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An enhanced static approximation for the electron self-energy operator is proposed for efficient calculation
of quasiparticle energies. Analysis of the static Coulomb-hole screened-exchange �COHSEX� approximation
originally proposed by Hedin shows that most of the error derives from the short-wavelength contributions of
the assumed adiabatic accumulation of the Coulomb hole. A wave-vector-dependent correction factor can be
incorporated as the basis for a new static approximation. This factor can be approximated by a single scaling
function, determined from the homogeneous electron-gas model. The local field effect in real materials is
captured by a simple ansatz based on symmetry consideration. As inherited from the COHSEX approximation,
the new approximation presents a Hermitian self-energy operator and the summation over empty states is
eliminated from the evaluation of the self-energy operator. Tests were conducted comparing the new approxi-
mation to GW calculations for diverse materials ranging from crystals, molecules, atoms and a carbon
nanotube. The accuracy for the minimum gap is about 10% or better. Like in the COHSEX approximation, the
occupied bandwidth is overestimated.
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I. INTRODUCTION

Understanding the electronic excitation energies of a ma-
terial system is fundamental to a broad array of material
properties. Formally, these correspond to the spectra associ-
ated with electron removal and electron addition. In practice,
the electronic excitations are the starting point for under-
standing many phenomena, e.g., through the density of states
at the Fermi energy of a metal, the minimum energy gap and
associated band effective masses in a semiconductor or the
frontier energy levels in a nanoscale junction that control
electron tunneling. While the electronic excitation energies
can be very often interpreted within an independent electron
picture, the many-body treatment of the electron-electron in-
teraction remains fundamental to the predictive calculation
of the quasiparticle energies.1 Density-functional theory
�DFT� �Refs. 2 and 3� has been widely successful in the
prediction of the ground-state-derived properties of a wide
array of materials systems. However, the corresponding ef-
fective single-particle eigenvalues that emerge from the
Kohn-Sham equations are not generally justified to be inter-
preted as quasiparticle energies and in practice there are sig-
nificant errors such as the substantial underestimation of
semiconductor band gaps.4 In a many-body perturbation
theory approach, the central quantity in the theory is the
nonlocal, energy-dependent electron self-energy operator.
The GW approximation for the electron self-energy intro-
duced by Hedin5 has been widely exploited for predictive
calculations of quasiparticle energies in real materials.6–8

The substantial extra complexity associated with calculat-
ing the nonlocal, energy-dependent self-energy operator and
then using it to solve for quasiparticle properties inspired
early efforts to find simplifying approximations, for example,
the local approximation suggested by Sham and Kohn9 and
the static Coulomb-hole screened-exchange �COHSEX� ap-
proximation of Hedin.5 However, since the first successful
implementations for real materials10–12 it has been clear that

both nonlocality and energy dependence of the self-energy
operator play an essential role for accurate results. Subse-
quently GW calculations have been employed as a first-
principles method for a broad array of real materials,6–8 the
physical systems ranging from bulk semiconductors13 to
nanoclusters14–16 and nanotubes.17,18 As the field has ad-
vanced, the methodology has been extended to include ap-
proximate self-consistency in the Green’s function19–22 and
the role of vertex corrections is currently under debate,23–25

both at the expense of further computational burden.
Several factors contribute to the complexity of GW-based

calculations. The self-energy operator is fundamentally non-
local and energy dependent. Furthermore, the usual formula-
tion of the calculations for both the screening of the Cou-
lomb interaction and then the electron self-energy operator
involve a summation over empty states of the reference
Hamiltonian. In practical calculations, generation of the cor-
responding orbitals requires considerably more effort than
conventional ground-state calculations where the diagonal-
ization can be essentially restricted to the occupied space.
Then convergence with respect to the summation over empty
states must be carefully checked for each application. Analy-
sis of the algorithms in use shows that the computational
burden grows as the fourth power of the system size,7 al-
though if the short range of the nonlocality of some of the
operators can be exploited, the scaling improves to essen-
tially quadratic.7,26

Recently there is a resurgence in research directed to im-
proving algorithms so that the GW method can be applied to
more complex systems. Proposals have been made for sim-
plified closures of the summation on empty states for the
polarizability and self-energy operator.27 Alternative, effi-
cient basis sets to represent the operators have been
explored.28,29 Several schemes to reformulate the perturba-
tion theory using iterative techniques30 to avoid explicit cal-
culation of the empty states have been put forward.31–35 Al-
though these schemes do not generally alter the scaling with
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system size, they do show potential for significant changes in
the prefactor. A new hierarchical approach to exploit closure
while retaining a good representation of the frequency de-
pendence of the self-energy operator both eliminates empty
states and improves the scaling of the calculation.36 These
developments should make the treatment of larger systems
feasible in practice.

