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We investigate the local density of states and Friedel oscillation in graphene around a well-localized impu-
rity in Born approximation. In our analytical calculations Green’s function technique has been used taking into
account both the localized atomic wave functions in a tight-binding scheme and the corresponding symmetries
of the lattice. As a result we obtained long wavelength oscillations in the density of electrons with long-range
behavior proportional to the inverse square of the distance from the impurity. These leading oscillations are out
of phase on nearby lattice sites �in fact for an extended defect they cancel each other within one unit cell�,
therefore a probe with resolution worse than a few unit cells will experience only the next to leading inverse
cube decay of density oscillations even for a short-range scatterer.
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Ever since the first production of atomically thin carbon
films,1 graphene continues to fascinate physicists of almost
all walks of life. This simple two-dimensional system of car-
bon atoms arranged in a honeycomb lattice provides us with
a number of interesting properties mainly due to the massless
Dirac nature of the dispersion relation of its electrons.2 Un-
doped graphene has its Fermi energy at the tip of the Dirac
cones and behaves as a zero-gap semiconductor. Applying
appropriate gate voltage leads to electron or hole pockets and
metallic behavior with Fermi wave number kF typically
much smaller than the size of the Brillouin zone. Exciting
potential applications of graphene include for example
carbon-based planar electronic circuitry with the possibility
of electrically reconfigurable wiring,3 exploiting the guiding
effect of graphene p-n junctions with negative refractive
index.4 On the theoretical side perhaps the simplest quantity
to be considered is the change in the local density of states
�LDOS� and the Friedel oscillation �FO� in the excess charge
density due to a well-localized impurity. Results of these
considerations have implications for the LDOS in disordered
graphene,5,6 for the interaction between adatoms in
graphene,7,8 or in case of magnetic adatoms9 for the
corresponding Ruderman-Kittel-Kasuya-Yosida �RKKY�
interaction.10

Early theoretical work on the LDOS and the resulting FO
around an impurity in graphene11,12 predicted long-
wavelength �2kF� oscillations in the charge density, but with
envelope decaying like r−3 at distance r from the impurity.
This is in contrast to the r−2 decay in a degenerate nonrela-
tivistic two-dimensional Fermi gas, and suppressed back-
scattering of chiral graphene electrons residing around the
Fermi circle of the Dirac cone was offered as an explanation.
However, graphene has two inequivalent Dirac cones �val-
leys� in the Brillouin zone and intervalley scattering by the
impurity may lead to short wavelength oscillations on the
order of a few lattice constants as well. Indeed, a scanning
tunneling microscopy �STM� study13 of epitaxial graphene
revealed two different length scales around defects. Subse-
quently, intervalley �or internodal� scattering has been built
in the theory14 and has been shown to be responsible for r−1

decay in LDOS and r−2 decay in FO. The different power
laws for intranodal and internodal scatterings have been ob-

served by Fourier Transform STM experiment15 but no de-
tailed investigation of the short-wavelength oscillations has
been performed either experimentally or theoretically. The
first step toward this direction has been made by incorporat-
ing atomic wave functions instead of just plane waves into
the theory,16 and it has become clear that although the LDOS
falls off with r−1, for intranodal scattering only it has oppo-
site sign on the two sublattices. Therefore upon coarse grain-
ing, for example, due to experimental resolution, the leading
order decay cancels within one unit cell, and one is left with
the next to leading r−2 envelope, and consequently an r−3

decay of FO.
The aim of the present Brief Report is to give a detailed

analysis of the short wavelength oscillations due to intern-
odal scattering within the framework of a simple and trans-
parent, atomic resolution theory based on the tight-binding
wave functions of electrons on the honeycomb lattice. Our
main results are the short-range spatial pattern of LDOS and
FO on both sublattices with the corresponding symmetries
�see Fig. 1�, and the observation that including internodal
scattering still lead to cancellation of the leading power law
decay of oscillations, but not within one unit cell, but within
three neighboring ones. This means that if, for example, the
STM tip cannot resolve the six atoms on a hexagon of the
honeycomb lattice, we encounter again just the next to lead-
ing power law envelopes for both LDOS and FO.

