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The counterflow transport in quantum Hall bilayers provided by superfluid excitons is locked at small input
currents due to a complete leakage caused by the interlayer tunneling. We show that the counterflow critical
current Ic

CF above which the system unlocks for the counterflow transport can be controlled by a tilt of magnetic
field in the plane perpendicular to the current direction. The effect is asymmetric with respect to the tilting
angle. The unlocking is accompanied by switching of the systems from the dc to the ac Josephson state. Similar
switching takes place for the tunneling setup when the current flowing through the system exceeds the critical
value Ic

T. At zero tilt the relation between the tunnel and counterflow critical currents is Ic
T=2Ic

CF. We compare
the influence of the in-plane magnetic field component B� on the critical currents Ic

CF and Ic
T. The in-plane

magnetic field reduces the tunnel critical current and this reduction is symmetric with respect to the tilting
angle. It is shown that the difference between Ic

CF and Ic
T is essential at field �B����0 /d�J, where �0 is the flux

quantum, d is the interlayer distance, and �J is the Josephson length. At larger B� the critical currents Ic
CF and

Ic
T almost coincide each other.
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The idea on exciton superfluidity in electron-hole
bilayers1–3 and especially in quantum Hall bilayers4–6 with
total filling factor �T=1 has obtained a lot of attention in past
10 years because of comprehensive experimental study of
that problem. In view of possible applications the most im-
portant are the counterflow experiments.7–9 In these experi-
ments the samples with separate assess to the layers are used.
Electrical current is injected into one layer in a given end of
the Hall bar, is withdrawn from the same layer in the oppo-
site end, and is redirected to the other layer. The currents in
the layers have the same value and opposite directions, so
they may be provided solely by superfluid magnetoexcitons.

Samples used in the counterflow experiments7–9 demon-
strate a huge increase in conductivity at low temperatures but
they do not demonstrate zero counterflow resistance. We
consider that the zero-resistance state can be realized only in
quite perfect bilayers. Imperfectness results in emergence of
vortices �merons� in the magnetoexciton gas. Meron local
concentration is proportional to the deviation of the local
filling factor from unity. At rather strong imperfectness
merons become uncoupled at all temperatures and their mo-
tion perpendicular to the charge transport direction results in
a finite counterflow resistance.10–12 At low degree of imper-
fectness meron pairs remain bounded and the counterflow
resistance should go to zero.

Magnetoexciton superfluidity in bilayers is possible at
rather small interlayer separation d �less or of order of the
magnetic length �B�. At such a separation the interlayer tun-
neling is not negligible and it may influence significantly on
the counterflow transport.13–17 This influence is connected
with a formation of another type of vortices—the Josephson
ones. The length parameter associated with Josephson vorti-
ces is the Josephson length �J=�B

�2��s / t, where t is the
interlayer tunneling amplitude and �s is the superfluid stiff-
ness for magnetoexcitons. If �J is much smaller than the
length of the Hall bar Lx, the effect of locking of the bilayer
for the counterflow transport takes place.

The locking occurs at small input current Iin� Ic
CF at

which a partial Josephson vortex �V� is formed at the source
end and the current does not reach the load end. The input
critical current is equal to the integral Josephson current for
the half of the Josephson vortex: Ic

CF=2j0�JLy, where
j0=et /2���B

2 is the maximum Josephson current density and
Ly is the width of the Hall bar. One can see that in this state,
that is a kind of the dc Josephson state,18 the integral Joseph-
son current is proportional to �t. At Iin	 Ic

CF the Josephson
vortex chain emerges instead of the partial vortex, and the
current reaches the load. Nonzero current in the load circuit
requires nonzero interlayer voltage. This voltage forces the
vortex chain to move along the bilayer. Such a state is a kind
of the ac Josephson state. In this state the leakage is small—
the integral average in time Josephson current is proportional
to t2. A finite value of this current is connected with dis-
sipative processes that switch on13,15 in the ac state. The
effect of locking and unlocking of the quantum Hall bilayer
for the counterflow transport was observed in the recent
experiment.19

In view of possible applications of the exciton superfluid-
ity it is important to control the locking-unlocking effect. In
this Brief Report we show that the in-plane component of
magnetic field B� can be used for such a control. We have
found that the dependence of Ic

CF�B�� is asymmetric and one
can decrease or increase the critical current by tilting. We
restrict our study with the case of perfect bilayers without
free merons and do not consider the influence of the meron-
induced disorder20,21 on the critical current.