An alternative approach to simplify the calculations fol-
lows the route of physically motivated approximations or
models. For example, proposals have been put forward to
model the dielectric matrices for solids including local
fields.37,38 The local approximation to the self-energy
operator9 has been extended to semiconductors through mod-
els that incorporate the incomplete screening.39,40 The
COHSEX approximation of Hedin eliminates the summation
over empty states for the self-energy operator and has the
added benefit of being a static operator, a particular simpli-
fication for self-consistent calculations.20,21 However, the
magnitude of the self-energy operator is too large, raising
concerns for energy-level alignment at interfaces, and in ap-
plication to semiconductors, it tends to substantially overes-
timate band gaps. One proposal suggested that the dynamical
contribution missing in the static COHSEX model could be
captured by a linear expansion of the energy dependence in
the self-energy and a model dielectric response without extra
computational costs.41 This approach eliminated the summa-
tion over empty states, as did an approach in which fre-
quency dependence was captured by Talyor expansion
around a few representative values.42 Finally, the hybrid
functional approach in DFT, in which a fixed fraction of the
exchange operator based on the bare Coulomb interaction �or
a range truncated interaction� is explicitly included, empiri-
cally results in improved values for the band gaps in bulk
semiconductors and insulators.43,44 For the present discus-
sion, this approach can be viewed as an approximation that
captures some of the nonlocality of the screened exchange
term in the electron self-energy. However, the residual does
not capture the environment dependence of the screening and
hence important physical effects such as the image potential
contribution at a surface.45 A recently proposed semilocal
effective potential approach will likely present similar
problems.46 Overall, previous approaches have been limited
in accuracy and in applicability to diverse systems.

A static model for the electron self-energy operator offers
some compelling advantages, including the orthonormality
of the quasiparticle wave functions, simplification of a self-
consistent approach, and ease of application to more com-
plex systems such as nanoscale junctions. This motivates us
to revisit the COHSEX approximation and to investigate the
sources of error. Starting with a careful re-examination of the
homogeneous electron gases �HEGs� case, we find that most
of the errors come from the COH contributions. Physically
the error originates from the assumed adiabatic accumulation
of the “Coulomb hole” of the dynamic screened Coulomb
interaction. This error is wavelength dependent: it is negli-
gible at long wavelength but introduces a factor of two error
at short wavelength. A similar behavior can be seen for the
case of crystalline silicon. With this insight, we suggest an
empirical model that incorporates a wavelength-dependent
correction factor to account for the average nonadiabatic ef-

fect. Using the results from the HEG as a guide, a simple
universal form is proposed for this correction factor, includ-
ing local field effects in crystals. In this way, we have de-
vised a new approximation which inherits the advantage of
efficiency from the static COHSEX approximation but im-
proves its accuracy, as demonstrated for a diverse series of
examples. For crystals, in particular, we show that the new
approximation can be combined with an established model
for the dielectric screening,38 completely eliminating the sum
over empty states from the calculations.

The rest of the paper is organized as follows. In Sec. II,
the static COHSEX approximation is analyzed. Then in Sec.
III, the new method is derived as a natural correction result-
ing from the analysis. In Sec. IV, the proposed static method
is applied to various physical systems. The new results are
compared with the static COHSEX approximation and full
GW calculation. Section V provides a brief summary.

II. ANALYSIS OF THE COHSEX APPROXIMATION

The electron self-energy operator in the GW approxima-
tion can be written in the energy domain as

��r,r�;E� =
i

2�
� dE�e−i�+E�G�r,r�;E − E��W�r,r�;E�� ,

�1�

where the full one-particle Green’s function G and the dy-
namically screened Coulomb interaction W enter.5 In most
practical calculations the G is replaced by one derived from
a reference, single-particle Hamiltonian. Often this is based
on the Kohn-Sham states calculated with an approximate
exchange-correlation functional, but it might be derived from
an approximate self-consistent GW approach, e.g., where the
self-energy operator is replaced by the COHSEX
approximation20 or by the approximate projection in the qua-
siparticle self-consistent approach.21 With this approximation
for G, then the real part of the self-energy operator can be
easily rewritten in the form

��r,r�,E� = − �
n,k

occ

�n,k�r��n,k
� �r��W�r,r�;E − En,k�

+ �
n,k

�n,k�r��n,k
� �r��P�

0

�

dE�
B�r,r�;E��

E − En,k − E�
.

