technique finds that, at large U / t, a 120°-ordered AF phase is
stable at and below half-filling, and becomes unstable above
half-filling. In past studies of finite clusters, it was likewise
found that at half-filling antiferromagnetic states are optimal
in nonbipartite systems �due to the quantum fluctuations aris-
ing from what would be frustrated bonds in a static
picture�.75
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FIG. 7. �Color online� Ground-state spin diagram from the exact
diagonalization of 6- and 10-site honeycomb lattices doped with a
single electron �i.e., with seven and 11 electrons, respectively�
showing the boundary of the region where there is a complete spin
polarization. In the 6-site lattice the transition is from S=5 /2 to S
=3 /2 whereas in the 10-site lattice the transition is more abrupt,
changing from S=9 /2 to S=1 /2 within the resolution used.
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FIG. 8. �Color online� Exact diagonalization results showing the
boundary of the fully spin-polarized region on the 6- and 10-site
honeycomb lattices doped with a single hole �i.e., with five and nine
electrons, respectively�. In the 10-site case, the spin on the unsatur-
ated side of the transition is S= 1

2 except for a region of S= 5
2 found

at intermediate U / t for t̃ / t�10; on the 6-site lattice the unsaturated
state has uniform spin 3

2 . Note that there is much less variation with
respect to t̃ / t when compared with Fig. 7.
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FIG. 9. �Color online� Ground-state spin diagram from the exact
diagonalization of 7- and 9-site triangular lattices when doped with
a single electron, showing the region of saturated spin. On the 9-site
lattice, the unsaturated region is predominantly S=0 except for a
sliver of S=2 close to the transition. There is no transition on the
Hubbard 7-site lattice, which has a maximally polarized ground
state �S=3� for the entire plotted area. In the corresponding t-J
model, however, the 7-site lattice has a transition from S=3 to S
=2 near t̃ /J�3.0 �shown by the dotted line�.
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With a single extra electron �Ne=Ns+1�, the Hubbard
model on 7- and 9-site lattices displays saturated ferromag-
netism very strongly �on the 9-site lattice with t̃= t, U / t
�15 results in a spin-polarized ground state�. Figure 9 shows
our results for the Hubbard model on finite triangular lattices
with one extra electron. Classically, the observed dominance
of ferromagnetism could be linked to a suppression of com-
peting AF configurations �frustrated on the triangular lattice�.
One must be careful, however, when applying this reasoning
to quantum models, as studies have shown that antiferromag-
netism is enhanced on the triangular lattice with a single
hole76 due to the subtle interplay of quantum phases. The
regnancy of ferromagnetism may also be due to the large
number of tight loops in the lattice. Pastor et al.77 have re-
marked that the presence of triangular or square loops coin-
cides with ferromagnetism in finite clusters and we reach
similar findings in our study of clusters below �see Secs.
IV B and IV C�. The strong FM we see here suggests that
this connection extends to lattices as well.

The t̃-J data for the triangular lattice fits the Hubbard data
less well than in the previous bipartite lattices. For the 9-site
triangular lattice the t̃-J result underestimates the region of
saturated spin, and in the case of the 7-site triangular lattice,
the Hubbard model does not even transition to the unsatur-
ated state predicted by the t̃-J model. The discrepancy is not
surprising, given the low U / t values at which the transitions
occur.

Since the triangular lattice problem is not bipartite, there
can be �and is� electron-hole asymmetry even when t̃= t. Fig-
ure 10 shows the ground state phase diagram for single hole-
doped 7- and 9-site triangular lattices �Ne=Ns−1�. These
plots are qualitatively different from those of the hole-doped
square and honeycomb lattices: the high-spin region is un-
saturated and lies at lower U / t than a minimal-spin region

which dominates at large U / t. As t̃ / t is increased, the par-
tially polarized region expands up to larger U / t values. The
mechanism for this may be related to the “kinetic antiferro-
magnetism” studied by Haerter and Shastry,76 which explains
how the phase dependence of a single hole’s motion en-
hances antiferromagnetism.