The switching between the dc and ac Josephson regimes
takes place in another experimental setup called the tunnel-
ing one and used for the observation of the Josephson effect
in bilayers.22–26 In this setup the current is injected into the
top layer at one end of the Hall bar and is withdrawn from
the bottom layer at the opposite end. In the dc Josephson
state two partial Josephson vortices are formed at the both
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ends of the Hall bar and normal codirected intralayer cur-
rents flow in the bulk. At zero in-plane magnetic field the
maximum current in the dc state is Ic

T=2Ic
CF �the factor of 2 is

due to additive contribution of two ends of the Hall bar�. The
interlayer voltage in the dc state is equal to zero. The transi-
tion from the dc to the ac Josephson regime reveals itself in
a sharp drop of the integral Josephson current. The value of
the tunnel critical current can be extracted from the I-V char-
acteristics: the maximum current before its drop is identified
as Ic

T.25,26 We would note that in the experiments25,26 the
voltage between two leads in the central part of the sample
was much smaller than the voltage between the input and the
output leads. It probably means that the bias voltage mea-
sured in tunneling experiments is mostly the contact voltage.

In the tunneling setup the in-plane magnetic field may
cause a resonant increase in the integral tunnel current in the
ac regime20,27,28 �similar behavior was also observed
experimentally23�. In view of the exact relation between Ic

T

and Ic
CF at zero tilt it is of interest to consider how the tilt

changes the critical current Ic
T. We find that in balanced bi-

layers the function Ic
T�B�� is symmetric and the tilt �irrespec-

tive to its sign� results in a decrease in the tunnel critical
current.

We will formulate the problem in terms of the phase of
the order parameter 
 for the superfluid magnetoexciton gas.
The axis x is chosen along the flow direction and the deriva-
tive d
 /dx determines the intralayer supercurrents

js1 = − js2 =
e

�
�s�d


dx
−

eByd

�c
� . �1�

Here and below we imply that �d
 /dx���B
−1. We specify the

case of the phase 
 independent of y and the magnetic field
tilted in the plane perpendicular to the current direction
�B� =By�. The Josephson current density reads as

jJ = −
e

�

t

2��B
2 sin 
 . �2�

The quantity jJ is defined as a current that flows from the
layer 1 to the layer 2. The intralayer currents contain the
uniform counterflow diamagnetic component

jd = −
e2�sByd

�2c
. �3�

The diamagnetic effect is rather small: the magnetic suscep-
tibility �=−�e2 /�c�2�sd /e2 is proportional to the square of
the fine structure constant. Therefore the difference between
the external magnetic field and the field inside the bilayer
can be neglected. But the presence of the diamagnetic current
is significant for the transport properties.

In the dc state the local interlayer voltage is equal to zero
�V1�r�=V2�r�	 that means the equivalence of electrical fields
in the layers �E1=E2=E�. The currents satisfy the stationary
continuity equations dj1�2� /dx jJ=0, where the intralayer
current is the sum of the supercurrent and the normal current
�j1�2�= js1�2�+ jn1�2��. Taking into account the condition
js1=−js2, one finds that jn1+ jn2= ��̂1+ �̂2�E=const, where �̂i
is the normal conductivity tensor for the layer i.

In the dc state the current in the load circuit should be

zero �in the counterflow setup�. Therefore j1�Lx�= j2�Lx�=0
that yields jn1�Lx�+ jn2�Lx�=0. Thus jn1+ jn2=const=0, the
electrical field E=0, and jn1= jn2=0. The continuity equa-
tions are reduced to the following equation for the phase:

d2


dx2 =
1

�J
2sin 
 . �4�

Equation �4� is the nonlinear pendulum equation in which the
time variable is replaced with the space one. Two different
types of motion of a nonlinear pendulum �oscillation and
rotation� correspond to two distinct dc Josephson states.
They are classified as the V-antivortex �VA� chain, and the V
�or the A chain� state. The word “vortex” �antivortex� stands
for the Josephson vortices with the positive �negative� vor-
ticity.