�2�

The first term is the contribution from the poles of the
Green’s function G while the second term comes from the
spectral function B �defined as B=�−1�Im W�� of the
screened Coulomb interaction W. The symbol P refers to the
Cauchy principal value of the integration. The first term is
the dynamically screened-exchange �SEX� contribution and
the second term is the dynamical COH contribution.5

The static COHSEX approximation can be obtained for-
mally by putting E−En,k→0 in Eq. �2�
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�SEX
static�r,r�,E� = − �

n,k

occ

�n,k�r��n,k
� �r��W�r,r�;E = 0� �3�

and

�COH
static�r,r�,E� =

1

2
��r − r��Wp�r,r�;E = 0� , �4�

where Wp=W−v and v is the bare Coulomb interaction.
Physically, when the self-energy operator is evaluated for a
specific quasiparticle energy Eqp, then the static approxima-
tion assumes that the magnitude of the energy Eqp−En,k in
Eq. �2� is much smaller than the characteristic energy of the
screening, e.g., the plasmon energy.11 Alternatively, one can
write the approximate formulae in the time domain as

�COHSEX�r,r�;t� = iG�r,r�;t�

��v�r,r�;t + �+� + ��t�Wp�r,r�;E = 0�� ,

�5�

where Wp�r ,r� ;E=0�=�−�
+�dt�W�r ,r� ; t�−v�r ,r� ; t��. Noting

that the W�r ,r� ; t+�+� in the original GW formula
can be recast as W�r ,r� ; t+�+�=v�r ,r� ; t+�+�
+ �W�r ,r� ; t+�+�−v�r ,r� ; t+�+��, it is clear that the only ap-
proximation made in the static COHSEX approximation is
the substitution of �W�r ,r� ; t+�+�−v�r ,r� ; t+�+�� by
��t�Wp�r ,r� ;E=0�. Physically this approximation replaces
the time-dependent screened interaction with an instanta-
neous interaction which is the adiabatic accumulation of the
Coulomb hole of the time-dependent screened Coulomb
interaction.1,5

The adiabatic accumulation of the Coulomb hole Wp has
different influence on the SEX and COH contributions, al-
though this is difficult to assess analytically. Numerically it
can be shown that most of the error in the static COHSEX
approximation comes from the COH contribution. The SEX
term in the approximation is relatively close to the full GW
calculations. For example, Fig. 1 displays the COH and SEX
contributions of the self-energy ��k ,Ek�, evaluated with the
full-frequency Lindhard dielectric function for the homoge-
neous electron gas of density parameter rs=2.0. The SEX
contribution is around −0.1 hartree and increases
slowly with k. Compared with the full GW calculation, the
static COHSEX approximation slightly underestimate
the SEX contribution and the difference is less than
5.0�10−3 hartree �0.14 eV� for k from 0.5kf to 1.5kf. On the
Fermi surface, the difference is 3.4�10−3 hartree �0.093
eV�. The COH contribution is independent of k in the static
COHSEX approximation, due to the locality in space, while
in the full GW calculation, it has modest dispersion. Most
striking is the substantial error in the overall magnitude of
the COH contribution ranging from 0.10 hartree �2.7 eV� at
k=0.5kf to 0.052 hartree �1.4 eV� at k=1.5kf. On the Fermi
surface the error is 0.078 hartree �2.1 eV�.

Similar trends are also observed in real materials. Table I
shows the SEX and COH contributions for bulk Si and LiCl,
as well as argon in the solid state, evaluated at the quasipar-
ticle energies of the highest occupied states and the lowest
empty states. �For Si, the conduction-band minimum is

slightly lower, located along the � line in the Brillouin zone.�
Compared with the results of full GW calculations �described
in more detail below in Sec. IV�, the static COHSEX ap-
proximation has slight deviation for the SEX contributions
�up to 0.3 eV�, while the magnitude of the COH contribu-
tions are overestimated by 1–3 eV. For example, the COH
contribution to the valence-band maximum �VBM� of LiCl is
wrong by 2.6 eV.

To get more insight to the errors, we compare the matrix
element of �COH for the full GW calculation

	k��COH
full �Ek��k
 =� dq�P�

0

�

dE�
B�q,E��

Ek − Eq+k − E�� , �6�

to that for the static COHSEX approximation

TABLE I. The SEX and COH contributions to the matrix ele-
ments of the self-energy � for states that define the energy gap for
bulk silicon, bulk lithium chloride, and argon in its solid phase, all
in electron volt. Results from the full GW �with the GPP model�,
the static COHSEX approximation, and the new enhanced static
approximations are presented. The self-energies in the full GW cal-
culations are evaluated at the corresponding quasiparticle energies.