B. Selected symmetric clusters

Next we consider a select group of two-dimensional Hub-
bard clusters that, such as the finite lattices, have only a
single pair of hopping amplitudes, t and t̃. These clusters are
given open boundary conditions, which corresponds to a
small number of sites �dopants or quantum dots� positioned
in a plane such that every pair of nearest neighbors is equi-
distant. We calculate the phase diagram for 1
 t̃ / t
10 and
5	U / t	100 when doped with one or two electrons away
from half-filling �in either direction�. Figure 11 summarizes
the results, giving each cluster’s geometric structure and its
maximal spin as a function of doping. We see that in most
cases, the highest spin is attained when doped with a single
electron, following our expectation that a low density of ex-
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FIG. 10. �Color online� Ground-state spin diagram for the 7- and
9-site triangular lattices doped with a single hole. Nowhere is the
ground-state spin saturated. Instead, there is a region of minimal
spin �S=0� at large U / t which is encroached upon by a region of
partial spin polarization �S=2 and S=3 for 7- and 9-sites, respec-
tively� as t̃ / t increases.
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2
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3
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2
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7 1 1
2

1
2 1

8 1 3
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5
2 0

9 2 3
2

5
2 1

FIG. 11. Summary of clusters that have a single pair of hopping
parameters. Smax

x is the maximum spin obtained in the window t̃ / t
� �1,10�, U / t� �5,100� when the system has one or two holes or
electrons away from half-filling �x=1h ,2h ,1e ,2e, respectively�.
Note the correspondence of high-spin states with larger numbers of
tight loops.
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tra electrons will favor spin polarization. Clusters 1–4, 6, and
7, attain their maximal ground state spin when doped with
one electron. In contrast, clusters 5 and 9 have greater spin
polarization below half-filling when doped with two holes.
For a detailed discussion of the results, the reader is referred
to Ref. 5.

C. Distorted clusters

More complex 2D clusters are obtained by allowing more
than one pair of hopping parameters �i.e., hopping is allowed
between sites of different separation distances�. Here we

consider clusters with two and three pairs of distinct hopping
parameters ��ti , t̃i� : i� �1,2 ,3�	. Some of these can be
viewed as geometric perturbations of clusters in the last sec-
tion while many are new geometries not possible under the
restriction of equidistant nearest neighbors. For a select
group of clusters with two pairs of hopping parameters, we
consider the ground state spin as a function of t2 / t1 and U / t1

at a uniform fixed t̃i / ti, i=1,2. Our analysis is done over the
substantial region of phase space: t2 / t1� �1,10�, t1 /U
� �0.01,0.5�. �Note that this extends to U / t	10, outside the
physical range found earlier, but in the direction that favors
non-ferromagnetic behavior.� The results are summarized in
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max S2e
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1 1
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22 - - 4 -
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2

FIG. 12. Summary of maximum ground-state spins for clusters that have two pairs of kinetic parameters �two distinct nearest-neighbor
distances�. Solid lines represent hopping amplitude t1 and dashed lines t2. Cluster geometries are listed by size, and maximal spin is given
for dopings of −2, −1,1, and 2 electrons away from half-filling. Each cluster is identified by a number, #cl, and the maximum is taken over
the region t2 / t1� �1,10�, t1 /U� �0.01,0.5� for t̃i / ti uniformly set=1, 5, and 10.
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Fig. 12, which show, for each of 23 different geometries, the
maximal spin achieved with a doping of up to two electrons
or holes �the maximum is taken over the region of phase
space stated above�. Again we find that most clusters attain
their highest spin when doped with 1e− �clusters 1, 2, 4, 7,
10, 12, 14, 15, 18, 20, and 22�. Some of the larger clusters

also have high spins when doped with two electrons �clusters
11, 18, 20, and 23�, since their density is still low enough to
favor FM. Although in most cases the maximal spin is
greater for electron doping than hole doping, there are some
which attain high spins even when hole doped �e.g., clusters
8, 9, 11, and 15�.
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FIG. 13. Ground-state spin diagrams for selected clusters from Fig. 12.