The currents in the VA state have the form

js1�x� = jd + jc
��cn� x − x0

�J
,�� ,

jJ�x� =
jc
��

�J
dn� x − x0

�J
,��sn� x − x0

�J
,�� . �5�

The V �A� state configuration of currents is described by the
equation

js1�x� = jd 
jc

��
dn� x − x0

�J
��

,�� ,

jJ�x� = 
jc

�J
sn� x − x0

�J
��

,��cn� x − x0

�J
��

,�� . �6�

In Eqs. �5� and �6� jc=2e�s /�J� is the critical current den-
sity, and sn�x ,��, cn�x ,��, and dn�x ,�� are the Jacobi ellip-
tic functions. The parameter � is in the range �0,1	. This
parameter is connected with the period of the vortex chain.
At �→1 the period goes to infinity, and Eq. �5�, as well as
Eq. �6�, describes a single vortex centered at x0.

The energy of the Josephson vortex state is given by the
equation

E =
 d2r�1

2
�s�d


dx
−

eByd

�c
�2

−
t

2��B
2 cos 
� . �7�

The conditional minimum of the energy �Eq. �7�	 at given
boundary conditions for the input and output currents deter-
mines the vortex configuration.

Prior to consider the critical current problem we would
remind that Josephson vortices can emerge at zero input cur-
rent, as well.29,30 If

�By� 	 Bc =
4�0

�2d�J

��0=hc /2e is the flux quantum� Josephson vortices penetrate
into the bulk of an isolated bilayer �j1�2��0�= j1�2��Lx�=0	 and
a vortex chain structure with the period of order of �J is
formed. The in-plane critical field Bc is analogous to the
critical field Hc1 for a long Josephson contact between two
superconductors. At �By��Bc a state with only two partial
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vortices situated at the opposite ends of the Hall bar is real-
ized. These partial vortices joint counterflow diamagnetic in-
tralayer currents into the circular diamagnetic current.

For the counterflow setup the critical current density
jc
CF�By� can be found as follows. In the dc state the normal

current is equal to zero. Thus js1�0�= jin, where jin is the
input current density and js1�Lx�=0. We imply that the phase

�x� is a continuous function of x. It corresponds to the
vortex state with the same � in the whole system. For a given
state the intralayer current varies in a certain range deter-
mined by the parameter � and the in-plane field By. It is the
range �jd− jc

�� , jd+ jc
��	 for the VA state, the range

�jd+ jc
��1−�� /� , jd+ jc

�1 /�	 for the V state, and the range
�jd− jc

�1 /� , jd− jc
��1−�� /�	 for the A state. The counter-

flow dc state can be realized if at least one of the ranges
enumerated above contains both jin and zero. The situation is
symmetric with respect to the change in sign of both jin and
By, and it is enough to consider only positive jin.

For the further analysis it is convenient to define the char-
acteristic in-plane magnetic field

Bc� =
2

�

�0

d�J
, �8�

determined by the condition �jd�= jc. It is larger than
Bc �Bc�=�Bc /2�.

Let us first consider the case of positive By �jd�0�. The
VA state may satisfy the boundary conditions if jin� jc− �jd�.
The V state is possible if for the same � two inequalities
jin� jc

�1 /�− �jd� and jc
��1−�� /�− �jd��0 are fulfilled. That

yields the following restriction on the input current:
jin��jc

2+ jd
2− �jd�.

At −Bc��By �0�jd	0� the dc state is possible up to
jin= jd+ jc. Indeed, the VA state satisfies the boundary condi-
tions at jd� jin� jd+ jc, and the A state—at jin� jd. At
By 	−Bc� the VA state is not possible, and the A state may
satisfy the dc boundary conditions only for the input current
jin� jd−�jd

2− jc
2.

Thus the dependence of the counterflow critical current
density on By has the form

jc
CF�By� = jc

−
By

Bc�
−��By

Bc�
�2

− 1 at By � − Bc�

1 −
By

Bc�
at − Bc� � By � 0

��1 + �By

Bc�
�2

−
By

Bc�
� at By 	 0.