We begin with the tight-binding Hamiltonian of carbon
atoms forming a honeycomb lattice with nearest-neighbor
hopping t �assumed to be real� between the pz orbitals ��r�.
In momentum space this leads to a 2�2 Hamiltonian matrix
spanned by Bloch waves constructed from the atomic orbit-
als on the two sublattices A and B as

H = �
k�

�aAk�
+ aBk�

+ �� 0 tf��k�
tf�k� 0

��aAk�

aBk�
� , �1�

where f�k�=1+eika1 +eika2 with primitive lattice vectors
a1,2=a��1 /2,�3 /2� of length a. Diagonalization yields the
eigenvalues ���k�= � �t��f�k�� defining the two bands of pure
graphene and the eigenvectors in the tight-binding form
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��,k�r� =
1

�N
�
R

eikR��e−i	�k���r − R� + ��r − R − c�	 ,

�2�

where the summation runs over the R lattice vectors and
	�k� is the complex phase of f�k� determining the mixing of
A and B sublattice states, and c= �a1+a2� /3 is the vector
pointing from the A to the B site within the unit cell. As is
well known, f�k� vanishes at the corners of the hexagonal
Brillouin zone, leading to the massless Dirac spectrum
���k�
 �
vF	k, with vF=�3a�t� /2
 the Fermi velocity,
and �k the wave number measured from the corners.
Since there are two inequivalent corners, for example,
K= �b1−b2� /3 and K�=−K as expressed by the primitive
reciprocal lattice vectors, there are two Dirac cones or val-
leys in the Brillouin zone. Electron spin does not play any
role in the forthcoming discussion, therefore we suppress
spin indices, and all our results will refer to one spin orien-
tation.

The real-space representation of the Green’s function
of complex energy variable G�z ,r ,r�� is of central
importance for our subject since the LDOS is given
by its analytic continuation just above the real axis as
��� ,r�=−�−1 Im G��+ i	 ,r ,r�. For pure graphene, not per-
turbed by impurities, the free Green’s function is evaluated
using Eq. �2� as

G0�z,r,r�� = �
l=�,k

�l,k�r��l,k
� �r��

z − �l�k�

= �
RR�

�� �r − R�G0�z,R − R���� +�r� − R�� , �3�

where �� �r�= ���r� ,��r−c�	 is a row vector formed by the

orbitals of the A and B sites in the unit cell, and the Green’s
matrix is given by

G0�z,R� =
1

N
�
k

eikR

z2 − t2�f�k��2
� z tf��k�

tf�k� z
� . �4�

The free Green’s function in Eq. �3� is clearly translation
invariant by a lattice vector only but due to the well-
localized nature of the atomic wave functions it typically
consists of only one non-negligible term determined by the
proximity of r and r� to a lattice point given by either
rA�=R� on the A sublattice or by rB�=R+c� on the B
sublattice. On the other hand, the �identical� diagonal
elements of the Green’s matrix in Eq. �4� are even
functions of R �e.g., GAA

0 �z ,−R�=GAA
0 �z ,R�	 while the off-

diagonal elements transform into each other upon
reflection �GAB

0 �z ,−R�=GBA
0 �z ,R�	. It is instructive to

consider the LDOS of the pure system given by
�0�� ,r�=�0����R����r−R��2+ ���r−R−c��2	 /2, where �0���
is the DOS, which can be approximated around the Dirac
point by Ac��� /��
vF�2, Ac=�3a2 /2 being the area of the
unit cell.

Let us consider a substitutional impurity characterized by
a short-range scattering potential energy U�r�=u	�r� located
at the origin, which is a site on the A sublattice. The correc-
tion to the LDOS in Born approximation is determined by

G�z ,r ,r�=uG0�z ,r ,0�G0�z ,0 ,r�, which can be expressed
due to the localized atomic orbitals as

u0���r − rA��2GAA
0 �z,rA�GAA

0 �z,− rA� �5�

or

u0���r − rB��2GBA
0 �z,rB − c�GAB

0 �z,− rB + c� �6�

depending on whether r is in the vicinity of an A or a B site,
respectively, and u0=u���0��2. Corrections to the LDOS be-
yond Born approximation are negligible as long as
u0�0����1, or u0� t2 / ���. Considering higher order terms
within say a T-matrix approximation would lead primarily to
bound states localized around the impurity,17 the description
of which is out of scope of the present Brief Report. The
spatial pattern in Eqs. �5� and �6� is dominated by the density
profile of the atomic orbital centered on the given lattice site
while the multiplicative factor on that site depends on the
corresponding Green’s matrix elements. It can be proven that
the diagonal elements of the Green’s matrix such as
GAA

0 �z ,rA� have sixfold rotational symmetry in rA, while the
off-diagonal elements such as GBA

0 �z ,rB−c� have only three-
fold rotational symmetry in rB.