ERIK NIELSEN AND R. N. BHATT PHYSICAL REVIEW B 82, 195117 �2010�

195117-10



We focus on the ground-state spin behavior of three clus-
ters from Figs. 12: 11, 12, and 20. Ground state phase dia-
grams showing the spin for these clusters are in the Fig. 13.
Each row of the table shows the geometry and two ground-
state phase diagrams of a cluster with a fixed number of sites
Ns and electrons Ne. The two diagrams correspond to t̃ / t=1
and 5, as indicated by the column headings. The charge of
the cluster Q=Ns−Ne �the negative of its doping relative to
half-filling� is given in the third column. For each selected
cluster, phase diagrams are only shown for Q= �1. Q=+1
corresponds to hole doping, Q=−1 to electron doping. The
hole-doped case is not shown for cluster 12 since it is trivial
�S=0.5 everywhere�. The transition lines in these plots are
found by finding the ground state spin on a grid in parameter
space, then fitting the transitions between grid points with
smooth curves. Detailed phase diagrams of all nontrivial
cases are given Ref. 5.

Several conclusions may be drawn from this data. First,
there are many instances of high-spin ground states among
these clusters, many of which can be thought of as a weak
coupling �t2� between triangles and pairs with a stronger in-
ternal coupling �t1�. In a real system, where the broad distri-
bution of intersite distances due to positional randomness
creates exponentially strong and weak bonds, these results
give some hope that the spin polarization seen in the isolated
triangle, for example, will survive in the presence of pertur-
bation due to other sites and that this interaction may even
lead to spin polarization on longer length scales. Second, it is
found almost universally that increasing t̃ / t leads to greater
spin polarization in electron-doped clusters, just as in the
finite lattices �Sec. IV A� and single-hopping parameter clus-
ters �Sec. IV B�. In electron-doped clusters, we continue to
see a correlation between the number of triangular loops in a
cluster and that cluster’s maximal spin. For instance, if we
compare clusters 5 and 7 with clusters 14 and 15 of Fig. 12,
we find the latter are much more magnetic. In hole-doped
systems we generally find lower spin values, and often there
is a high-spin region at low U / t1. This inverted relationship
in clusters below half-filling was also found in Sec. IV B and
on the 8-site square lattice. Lastly, we note that although
there is potential for high-spin states, there are many clusters
that have large regions of minimal ground state spin. We find
overall that the Nagaoka-type ferromagnetic effect we ob-
serve is very sensitive to geometry, though the sensitivity
decreases at large t̃ / t.

D. Randomly distributed finite clusters of fixed density

In Secs. IV B and IV C, we solved generalized Hubbard
and t̃-J models on a variety of clusters that were constructed
to have some spatial symmetries and at most two pairs of
hopping parameters �ti , t̃i�. This section and the next give an
analysis of clusters with completely random structures. Also,
instead of considering just a range of t̃ / t values, to be repre-
sentative of actual doped semiconductors we use the tight-
binding parameters given by a fit to the band calculation
outlined at the end of Sec. III. In d dimensions, clusters with
Ns sites and fixed density � are generated by randomly plac-
ing Ns sites within a d-dimensional hypercube of side length

L such that ��aB
� �−d=Ns /Ld. We fix U=1 Ry� and determine

the hopping parameters by setting tij = t�
r�i−r� j
� and t̃i j = t̃�
r�i

−r� j
�. Functions t�r� and t̃�r� are given by the lattice calcu-
lation described earlier �see Fig. 4� and together take into
account the larger extent of the D− state.

Given a fixed cluster size and density, we exactly solve
many �between 104 and 106� clusters. Results are calculated
for clusters in two and three dimensions with sizes from Ns

=4–7 and for densities �= 1
1600, 1

160 , and 3
160 in 2D, �corre-

sponding to �0.005, 0.05, and 0.15 times the Mott metal-
insulator transition density� and �= 1

6400, 1
640 , and 3

640 in 3D
�corresponding to 0.01, 0.1, and 0.3 times the Mott density�.
We present results for systems in 2D and 3D systems with
open boundary conditions here �results for periodic boundary
conditions in both 2D and 3D are given in Ref. 5, and are
qualitatively similar�. In an actual macroscopic sample, clus-
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FIG. 14. �Color online� Ground-state average spin of 2D ran-
dom clusters with fixed size and density, and open boundary con-
ditions, as a function of electron-doping �negative=hole doping�.
The lower half of plots are the result of setting t̃i j = tij, determined
by the bandwidth of the lower Hubbard band. The upper half use t̃i j

determined by the bandwidth of the upper Hubbard �D−� band.
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ters will be connected to other clusters of different local den-
sities. Thus, the physical situation will be intermediate be-
tween the cases of open �where each cluster is surrounded by
no others� and periodic �where each cluster is effectively
surrounded by others of the same density� boundary condi-
tions. The latter is closer to the actual case at high densities,
the former at low density.