GW COHSEX New static

�SEX �COH �SEX �COH �SEX �COH

Si �bulk� 	25v� −3.83 −8.28 −3.91 −10.43 −3.91 −8.21

X1c −1.74 −7.40 −2.06 −8.72 −2.06 −7.25

LiCl �bulk� 	15v −8.59 −8.24 −8.69 −10.84 −8.69 −7.91

	1c −1.90 −6.34 −2.25 −7.06 −2.25 −5.76

Ar �bulk� 	15v −12.77 −7.24 −12.79 −10.07 −12.79 −6.91

	1c −1.24 −4.01 −1.56 −4.25 −1.56 −3.55
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FIG. 1. �Color online� Error analysis of the self-energy ��k ,Ek�
for the homogeneous electron gas with density parameter rs=2.0.
Here kf is the magnitude of Fermi wave vector. The � is split into
COH and SEX contributions, as indicated in the figure. Solid curves
are results from full GW calculation and dashed curves are calcu-
lated from the static COHSEX approximation. For references, the
COH contribution from the new enhanced static approximation is
also displayed in the figure as a dashed-dotted line.
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	k��COH
static COHSEX�Ek��k
 =� dq�Wp�q,E = 0�� . �7�

Both equations show the wave-vector decomposition of the
contributions to the COH term. Implicitly, Eq. �6� defines the
full accumulation of the Coulomb hole, Wp

full�q ,Ek�, the
counterpart of Wp�q ,E=0� in Eq. �7�. The ratio f�q ,Ek�
=

Wp
full�q,Ek�

Wp�q,E=0� reflects the deviation of the adiabatic accumula-
tion at each wave vector q.

Figure 2 displays typical distributions of f�q ,Ek� for the
HEG. For small wave vector q �the long-wavelength limit�,
the ratio f approaches to 1, suggesting that the adiabatic
accumulation in the static COHSEX approximation works
well. But for large q �the short-wavelength limit� the ratio
approaches 0.5 asymptotically, which indicates that the adia-
batic accumulation exceeds the Wp

full by a factor of 2. This
large error in the short-wavelength limit traces to the fact that
screening does not follow the rapid motion of electrons at
large q. In between, the ratio f drops smoothly from 1 at
q=0 to a value close to 0.5 at q=2kf; for q
2kf the ratio f
changes slowly. As seen in Fig. 2, this behavior depends
weakly on k. We have also investigated f�q ,Ek� for values of
density parameter rs=1–6. Provided the wave vector is
scaled by the Fermi wave vector, the variation in the curves
spans a similar range to the k dependence already shown.
While the results in Fig. 2 are based on full numerical cal-
culations in the HEG, the same picture can be derived quite
directly from the asymptotic behavior of the Overhauser
plasmon pole model.47 It follows from the fact that as
q→0 the plasmon frequency �q approaches to the classical
plasma frequency �p, and as q→� the effective pole fre-
quency �q goes to q2 /2m.

To probe an example of a semiconductor, the analogous
calculation is performed for bulk silicon. In crystals, the
screened Coulomb interaction is a function of r and r� sepa-
rately, not just the difference �as it is in the HEG�. For crys-
tals, then Wp and the generalization of f that we require are
functions defined on discrete points q+G and q+G�, where
q is a wave vector in the first Brillouin zone and G and G�
are reciprocal lattice vectors. In the generalizations of Eqs.
�6� and �7� we focus on the contribution of the diagonal
elements �where G=G�� and consider the matrix elements of
the self-energy operator for the valence-band maximum
�VBM, 	25v� � of bulk silicon. The necessary calculations for
the screened Coulomb interaction and the GW approxima-
tions are performed as described below �Sec. IV�. The results
are plotted again in the form of a correction factor as a func-
tion of �q+G� in Fig. 3. The wave-vector scale is normalized

by kVBM=
	�VBM�−�2��VBM
, a simple analogue of the
Fermi wave vector in the HEG. This effective correction fac-
tor shows a similar overall behavior as in the HEG, but at
each �q+G� point, f can have multiple values. This reflects
the orientational anisotropy in real materials. Using kVBM as
the scale, the shape of f displayed in Fig. 3 closely resembles
that in the HEG.