In order to evaluate the relevant Green’s matrix elements
from Eq. �4� we observe that the most important contribu-
tions come from the nodal points of the spectrum, i.e., from
around the points K and K�=−K in the Brillouin zone. The
matrix elements therefore consist of two terms each, led by
fast oscillations of the type exp�iKR� and exp�iK�R�,
modulated by functions of slow spatial variation. These
latter functions can be evaluated by using the linearized
f��K+	k�=−�3a��	kx+ i	ky� /2 expression around the
nodal points up to a cutoff kc. This will be a good approxi-
mation for these slowly varying factors of the Green’s matrix

FIG. 1. �Color� Short-wavelength spatial dependence of the
LDOS due to an impurity at the center. Three-dimensional plot of
cA�r�+cB�r�= �c�r�� is viewed from above and the color code indi-
cates the opposite sign on the two sublattices.
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elements for distances from the impurity much larger and for
characteristic spatial variations much longer than 1 /kc. This
procedure leads to the following result for the diagonal ele-
ment in
Eq. �5�:

GAA
0 �z,rA� = �eiKrA + eiK�rA�

− iAcz

�2
vF�2H0
�1�� zrA


vF
� , �7�

where H0
�1��z� is the Hankel function, and this functional

form is valid for Im z�0 only �which is enough for the
prescribed analytic continuation� and for �z��
vFkc. Simi-
larly, for the off-diagonal element in Eq. �6� we obtain

GBA
0 �z,rB − c� = �ei�KrB+�� − ei�K�rB−���

�
− sgn�t�Acz

�2
vF�2 H1
�1�� zrB


vF
� , �8�

where H1
�1��z�=−dH0

�1��z� /dz, � is the angle rB makes with
the x axis �which is parallel to K�. For GAB

0 �z ,−rB+c�
we have the same formula as in Eq. �8�, except
that the prefactor with the exponentials is replaced by
�−e−i�KrB+��+e−i�K�rB−���. We remind the reader that these ex-
ponential prefactors in the Green’s matrix elements describ-
ing short-wavelength oscillations are exact, as opposed to the
spatial dependence described by the Hankel functions.

The change in the LDOS in graphene due to the impurity

��� ,r�=−�−1 Im 
G��+ i	 ,r ,r� is now easily calculated
using Eqs. �5�–�8�. Let us note first, that the short-
wavelength spatial pattern in, e.g., Eq. �5� is given as
�eiKrA +eiK�rA��e−iKrA +e−iK�rA�=4 cos2�KrA�. However, if the
impurity is unable to produce intervalley scattering �e.g., be-
cause it is extended and has no large wave-number Fourier
components�, then plane waves belonging to different valleys
will not contribute to the above product, and we will only
have 1+1=2 as a result. Thus, without intervalley scattering,
the factor cos2�KrA� describing the short-wavelength spatial
pattern should be replaced by its average, i.e., 1/2. The same
is true for the factor sin2�KrB+�� appearing in Eq. �6�.

Returning to the change in the LDOS, after analytic con-
tinuation we obtain


���,r� =
�

2
u0cA�r��0

2���sgn���J0� ���rA


vF
�Y0� ���rA


vF
� �9�

if r is in the vicinity of an A site and


���,r� =
�

2
u0cB�r��0

2���sgn���J1� ���rB


vF
�Y1� ���rB


vF
�

�10�

if r is in the vicinity of a B site. Here J0, J1 and Y0, Y1 are
Bessel functions of the first and the second kind. The factors
describing the short-wavelength spatial behavior are given
by

cA�r� = ���r − rA��2cos2�KrA� �11�

and

cB�r� = ���r − rB��2sin2�KrB + �� . �12�

It can be easily proven that the cA�r� and cB�r� factors are
invariant under sixfold and threefold rotations, respectively.
Let us remember that for intravalley scattering only, the
weights of the density of atomic orbitals would be the same
on each atoms. We note here that the relative change in the
LDOS not too far from the impurity is 
��� ,r� /�0�� ,r�

u0�0���, therefore within the region of applicability of the
Born approximation, in order to observe 
��� ,r� by STM,
an intensity resolution is required which is comparable to or
better than what is needed for observing �0�� ,r�.

The isotropic spatial dependence in the LDOS given
by the Bessel functions in Eqs. �9� and �10� describes
long-wavelength oscillations since the characteristic wave
number k=� /
vF is much smaller than the cutoff kc.
Consequently, instead of rA and rB we can use here the
continuous variable r measuring the distance from the
impurity. For distances large enough to satisfy �k�r�1 we
can use the leading asymptotic expressions J1�x�Y1�x�
=cos�2x� /�x=−J0�x�Y0�x� for x→�. Due to this sign
change on the two sublattices, it is useful to define a com-
posite short-wavelength pattern c�r�=−cA�r� if r is near an A
site, and c�r�=cB�r� if r is near a B site. Then the change in
the LDOS due to an impurity at the origin can be given by
the following compact formula:


���,r� = u0c�r��0
2���

cos�2kr�
2kr

�13�

indicating a long-wavelength oscillation with an r−1 decay
and a short wavelength spatial pattern given by c�r�, and
shown in Fig. 1. Although a very rich structure can be seen
on the plot, the overall threefold rotational symmetry is ap-
parent, and appears to have been observed experimentally.18

Due to finite resolution however, the STM tip will mea-
sure a spatial average of the pattern on Fig. 1. In the simpler
case of an extended impurity not producing intervalley scat-
tering, c�r� has atomic densities with equal weight on each
site of one sublattice and the same weight with opposite sign
on each site of the other sublattice. Clearly, a resolution
worse than an elementary cell of graphene will lead to can-
cellation of the leading r−1 decay in Eq. �13�, leaving us with
the next to leading r−2 decay of LDOS. On the other hand for
a short range impurity potential, internodal scattering con-
tributes as well, and yields the short wavelength spatial pat-
tern on Fig. 1, where no cancellation within one unit cell
occurs. However it is easily shown, that averaging c�r� over
three neighboring unit cells again leads to cancellation of the
weights of the atomic densities. Indeed if the weights in c�r�
are added in the unit cells given by lattice vectors R, R+a1,
and R+a1−a2 �far from the impurity � is the same for all
three lattice sites�, we obtain zero. Therefore an STM with
resolution worse than three elementary cells will not be able
to measure the leading r−1 decay either. It is easily shown
that the weights of the atomic densities cancel on the six sites
of any hexagon of the honeycomb lattice.

The change in the particle density at zero temperature due
to the impurity is now easily obtained by integrating the
LDOS up to the Fermi energy �F. Since 
��� ,r� is an odd
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function of energy, 
n�r� is even in �F, therefore we inte-
grate up to −��F�. As long as kFr�1, where kF= ��F� /
vF, we
can use the asymptotic forms of the Bessel functions to ob-
tain the leading term of the FO as


n�r� =
u0Ac

4�
c�r��0��F�

sin�2kFr�
r2 , �14�

where we disregarded the oscillations due to the cutoff at the
lower limit of integration as unphysical since these are too
fast to be taken seriously in our scheme. The FO with wave
number 2kF decays on both sublattice as r−2, but as it was
discussed in case of the LDOS, limited experimental reso-
lution leads to cancellation of the leading power laws, and
only the r−3 decay will be observed. For resolution of about
a unit cell this happens for an extended impurity not produc-
ing internodal scattering, but somewhat worse resolution of
about three unit cells or a hexagon of the honeycomb lattice
leads to cancellation even for a pointlike impurity producing
internodal scattering as well. Finally it is worth mentioning
that for half-filled graphene, i.e., �F=0, we obtain r−3 decay
without 2kF oscillations on both sublattices.

In conclusion, we have presented a clear and concise cal-
culation of the change in the local density of states, and the
resulting Friedel oscillations in the electron density in
graphene, due to a single nonmagnetic substitutional impu-
rity with short-range scattering potential. In order to achieve
atomic scale description we used tight-binding wave func-
tions with atomic orbitals. As a consequence of this ap-
proach, the short wavelength spatial pattern in our results for
both LDOS and FO, described by c�r� in Eqs. �13� and �14�,

can be considered exact. Using a linearized electronic spec-
trum up to a cutoff affects only the rest of the spatial depen-
dence but for energies close to the Dirac point and for dis-
tances far from the impurity, the long-wavelength oscillating
parts are excellent approximations as well. In particular, the
LDOS decays as r−1 and the FO with wave number 2kF as
r−2 on both sublattices. The short-wavelength spatial pattern,
depicted on Fig. 1, shows the required rotational symmetries.
Since c�r� has alternating signs on neighboring lattice sites,
experimental resolution worse than about three unit cells �or
a hexagon of the lattice� will lead to cancellation of the lead-
ing power-law decays in both quantities yielding the next to
leading r−2 and r−3 behaviors for LDOS and FO, respec-
tively. Within the present framework, the case of an extended
defect can also be considered by restricting the calculation to
intravalley scattering by the impurity. This affects only the
short wavelength spatial pattern c�r�, making the weights of
the atomic densities in it equal �but still of opposite sign on
the two sublattices�. Consequently, the above mentioned can-
cellation of the leading power-law decays occurs already at
resolution worse than one unit cell. Therefore if the experi-
mental resolution falls between one and three unit cells, dis-
tinction can be made between localized and extended de-
fects, since the observed power-law decay for LDOS, for
example, should follow r−1 for the former and r−2 for the
latter.
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