We summarize the data by plotting the average spin in
Figs. 14 and 16 as a function of doping �zero
doping=half-filled� in two and three dimensions, respec-
tively. These figures contrast the method of constructing
clusters described above �with t̃�r� and t�r�� with the case
when both t̃i j and tij are equal, given by t�
r�i−r� j
� �i.e., when
the doubly occupied state is no larger than the singly occu-
pied state�. We also examine a second measure of magnetic
behavior: the percentage of clusters in a given system with

above minimal spin. We define any cluster with greater than
minimal ground state spin �equivalently, spin 1 since the
minimal spin is either 0 or 1/2� as a magnetic cluster, and
plot the percentage of magnetic clusters vs. doping in Figs.
15 and 17 for 2D and 3D systems �with open boundary con-
ditions�, respectively.

Figures 14–17 reveal several trends which are analyzed in
detail in Ref. 5. We focus on the most striking of these,
which is the contrast between electron-doped and hole-doped
clusters. Compared to the case where both tij and t̃i j are com-
puted from the lower impurity band �t̃= t�, when t̃i j is instead
computed from the upper impurity band, the clusters with
one extra electron have a spin distribution shifted to substan-
tially higher spin values than those with one less electron.
This effect is expected, since in our model an extra electron
hops with amplitudes t̃i j while an extra hole hops with am-
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FIG. 15. �Color online� Percentage of magnetic clusters �spin 1
or greater� in an ensemble of 2D random clusters with fixed size
and density, and open boundary conditions, as a function of
electron-doping �negative=hole doping�. The lower half of plots are
the result of setting t̃i j = tij, determined by the bandwidth of the
lower Hubbard band. The upper half use t̃i j determined by the band-
width of the upper Hubbard �D−� band.
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FIG. 16. �Color online� Ground-state average spin of 3D ran-
dom clusters with fixed size and density, and open boundary con-
ditions, as a function of electron-doping �negative=hole-doping�.
The lower half of plots are the result of setting t̃i j = tij, determined
by the bandwidth of the lower Hubbard band. The upper half use t̃i j

determined by the bandwidth of the upper Hubbard �D−� band.
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plitudes tij. Recall that the motivation for the model comes
from the special properties of the hydrogen atom which re-
sult in mobile electrons having spatially larger wave func-
tions than mobile holes. These cluster results show that even
in strongly disordered systems a Nagaoka-type ferromag-
netism can emerge at least on the nanoscale and one of the
ideal conditions for this FM is an electron-doped system.
Compared to those below half-filling, systems above half-
filling also hold greater promise for spin polarization on
longer length scales, since this would most likely arise from
many aligned high-spin clusters. Additionally, we find the
effect is most pronounced at the intermediate density in both
2D and 3D. This suggests that there is an optimal density for
seeing Nagaoka ferromagnetism in these electron-doped re-
gimes which is an order of magnitude lower than the Mott
density.