III. ENHANCED STATIC APPROXIMATION

From the results in Sec. II, a strategy to improve the ac-
curacy emerges: simply include a correction factor to the
adiabatic Wp�E=0� in Eq. �4�. Ideally, the factor is just the
wave-vector-resolved and energy-dependent ratio f�q ,Ek�.
However, the results of Fig. 2 suggest that the density and
the k or Ek dependence of the correction factor is not large,
except for the scaling of the wave vector q. Furthermore, the
possibility to drop the Ek dependence results in an energy-
independent �static� model for the self-energy operator.
Therefore a universal function f� is proposed. A convenient
Pade form for f� is chosen and fit to the f�q ,Ef� for HEG of
rs=1.0

0 1 2 3 4
q/k

f

0

0.5

1

f(
q,

E
k)

k=0
k=1.2k

f
k=k

f
Approx. f

FIG. 2. �Color online� Typical distributions of

f�q ,Ek�=
Wp

full�q,Ek�
Wp�q,E=0� of homogeneous electron gas �rs=2.0�. The re-

ciprocal of f represents the deviation of the adiabatic accumulation
of the Coulomb hole Wp as a function of wave vector q in the static
COHSEX approximation. The dotted curve in the figure is the dis-
tribution for the state k=1.2kf, the dashed-dotted curve is for k
=kf and the dashed curve is for the state k=0. Also displayed in the
figure �displayed as a solid curve� is the approximated distribution
f� in Eq. �8� adopted in the new enhanced approximation.

0 1 2
|q+G|/k

VBM

0.5

1

f(
q+

G
;Γ

’ 25
v)

FIG. 3. �Color online� Diagonal elements of the ratio
f�q+G ,q+G� ;	25v� � at the valence-band maximum of bulk silicon
as a function of �q+G�, displayed as circles in the figure. The solid
curve is the approximate f� specified in Eq. �8�, and kVBM is the
characteristic wave-number scale derived from the average speed of
electrons at the highest occupied electronic state of the system.

WEI KANG AND MARK S. HYBERTSEN PHYSICAL REVIEW B 82, 195108 �2010�

195108-4



f��x� =
1 + 1.9085x − 0.542572x2 − 2.45811x3 + 3.08067x4 − 1.806x5 + 0.410031x6

1 + 2.01317x − 1.55088x2 + 1.58466x3 + 0.368325x4 − 1.68927x5 + 0.599225x6 , �8�

where x represents the dimensionless wave number q /kf.
Here, f� is chosen from the set of f�q ,Ef� �the f on the Fermi
surface� calculated for rs from 1 to 6 which minimizes the
error of the self-energy � on the Fermi surface for all rs in
that range. f�q ,Ef� for rs=1 is found to have the smallest
error of 0.2 eV for all the �, and therefore used to fit the
pade form of f�. It is also displayed as the solid curve in Fig.
2.

For the HEG, the enhanced static approximation retains
the usual static screened exchange term and alters the Cou-
lomb hole term

�COH
new =

1

2
��r − r��� dqe−iq·rWp�q,E = 0�f��q/kf� . �9�

The improvement of the new approximation is easy to verify
for the HEG, as illustrated in Fig. 1 for rs=2.0. The error
from the COH contribution decreases to 0.07 eV from 2.1 eV
at the Fermi surface. Examining the range rs=1–6, the error
remains within 0.2 eV at the Fermi surface. That range of rs
represents typical electronic densities in most bulk materials.
Since this static approximation to the Coulomb hole term
remains local in space, it has no dispersion, as seen in Fig. 1.
The occupied bandwidth will still be overestimated in this
new static approximation.

In order to extend this idea to real materials, two factors
must be addressed. First a systematic scheme to derive a
wave-vector scale is required. We choose the scale kVBM
=
	�VBM�−�2��VBM
, where �VBM refers to the highest oc-
cupied electronic state in the system. In the limit of the HEG,
kVBM goes back to kf, so it is a reasonable generalization.
With this scale factor the approximate f�, the solid curve in
Fig. 3, is still a good description of the diagonal terms in the
numerically calculated corrections.

Second, the effect of local fields must be incorporated into
the correction factor f . We have tested several different gen-
eralizations that preserve symmetry and reduce back to the
simple form for the HEG limit. We find that a simple ansatz
where f� is only a function of 
�q+G��q+G�� /kVBM works
well in practice. Accordingly the new static approximation
for the COH term is revised to be

�COH
new �r,r�� =

1

2
��r − r�� �

q,G,G�

e−i�q+G��·r�ei�q+G�·r

�Wp,G,G��q,E = 0�f��
�q + G��q + G��
kVBM

� .

