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The high aspect ratio of carbon nanotubes makes them prone to bending. To know how bending affects the
tubes is therefore crucial for tube identification and for electrical component design. Very few studies, however,
have investigated tubes under small bending well below the buckling limit, because of technical problems due
to broken translational symmetry. In this Brief Report a cost-effective and exact modeling of singe-walled
nanotubes under such small bending is enabled by revised periodic boundary conditions, combined with
density-functional tight-binding. The resulting, bending-induced changes in electronic and optical properties
fall in clear chirality-dependent trend families. While the correct trends require full structural relaxation, they
can be understood by one general argument. To know these trends fills a fundamental gap in our understanding
of the properties of carbon nanotubes.
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Carbon nanotubes �CNTs�, with an aspect ratio akin to
tens of meters long human hair, bend frequently.1,2 In most
transmission electron micrographs CNTs appear as curly web
of hair, unless placed on a support with special care.3–6

Bending is hard to avoid in experiments completely.
With theory the state of affairs is just the opposite. On one

hand, it’s easy to model infinitely long and perfectly straight
tubes, using Bloch’s theorem and periodic boundary condi-
tions. On the other hand, it’s usually difficult to model large-
scale distortions once the translational symmetry gets bro-
ken. Bending has been therefore commonly modeled by
finite tubes and thousands of atoms, accessible only by clas-
sical potentials.7,8

However, since CNTs serve mostly as electronic compo-
nents, bending and other distortion studies ought to incorpo-
rate the electronic structure.9 Sure enough, density-functional
theory has been used to study CNT bending, but reliable
electronic trends are hard to extract because tubes are short
and bending violent—mostly near or above the buckling
limit.10,11 Results also depend on how the tubes are bent,
whether bending is achieved by forces from external bodies,
or by geometrical constraints.

In this Brief Report a cost-effective way to model tubes
under pure bending is enabled by revised periodic boundary
conditions �RPBC�. In this approach the bending emerges
naturally, being caused by boundary conditions alone, and is
devoid of spurious effects. While similar approach for carbon
nanotubes was used earlier by Dumitrică et al.,12,13 as well as
Malola et al.,14 they did not study electronic properties. The
focus in this work is, therefore, to answer the question:
“How do band gaps and optical properties change as single-
walled CNTs get slightly bent?” The answers to this ques-
tion, as it will turn out, have clear trends that can be under-
stood with one fundamental argument.

The modeling of bending is done by replacing the usual
translation symmetry by a rotation symmetry around a given
origin, as clarified in Fig. 1�a�; for details of this RPBC
approach, see Ref. 15. Since the rotation is a symmetry
operation, the modeled system as a whole is, in fact, a
huge nanotorus. The amount of bending is measured by the
parameter

� =
D

2R
, �1�

where D is nanotube diameter and R torus’s radius. This
parameter is universal, and enables comparing tubes with

FIG. 1. �Color online� �a� �10,5� CNT, with D=10.3 Å, bent to
�=1% and �=5%. Red �light gray� atoms denotes the simulation
cell, and the symmetry operation is a rotation of an angle � around
given origin. � is a universal measure of bending: the impression
for the amount of bending for given � is independent of D. �b�
Elastic bending energy �per unit length and divided by tube diam-
eter� as a universal function; the dashed line is the analytical ex-
pression, Eq. �3�. Right inset: cross-section view of atoms’ positions
from all tubes, plotted with D�=0.3 Å. The dashed line is an
ellipse with r=0.949, as given by Eq. �2� with D�=0.3 Å. The
flattening is only somewhat visible when comparing to the perfect
square. Left inset: ratio of the two major axes of the flattened cross-
section. Dashed line is the analytical expression �2�.
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different diameters. �The sidewall strain on the compressive
side is ��−� and on the tensile side ���, independent of
D.� I concentrate here on bending around the experimentally
relevant ��0.01 or 1% region, with 5% at maximum;16 1%
corresponds to bending a human hair into a loop with diam-
eter of �1 cm.