V. CLUSTER ANALYSIS OF LARGE SYSTEMS

We next turn to the possibility of ferromagnetism in mac-
roscopic samples. Our results on clusters show that high spin
states �nanoscale ferromagnetism� are most abundant away
from the half-filled case with electron doping. Such a situa-
tion with electron density larger than dopant density cannot
be achieved in bulk systems; however it is possible to realize
it in 2D heterostructures. Consequently, we limit our study of
large samples to 2D, though similar results would be ex-
pected for 3D systems with finite thickness. Our strategy
here is to consider a large system of Poisson-distributed ran-
dom sites and divide it into clusters that can be approxi-
mately treated as independent as far as the Hubbard part of
the Hamiltonian is concerned. Choice of the number of car-
riers in each cluster involves long-range Coulomb forces and
is treated in a classical approximation described later. We
solve the clusters individually using t̃i j and tij parameters
from the band calculation, and then analyze the resulting
distribution of their ground state spins. The analysis of Sec.
IV D characterized random clusters with a fixed density; here
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FIG. 17. �Color online� Percentage of magnetic clusters �spin 1
or greater� in an ensemble of 3D random clusters with fixed size
and density, and open boundary conditions, as a function of
electron-doping �negative=hole doping�. The lower half of plots are
the result of setting t̃i j = tij, determined by the bandwidth of the
lower Hubbard band. The upper half use t̃i j determined by the band-
width of the upper Hubbard �D−� band.

(b)

(a)

FIG. 18. �Color online� Example of decomposing a 100-site
system into clusters. Part �a� uses the nearest-neighbor method and
part �b� the threshold method �both described in the text�. Lines
�blue online� link points in the same clusters �not all hopping links
between the points are shown�.
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the average density of the large system is fixed while the
local density of individual clusters varies according to the
Poisson distribution.

Decomposition into clusters

We begin with a set of Nsys randomly positioned points
with some average density �̄ where Nsys is typically
10 000–1 000 000. We then divide the points into approxi-
mately isolated clusters, solve the cluster generalized Hub-
bard Hamiltonian exactly, and consider their ground state
statistics. We choose to divide the large set of points into
clusters using a simple algorithm that proceeds as follows:
�1� initially each point is a single cluster and all points are
“unused.” �2� Choose any unused point p and find its nearest
neighbor q. �3� Merge the cluster containing p with the clus-
ter containing q. �4� Set point p to “used” status. �5� Repeat
at step 2 until no unused points remain.

In this way we form the smallest clusters such that each
point belongs to the same cluster as its nearest neighbor �i.e.,
the point most strongly coupled to it�. Note also that the
minimum cluster size is 2. The advantage of this “nearest-
neighbor” method is that it always keeps nearest-neighbor
points in the same cluster, which is desirable from a pertur-
bation theory standpoint. It does not, however, guarantee that
the clusters include all the hopping amplitudes of the original
system above some threshold. We show in Fig. 18�a� the
decomposition of a 2D system into clusters using the algo-
rithm. A weakness of the nearest neighbor method is that it
will form separate clusters of strongly coupled pairs even
when they are nearby other clusters and it is clearly seen
from Fig. 18�a� that some of the neglected bonds are stronger
than other bonds that are kept. On the same set of random
sites, the result of an alternate algorithm that keeps all hop-
ping amplitudes greater than a certain threshold �chosen so
that the size of the clusters is not too large� is shown in Fig.
18�b�. This technique removes the problem of isolating
strongly coupled pairs/triangles from other nearby sites but it
has the disadvantage of being very sensitive to the threshold,
adding another degree of arbitrariness. We find that both
methods give reasonable decompositions into clusters and

the choice of algorithm not unique. In this work, we use the
nearest-neighbor method outlined above, and leave a more
detailed assessment and comparison of clustering methods
for later work.

We diagonalize all the cluster Hamiltonians individually
and compile the resulting data to arrive at the distribution of
spin values from the ensemble of clusters �obtained from
many different large system realizations�. In this case, there
is substantial fluctuation in the local density of clusters. Even
the mean local density for clusters of different size is differ-
ent; only the average density of the entire system is fixed.
The results, however, show the same general trends as the
clusters with fixed local density described earlier. For a di-
rect comparison see Ref. 5.

We also find that there is a weak correlation between local
density ��loc� and average ground state spin �S�. We observe
quite generally that 2D clusters with one extra electron �Ne
=Ns+1� have a peak in �S� near �loc�0.015 while those with
one hole �Ne=Ns−1� have relatively smaller values of �S�
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FIG. 19. �Color online� Average ground state spin vs. local den-
sity of 2D 5-site clusters. The pertinent range of local densities is
divided into bins, and bar heights indicate the average ground state
spin of the 5-site clusters whose density falls within the correspond-
ing density bin. This data is from �̄= 1