�10�

Note that the f� used here is exactly the same as the one
defined in Eq. �8�. The f� in real materials should generally
be a function of both q+G and q+G� separately. Our simple

ansatz is isotropic and only depends on the amplitudes of
q+G and q+G�.

IV. RESULTS

In order to test the proposed new static approximation,
calculations are performed for a diverse set of examples in-
cluding crystals, molecules, atoms and a carbon nanotube.
All calculations are performed with geometrical parameters
obtained from experiments. All the LDA calculations are car-
ried out in a plane-wave basis using the QUANTUM ESPRESSO

package48 with norm-conserving pseudopotentials generated
by the FHI99P packages49 using the Troullier-Martins
method.50 The pseudopotentials are taken from the website
of ABINIT.51,52 In the full GW calculations, the generalized
plasmon pole model �GPP� model is used.11 Only the first-
order energy correction to the diagonal elements are calcu-
lated. No further updates of spectra are included in the cal-
culations. The new static approximation is applied with the
same statically screened Coulomb interaction used in the full
GW calculations. For several bulk materials, the fundamental
gaps are also calculated using model dielectric matrices to
obtain the statically screened Coulomb interactions.38 This
approach completely eliminates any explicit summations on
empty states in the calculation.

For all the bulk materials �including Si, C, solid Ar, GaAs,
and LiCl�, the LDA wave functions and eigenvalues are cal-
culated with 80 Ry energy cutoff and the Brillouin zone is
sampled by a 4�4�4 Monkhorst-Pack �MP� mesh.53 Their
lattice constants are listed in Table II together with macro-
scopic dielectric constants required by the model dielectric
matrices.38 In the GW calculations, the screened and un-
screened Coulomb interactions are cut off at 40 Ry. 160
bands are used for the calculation of Green’s function and the
screened Coulomb interaction. In the calculations of atoms
and molecules �including benzene, methene, and argon
atom�, the LDA wave functions and eigenvalues are calcu-
lated with 50 Ry energy cutoff in a cubic computational cell
of 1.323 nm �25.0 bohr� for each side. In the GW calcula-

TABLE II. Experimental lattice constants a0 and macroscopic
dielectric constants �� of the bulk materials calculated, where �� are
parameters required by the model dielectric matrices �Ref. 38�.

Si C LiCl GaAs Ar

a0 �nm� 0.543a 0.357a 0.513b 0.565b 0.531a

�� 12.0c 5.5c 2.7b 10.9b 1.6d

aReference 54.
bReference 55.
cReference 56.
dReference 57.
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tions, the unscreened Coulomb interaction is cut off at 10 Ry
while the screened Coulomb interaction is cut off at 6 Ry.
700 LDA bands are used for the calculation of the Green’s
functions and screened Coulomb interaction. The LDA wave
functions and eigenvalues of the single-wall carbon nanotube
�SWCNT� �8, 0� is calculated in a trigonal computational cell
of a=2.381 nm �45.0 bohrs� and c=0.421 nm �7.956 bo-
hrs�. The energy cutoff for the LDA wave function is 60 Ry
and the Brillouin zone is sampled by a 1�1�8 MP grid.
The unscreened Coulomb interaction is cut off at 20 Ry. A
cutoff of 6 Ry and 1000 bands are used to calculate the
screened Coulomb interaction and Green’s function. With the
choice of above computational parameters, the GW energy
gap is expected to converge within 0.1 eV for bulk materials
and within 0.2 eV for other systems. For the SWCNT sys-
tem, our computational parameters are slightly different from
the previous calculation.17 In particular, we do not enforce a
cut off of the Coulomb interaction in the radial direction to
eliminate screening from tubes in neighboring cells. This re-
duces computational costs. Our results including that extra
screening lead to a smaller quasiparticle energy gap but the
test of the new static method here is done with the same
approximation.