The electronic structure itself is modeled by density-
functional tight-binding �DFTB� method,17 using the hotbit
code with an RPBC implementation.18,19 This method uses
first principles theory first to parametrize matrix elements,
then to fit pair potentials that give total energies.18 DFTB
describes carbon materials reasonably well, regarding both
mechanical and electronic properties.20–22 Considering these
literature records, DFTB should describe the physics of bend
CNTs well. Note that the approach to treat pure bending is
exact, the sole approximation in this work being DFTB
itself.23

The simulation in practice ran as follows. I selected CNTs
with different chiralities �n ,m� such that the number of at-
oms in the unit cell was below 210, which made some 60
tubes in total. All the tubes were then bent from 0% to 5% in
steps of 0.25% in the following way: First, I fixed � accord-
ing to the � of interest, using reasonable estimates for the
initial geometry �including estimate for R�. Second, I opti-
mized the tubes to the maximum force of 10−5 eV /Å.24,25

Note that the only parameter fixed was �; the tube can freely
move in radial direction, to find the optimum geometry and
radius—the bending is pure. The number of equally spaced
�-points �k-point equivalent for rotational symmetry� were
50 Å /L for optimizations and 500 Å /L for electronic struc-
ture analysis, where L is the unit length of the straight tube.
While the simulation cells contained �100 atoms, the largest
corresponding torii would have contained �106 atoms, giv-
ing an obvious motivation for this approach.

Prior to presenting the results for bent CNTs’ electronic
structure, it’s illustrating first to review bent tubes’ structural
trends.26 Namely, the inset in Fig. 1�b� shows that bent tubes
get slightly flat. Flattening is due to two competing effects:
flatter tubes have on one hand less energy due to strain, but
on the other hand more energy due to increased sidewall
curvature. Using thin sheet elasticity theory to calculate the
optimum between these competing effects, one gets

r = 1 −
3

4���/�D�2 − 1�
�2�

for the ratio of the minor and major axes of the resulting
elliptical cross-section, where �=�18� /Y �1.16 Å, �
=1.6 eV is graphene’s bending modulus and Y �340 PaÅ
its Young’s modulus in two dimensions. Equation �2� shows
that thicker tubes flatten more easily, and that tubes with
equal D� are equally flattened; the inset of Fig. 1�b� shows
all tubes’ cross-section with D�=0.3 Å, or r=0.949. Since
buckling means complete flattening of the tube, there ought
to be some critical limit rc below which tubes buckle. Earlier
calculations have shown that rc�0.65, which means D�c
�0.75 Å �Refs. 8 and 26�; the tubes here have �c
=5 . . .20%, and hence always ���c.

The analytical expression for the elastic energy of tubes
flattened this optimum way is

E =
�

4
DY�2 �3�

per unit length.27 The quantity E /D, which hence is universal
for all tubes, is plotted in Fig. 1�b�. Small-diameter tubes
deviate most from this behavior because thin-shell theory is
less valid. This structural behavior of CNTs under bending
agrees with previous classical simulations �using thousands
of atoms�,7,8,11,26 and thus, for its part, validates the modeling
approach.

Now, let us finally turn the attention to the results in elec-
tronic structure. Figure 2�a� shows the density of states and
band structures for straight and bent �10,0� tubes. The first
observation is that the bending-induced changes in the elec-
tronic structure are gradual. Band extrema—the van Hove
singularities—move gradually up and down, while some
band anticrossings become more visible. The band gap in-
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FIG. 2. �Color online� �a� and �b� Density-of states �left� and
band-structure �right� for straight and bent �10,0� and �11,0� tubes.
�c� The behavior of band gap 	��� as a function of bending de-
pends on tube’s q-family �defined in Eq. �4��. Gaps are renormal-
ized by the gaps of the straight tubes, 	��=0�.
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creases little, yet distinctly. Figure 2�b� shows the same re-
sults for �11,0� tube. The changes due to bending appear
similar, but note that the trends are just the opposite: the
band extrema move in the opposite direction, and band gap
decreases.