160 clusters but the behavior is
typical �see text�.
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reference value Sref, specified in the key, as a function of filling
�1.0=half-filling�. Plots correspond to densities �= 1
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that are less sensitive to changes in �loc. Figure 19 shows this
typical behavior for 5-site clusters with �̄= 1

160 and Ne
=Ns�1. Similar qualitative behavior is found for other clus-
ters sizes 4
Ns
7 from systems with �̄= 1

1600 , 3
160 , though

�S� tends to be higher for larger size clusters. The location of
the peak at �loc�0.015 is important to our consideration of
different large-system densities �̄, since we find that clusters
with �loc / �̄� �2,4� are most prevalent. In the case �̄= 1

160
=0.00625, �loc=0.015 corresponds to �loc / �̄=2.4, whereas
for �̄= 1

1600 =0.000625 and �̄= 3
160 =0.01875 the correspond-

ing values of �loc / �̄ are 24 and 0.8, respectively. This sug-
gests that the �̄= 1

160 case will show the greatest overall mag-
netism, an inference that was seen in the fixed density
clusters of Sec. IV D.

We next consider the spin distribution of a large system
with a fixed number of sites Nsys and doping �fixed total
electron number Ne

tot�. The system is partitioned into clusters
of size Ns=2–7, which are treated as being independent. It
only remains to determine how the electrons will be distrib-
uted among the clusters—after the number of electrons on
each cluster is known, the clusters can be independently
solved and their ground-state spin tabulated. We calculate the
electron distribution using a method which takes into ac-
count Coulomb interactions via a classical approximation. As
stated before, we consider only 2D systems since our interest
is primarily in 2D heterostructures. Including Coulomb inter-
actions is particularly relevant for low-density insulating sys-
tems where the interactions between charged centers �or
clusters� are not screened effectively, and have a slow �1 /r�
fall-off as shown by Efros and Shklovskii �ES�.78

We begin by solving each cluster for range of total elec-
trons near half-filling and then determine the minimum en-
ergy electron distribution by solving a generalized electron
glass problem analogous to the ES model for individual
sites78–81 but involving different charge states of each clus-
ter. Such a treatment finds the ground state of the many-body
system, accounting for the differences in ground-state energy
of the clusters and the Coulomb energy between charged
clusters. Details are provided in Ref. 5.

Once we have determined the distribution of electrons
among the many clusters of the large system, we compute

the percentage of clusters with spin greater than a given ref-
erence spin Sref. This quantity is averaged over many random
realizations of the large cluster system. The �ensemble-
averaged� percentage of clusters with spin Sref for Sref =

1
2 ,

1, and 3
2 is shown in Fig. 20 for our standard densities �

= 1
1600, 1

160 , and 3
160. For Sref =1, these percentages correspond

to our earlier definition of “magnetic clusters,” and Fig. 21
compares the results to the same calculation but ignoring
Coulomb interactions. We see that Coulomb interactions
slightly deplete the number of high-spin clusters, particularly
in the electron-doped case. Figure 21 also shows that even in
the presence of long-range Coulomb interactions there is a
sizable percentage of magnetic clusters at modest electron
doping. In a strictly 2D system, in order for the magnetic
clusters to percolate they must account for 50% of the sys-
tem, which is only attained at large filling factors ��1.2 in
the best case of �= 1

160�.82 In 3D, however, the percolation
threshold is much lower, so a parallel calculation in a 3D or
thick 2D system �which behaves as a 3D system on short
length scales� should yield even more promising results. As
the impurity density is increased at fixed doping the average
percentage of magnetic clusters has a nonmonotonic behav-
ior. There is an optimal impurity density �nearest to �= 1

160 in
our data� that results in an on-average maximal percentage of
magnetic clusters, just as we saw in the case of random finite
clusters of fixed density in Sec. IV D. Altogether, the pres-
ence of many high-spin clusters provides a necessary ingre-
dient for ferromagnetism on mesoscopic and possibly even
macroscopic length scales.