Silicon in the diamond structure is the prototypical cova-
lent semiconductor crystal and a standard test case. Since its
quasiparticle wave functions and charge density are extended
to fill the entire volume, it is often considered as an inhomo-
geneous electron gas with an energy gap in a simplified
model.58 The quasiparticle energies calculated using the new
enhanced static approximation, the static COHSEX approxi-
mation and the full GW calculation are summarized in Table
III together with experimental observations. The differences
with the previous results11 in the full GW calculations come

partly from higher cut offs in the present calculation and also
because no update of the spectrum is included here. Relative
to the valence-band edge, the lowest energy conduction band
states at the 	, X, and L points of the Brillouin zone are all
remarkably similar to the full GW results. By comparison,
the static COHSEX approximation places these states 0.4–
0.7 eV higher in energy than the full GW results. The mini-
mum band gap, involving the lowest conduction band along
the � line at about 85% of the distance to the X point is
estimated with the new method to be 1.18 eV, slightly
smaller than the full GW result 1.32 eV, closely following
the result at the X point. The results based on the new
method for all the low-lying empty states are in good agree-
ment with experiment �about 0.1 eV or better�. Turning to the
occupied states, the new method predicts quasiparticle ener-
gies that are systematically deeper than the full GW calcula-
tions, by an amount that increases further from the valence-
band edge. At the bottom of the valence band, the 	1v
quasiparticle energy calculated using the new method is
−13.08 eV, 1.33 eV lower than the full GW results and
deeper than experiment. This is not surprising, since the ac-
curacy of the new method is optimized for bands near the
Fermi energy and the trend illustrated in Fig. 1 for the ho-
mogeneous electron gas also holds here. Referring to Table I,
the final results with the new method clearly benefit from
some cancellation of errors between the SEX and COH
terms. Also, relevant for energy-level alignment at interfaces,
the magnitude of the self-energy at the valence-band edge is
−12.11 eV in the full GW calculation, −14.34 eV for the
static COHSEX and −12.12 eV for the new model. The er-
ror for the new model is just 0.01 as compared to 2.2 eV for
COHSEX.

Lithium chloride �LiCl� is a typical ionic crystal with a
rocksalt structure. Unlike silicon, the charge density and qua-
siparticle wave functions of LiCl are localized around Cl−

anions and Li+ cations. Since the system is conceptually far
from an extended electron gas, it raises a challenge for the
new method originally derived from a HEG model. The fun-
damental band gap calculated using the new method is
8.98 eV, very close to the full GW calculation and 1.6 eV
smaller than the static COHSEX result �Table IV�. Like the
full GW result, the calculated value is about 0.4 eV smaller
than the measured value, as was observed in the previous full
GW calculations.59 The placement of the empty bands at the
high-symmetry points of the Brillouin zone shows an accu-
racy, relative to the full GW calculations, similar to the case
of Si. Also, very similar to the Si case, the new method is
systematically places the occupied states too deep. As illus-
trated in Table I, the deviations for the individual SEX and
COH terms are larger. The net error in the absolute magni-
tude of the valence-band matrix element of the self-energy
operator is modest �0.3 eV�, especially as compared to the
COHSEX approximation �2.7 eV�.

Solid argon presents a third type of solid with a large band
gap related to the underlying energy gap between the occu-
pied 3p shell and the empty 4s and 4p derived bands. The
new method gives a calculated minimum band gap within
0.2 eV of the full GW result, in contrast to the COHSEX
derived gap, which is 2.3 eV larger �Table IV�. Other trends
are similar. In particular, there is modest cancellation be-

TABLE III. Quasiparticle energies of crystalline Si calculated
with different methods. Here “COHSEX” refers to the static
COHSEX approximation, “GW” refers to full GW results with a
generalized plasmon-pole model, and “New Static” refers to the
results from the new enhanced static approximation. Experimental
results are quoted from Ref. 11. All energies in the table are pre-
sented in electron volt.

Si LDA COHSEX GW New static Expt.

	1v −11.97 −12.81 −11.74 −13.08 −12.5
0.6

	25v� 0 0 0 0

	15c 2.56 3.86 3.35 3.45 3.4

	2c� 3.11 4.24 3.86 4.17 4.2

L2v� −9.63 −10.35 −9.57 −10.50 −9.3
0.4

L1v −6.99 −7.26 −6.98 −7.61 −6.7
0.2

L3v� −1.19 −1.20 −1.21 −1.29 −1.2
0.2,1.5

L1c 1.42 2.61 2.18 2.24 2.1,2.4
0.15

L3c 3.33 4.77 4.21 4.23 4.15
0.1

L2c� 7.55 9.50 8.37 8.40

X1v −7.82 −8.37 −7.84 −8.51

X4v −2.85 −2.86 −2.86 −3.10 −2.9, −3.3
0.2

X1c 0.64 2.05 1.46 1.31 1.3

X4c 9.96 11.58 10.67 11.37
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tween errors in the separate SEX and COH terms �Table I�.
The net error in the valence-band edge matrix element of the
self-energy operator is about 0.3 eV, as compared to the
2.9 eV error in the COHSEX approximation.