The trends in the band gaps 	��� upon bending, summa-
rized in Fig. 2�c�, is the first main result of this work. The
trends fall in families depending on CNT chirality �n ,m� as

q = �n − m�mod 3; �4�

hence gap decreases for q=0 and q=2, whereas it increases
for q=1. For q�0 semiconducting tubes having sizeable
gaps the relative change in 	 is smaller than for q=0-tubes
with a minigap �q=0 tubes are often referred to as being
“metallic”�. The q=0 tubes are therefore affected the most by
bending—the bending can almost make those minigaps van-
ish.

Trends above have two exceptions, armchair and small
diameter tubes, that are excluded from Fig. 2�c�. First, the
electronic structures of armchair tubes �n=m�, it turned out,
are very robust against bending. They remained metallic,
with band structure nearly intact. This robustness, explained
by symmetry arguments, has been reported earlier.28,29 Sec-
ond, the electronic structure of tubes with small diameter
�
5 Å� can change drastically. Those changes are interest-
ing, but they are unsystematic and impossible to understand
jointly, and therefore outside the scope of this paper.

The next trends I shall discuss are optical trends. They are
investigated via the imaginary part of the dielectric function,
�2���, which is directly proportional to the optical absorp-
tion. The function �2��� is calculated within the random
phase approximation.30 This calculation includes, however,
one issue that I wish to discuss first. Assuming both incident
and emitted light polarization in the Cartesian direction �,
the calculation will involve matrix elements ��,a	p̂�	�,b
,
where p̂ is the momentum operator and where the states �,i
are delocalized over the whole torus.30 While the optical re-
sponse could indeed be calculated for the nanotorus, the em-
phasis here is on the optical properties arising from bent
fragments of CNTs, not on nanotori as whole, complete ob-
jects. I therefore evaluate the matrix element only within the
chemical interaction range from the unit cell; since the tube
axis reorients very little between neighboring unit cells, fix-
ing the orientation of coordinates makes sense. The resulting
�2��� is hence a local property: the situation resembles prob-
ing and measuring the tube using a laser with a spot size
much smaller than the radius of curvature, as sketched in
Fig. 3�a�.

The function �2��� calculated this way for a straight
�10,0� tube is then shown in Fig. 3�a�, on the left. On the
right, figure shows further how the first two transition peaks
E11 �between the first pair of occupied and unoccupied van
Hove singularities� and E22 �between the second pair of oc-
cupied and unoccupied van Hove singularities� change as a
function of �: E11 increases and E22 decreases in energy, as
can be deduced also from the densities of states in Fig. 2�a�.
Figure 3�b� shows the same for �11,0� tube, and the behavior
is, again, the opposite: E11 decreases and E22 increases in
energy.

The trends in transitions E11 and E22 upon bending, sum-
marized in Fig. 3�c�, is the second main result of this work.
Since 	 is essentially the same as E11, the left of Fig. 3�c�
shows the same trends as Fig. 2�c� �here E11 for q=0 is
across the first transition in the optical range, not across the
miniband�. For E22, however, the trend is reversed: E22 in-
creases for q=2 and decreases for q=0 and q=1. For the
trends in the absolute transition energies, with different lev-
els of tight-binding, see Refs. 21 and 22.

The analysis of �2��� excluded again armchair and small
diameter tubes, armchair tubes for being insensitive for
bending, and small diameter tubes for showing too unsys-
tematic behavior. I further mention that properties with
transverse-polarized light �dotted lines in Figs. 3�a� and 3�b��
are insensitive to bending; the tube cross-section remained,
after all, rather circular.
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FIG. 3. �Color online� �a� Left: imaginary part of the dielectric
function for a straight �10,0� tube; incident and reflected light po-
larizations are either parallel �zz� or perpendicular �xx� to tube axis.
Right: the effect of bending on the optical E11 and E22 peaks. �b�
The same for �11,0� tube. �c� The behavior of E11 �left� and E22