VI. CONCLUSIONS

We have formulated a generalized Hubbard model with
three parameters �t, t̃, and U�, appropriate for doped semi-
conductors, which has an occupation-dependent hopping
term and therefore intrinsic electron-hole asymmetry charac-
teristic of the hydrogenic center. This generalized disordered
Hubbard model is numerically solved using exact diagonal-
ization on 2D finite lattices, selected symmetric clusters, and
completely random clusters. We then explore the possibility
of ferromagnetism in large size systems of doped semicon-
ductors, primarily for dopant densities below the Mott den-
sity, by combining our exact results on clusters with a many-
body version of the electron glass model to take into account
long range Coulomb interactions. Our work represents the
most extensive study to-date of the magnetic phase diagram
of conventional doped semiconductors on both sides of the
uncompensated system—with hole doping �as in compen-
sated semiconductors�, as well as �the heretofore unstudied�
electron doping.

Our results on finite �periodic� lattices, as well as selected
clusters and distorted/randomized versions of them, show
that high-spin ground states generally occur at large U / t
�low-impurity density�. On a bipartite lattice one carrier
away from half-filling, Nagaoka’s theorem guarantees a
maximal spin state in the limit U / t→�. In the finite lattices
that satisfy Nagaoka’s theorem, we find maximal spin states
at large but finite U / t. In clusters �with less symmetry than a
lattice�, high-spin ground states are found to be quite sensi-
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FIG. 21. �Color online� Comparison of the percentage of mag-
netic clusters �those with greater than minimal ground state spin�
when Coulomb interactions are ignored or accounted for using a
generalized Coulomb glass analysis. The plot shows, for densities
�= 1

1600, 1
160 , and 3

160, percentages of the no-Coulomb case and elec-
tron glass.
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tive to the cluster geometry, though they all exist at large
U / t.

Most importantly, we find that the properties of the hy-
drogen atom give rise to a crucial difference in systems with
shallow hydrogenic dopants between the electron doping and
hole doping away from the half-filled �uncompensated� sys-
tem. In lattices as well as clusters we see a greatly enhanced
occurrence of spin polarization in electron-doped �above
half-filling� systems. In systems above half-filling we also
find that increasing t̃ / t can significantly increase the likeli-
hood of this nanoscale ferromagnetism. These results con-
firm our expectation that the greater the spatial extent of a
doubly occupied site’s wave function �relative to the wave
function of a singly-occupied site�, the more favorable spin
polarization becomes.

The analysis of ground-state spin behavior in completely
random clusters reveals many of the same conclusions we
found for the selected symmetric clusters. Namely, we again
find that electron doping and a larger t̃ / t favor spin polariza-
tion. The electron-hole asymmetry found in all of the random
ensembles implies that in real semiconductor systems there
is a significant difference between doping above and below
half-filling. Spin polarization is much more prevalent in sys-
tems above half-filling, an effect which we again emphasize
as arising from the physical properties of the dopant atom.
Unlike in the case of selected clusters, where ferromagnetism
is generally more prevalent at larger U / t, we find that within
the low-density range considered �well below the metal-
insulator transition�, there is an optimal density for finding
high-spin �random� clusters. This interesting observation is
likely due to clusters breaking up into separate, effectively
disconnected, pieces at very low densities, which hinders
carrier movement and thereby the alignment of spins in the
ground state. We also study the problem of distributing elec-

trons onto the cluster components of a large system, where
we find that Coulomb interactions decrease the number of
clusters with above minimal spin but only slightly. In such
systems we find a sizeable percentage of high spin clusters,
suggesting that Nagaoka type ferromagnetism is a possibility
in this electron doped region at densities about an order of
magnitude below the Mott density. Taking all these results
together, we expect high spin clusters to be observable in
systems with a low density �large Hubbard U / t� of centers
and a small excess of electrons. The latter requirement is
difficult to realize in 3D bulk systems but could be met in
doped quantum dots and 2D heterostructures. For example,
doped quantum dots with dopant number Nd=6–15 and a
small excess of electrons Ne−Nd=1–2 would be ideal sys-
tems for finding high-spin ground states. Also, in modulated
structures with dopants in both quantum wells and barrier
regions, regions of excess electrons can be achieved in the
quantum wells, unlike in true bulk doped semiconductors.
We also note that the artificial cluster geometries studied in
Sec. IV B have real world applications through recently de-
veloped technology which allows precise placement of phos-
phorous donors in silicon.83
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