In Fig. 4 and Table IV the fundamental gaps calculated
using the new static method are compared with full GW
calculations for different types of materials including Si �dia-
mond structure�, C �diamond�, LiCl crystal, GaAs crystal, Ar
�solid�, Ar �atom�, benzene �molecule�, methane �molecule�,
and SWCNT�8, 0�. Both calculations are based on the same
LDA wave functions and eigenstates. The choices of materi-
als in the figure cover fundamental gaps from around 1 eV
up to 15 eV, and they represent atoms, molecules, nanostruc-

tures, and various bulk materials. As indicated in the figure,
all the diamond points �which represent results from the new
method� tightly follow the diagonal line, showing very good
accuracy, about 10% or better. The largest relative errors are
seen for bulk Si and the SWCNT cases. For several bulk
materials �Si, C, LiCl, GaAs, and solid Ar�, we also show the
results from the combination of our new method and a model
dielectric matrix38 aimed to further speed up the calculation.
The results are displayed as squares in the figure, showing
that the accuracy is still maintained.

Two examples specifically probe a �-electron gap, the
case of the gas-phase benzene and the �8, 0� SWCNT. In this
case, the new static method and the COHSEX method give
essentially the same results. In turn, the difference between
the COHSEX results and those from the full GW calculation
in these cases is much more modest than for the other cases:
about 0.7 eV for benzene and 0.2 eV for the SWCNT. A
closer examination of the full GW calculations shows that in
this instance the contribution of the COH term to the band
gap is quite small. This is quite different from the situation
for other systems considered here. For example, in the meth-
ane molecule, the COHSEX approximation gives a gap that
is too large by about 1.7 eV while the new method provides
a gap that is within 0.4 eV.

V. SUMMARY

A static approximation to the electron self-energy offers
several technical advantages, not least of which is to main-
tain a Hermitian operator in the calculation of quasiparticle
energies. In addition, it offers the potential to avoid the com-
putational burden of converging the sum over empty states
that dominates the full application of many-body perturba-
tion theory. Here we have analyzed the original static
COHSEX approximation proposed by Hedin, showing that
most of the errors trace to the assumption of an adiabatic
accumulation of the Coulomb hole in the short-wavelength
limit. This has lead us to propose a simple generalization in
which a single function of the scaled internal momentum in
the Coulomb-hole term is used to correct this error. Although
it requires an additional ansatz to represent the local fields,
this simple, enhanced static approximation goes a surpris-
ingly long way to correct the errors of the original COHSEX
approximation for application to diverse real materials, rang-
ing from crystals and nanotubes to molecules and atoms. The
accuracy of the new approximation may be sufficient for a
number of applications to larger scale systems. It may also
provide an efficient approximate approach for self-consistent
calculations.
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TABLE IV. Energy gap of a variety of materials calculated us-
ing the different methods as described at the beginning of Sec. IV.
All the energies in the table are presented in electron volt. Values
appearing in parenthesis in the “New Static” column are calculated
with a model dielectric matrix as described in the text. The charac-
ter of the gap is noted in the final column where the notation “HO/
LU” refers to the gap between the highest occupied molecular or-
bital and the lowest unoccupied molecular orbital.

LDA COHSEX GW New static Notes

Si �bulk� 2.56 3.86 3.35 3.45 Eg
	,Direct

0.49 1.91 1.32 1.18 �1.06� Eg
Indirect

C �diamond� 5.56 8.35 7.56 8.00 �7.72� Eg
	,Direct

4.20 6.99 5.70 5.93 �5.57� Eg
Indirect

LiCl �bulk� 5.91 10.61 8.99 8.98 �9.24� Eg

GaAs �bulk�a 0.40 1.43 1.12 1.17 �1.17� Eg

Ar �bulk� 8.12 15.85 13.56 13.40 �14.15� Eg

Ar �atom� 9.99 16.25 14.80 14.79 HO/LU

Benzene 5.22 11.50 10.71 11.43 HO/LU

Methane 9.01 15.21 13.54 13.96 HO/LU

SWCNT �8, 0� 0.61 1.78 1.51 1.73 Eg

aA spin-orbital splitting correction �Ref. 13� of 0.11 eV is included
on the first-order perturbation level.
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FIG. 4. �Color online� Fundamental gaps of different physical
systems compared with values calculated from full GW method.
Diamonds are gaps from the new enhanced static approximation,
squares are from a method combining the new method and a model
dielectric matrix �Ref. 38�, and circles are gaps from the LDA
calculation.
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