�right� transitions depends on the tube q-family, Eq. �4�. Transition
energies are renormalized by straight tube energies. The irregulari-
ties with q=2 are not real, but related to numerical problems in
structure optimization; they indicate, however, the sensitivity to
properly optimized geometries.
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At this point it’s pertinent to mention that these trends
appear to contradict some earlier works. Reference 31 re-
ported bend-induced gap widening for q=0 and Refs. 29 and
28 concluded that bending has no effect because—so the
argument ran—opposite strains on opposite sides of the tube
circumference cancel out. The very title of Ref. 32 suggested
bend-induced insulating gap for zigzag and chiral CNTs.
While my results do agree on the insensitivity of armchair
tubes toward bending,28,29 why are there contradictions in
those other trends?

This question brings me to the third main result of this
work: the correct trends are obtained only after full struc-
tural relaxation. The absence of relaxation in previous
works, therefore, explains the above contradictions. Indeed,
if the calculations were repeated with a mere skilled estimate
for the bent geometry, the trends regarding q-families turned
out wrong. Even single-orbital tight-binding explains the
trends correctly—if it is only given the properly optimized
geometries.

What makes the relaxation so important, is that, due to
anharmonic effects, the carbon-carbon bonds will, on aver-
age, stretch upon bending. Pure stretching of CNTs, in turn,
has been reported to yield the very same trends.28 In the limit

�→0 bonds do behave harmonically and opposite strains on
opposite sides of the tube do have a cancelling effect; note
that all curves in Figs. 2�c� and 3�c� start with a zero slope,
that is, anharmonicity emerges only in the second order in �.
As bending increases, the bonds in the outer part stretch
progressively more than bonds in the inner part shrink. The
simulated circumference-averaged strains increase as �avg

�0.4·�2, yielding some 10−3 strains with �=5% bending.
To conclude, the trends above ought to be correct and

independent of any approximations of tight-binding, since
the origin of the trends, the anharmonicity of carbon-carbon
bonds, is so plausible and fundamental. Measuring these
trends from individual tubes is feasible,6 although care
should be taken to avoid other distortions and to make the
bending pure. More relevant, however, are still the general
trends, not properties of individual tubes—because we still
do not have full experimental control over nanotube chirali-
ties.

I acknowledge A. Laakso for discussions, the Academy of
Finland for funding, and the Finnish IT Center for Science
�CSC� for computational resources.

*pekka.koskinen@iki.fi
1 S. Iijima, Nature �London� 354, 56 �1991�.
2 M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks,

Jr., S. Washburn, and R. Superfine, Nature �London� 389, 582
�1997�.

3 H. Ko, Y. Pikus, C. Jiang, A. Jauss, O. Hollricher, and V. V.
Tsukruk, Appl. Phys. Lett. 85, 2598 �2004�.

4 L. Pan, M. Zhang, and Y. Nakayama, J. Appl. Phys. 91, 10058
�2002�.

5 L. Song, W. Ma, Y. Ren, W. Zhou, S. Xie, P. Tan, and L. Sun,
Appl. Phys. Lett. 92, 121905 �2008�.

6 B. Wang, A. K. Gupta, J. Huang, H. Vedala, Q. Hao, V. H.
Crespi, W. Choi, and P. C. Eklund, Phys. Rev. B 81, 115422
�2010�.

7 A. Kutana and K. P. Giapis, Phys. Rev. Lett. 97, 245501 �2006�.
8 B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett.

76, 2511 �1996�.
9 L. Pastewka, P. Koskinen, C. Elsässer, and M. Moseler, Phys.

Rev. B 80, 155428 �2009�.
10 A. Rochefort, P. Avouris, F. Lesage, and D. R. Salahub, Phys.

Rev. B 60, 13824 �1999�.
11 C. Tang, W. Guo, and C. Chen, J. Appl. Phys. 108, 026108

�2010�.
12 I. Nikiforov, D.-B. Zhang, E. D. James, and T. Dumitricǎ, Appl.
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