�
�9�

The dependence �Eq. �9�	 is shown in Fig. 1. One can see
that at �By��Bc� this dependence is essentially asymmetric
one. Such an asymmetry is connected with that the counter-
flow current and the diamagnetic current can be codirected or
oppositely directed depending on the sign of the tilting angle.
The tilting angle that corresponds to By =Bc� is rather small:
�tilt

c �2�B
2 / �d�J�.

Let us say some words on the role of critical field Bc. The
dependence jc

CF�By� is continuous one at �By�=Bc. But the

vortex structure that corresponds to the energy minimum
changes significantly at this point. At �By��Bc the V and A
states are the states with only two partial vortices �antivorti-
ces� at the opposite ends. But if �By� exceeds Bc these states
are transformed into multivortex ones. The VA state with
minimal energy is the state with only a partial vortex at one
end and a partial antivortex at the opposite end irrespective
of the value of By.

Let us now switch to the tunneling setup. In this setup
j1�0�= j2�Lx�= jin and j2�0�= j1�Lx�=0. Since the counterflow
currents cannot transfer the charge between two ends, normal
currents are nonzero and their sum is equal to the input cur-
rent jn1+ jn2= jin=const. The difference jn1− jn2=const, as
well. Thus the normal current does not enter into the conti-
nuity equation, and the latter is reduced to the equation for
the phase �Eq. �4�	.

Here we specify the case of balanced bilayers in which
jn1= jn2, and the supercurrents satisfy the boundary condi-
tions js1�0�=−js1�Lx�= jin /2. For given By and � we have
three ranges of js1 �that coincide with ones given above� for
the VA, V, and A solutions. In the tunneling setup the dc state
can be realized if the quantities +jin /2 and −jin /2 belong to
the same range. For the VA solution the latter condition is
fulfilled under the following restriction on the value of the
input current:

�jin� � 2�jc − �jd�� . �10�

The V solution may satisfy the boundary condition at nega-
tive jd, and the A solution—at positive jd. Common for both
solutions restriction on jin reads as

�jin� � max�F���	 , �11�

where the function

F��� = 2 min��jd� − jc�1 − �

�
, jc

1
��

− �jd�� �12�

contains By as a parameter and is defined in the interval
0���1. Let us find �m that maximizes the function F���.
At �jd�� jc /2 we obtain �m=1 and F��m�=2�jd�. At
�jd�	 jc /2 the quantity �m is determined by the equation

FIG. 1. �Color online� Critical current densities �in jc units� vs
the in-plane magnetic field �in Bc� units�. The counterflow critical
current jc

CF is shown by solid line and the tunnel critical current jc
T

by dashed line.
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�jd� − jc�1 − �m

�m
= jc

1
��m

− �jd� �13�

that yields ��m=4jc�jd� / �4jd
2+ jc

2� and F��m�= jc
2 /2�jd�.

Comparing the conditions �Eqs. �10� and �11�	 we obtain
the final expression for the tunnel critical current density

jc
T�By� = 2jc1 −

�By�
Bc�

at �By� � Bc�/2

Bc�

4�By�
at �By� � Bc�/2.� �14�

The dependence �Eq. �14�	 is shown in Fig. 1. One can see
that while at By =0 the current jc

T exceeds jc
CF by the factor of

2, at �By��Bc� these quantities almost coincide each other.
The other difference between jc

T and jc
CF is that the tunneling

critical current is symmetric with respect the sign of the tilt-
ing angle. The latter property can also be predicted from the
symmetry reasons. Note that such a symmetry takes place
only in case of balanced bilayers: at nonzero imbalance
jn1� jn2 that results in asymmetric dependence jc

T�By�.
In conclusion, we have shown that the locking and un-

locking of the quantum Hall bilayer for the counterflow
transport can be controlled by tilting of magnetic field. The
effect can be observed in the same experimental setup, where

the locking-unlocking effect under variation in the input cur-
rent was recently discovered.19 Asymmetric dependence of
the critical current on magnetic field is expected in a rather
narrow diapason of tilting angles close to zero. We have
compared the influence of the in-plane magnetic field on the
counterflow critical current and on the tunnel critical
current.25,26 We find that the difference is essential at small
in-plane magnetic fields. The maximum counterflow critical
current coincides with the maximum tunnel critical current
but in the first case the maximum is reached at By =−Bc�
while in the second case at By =0.

It is important to discuss the validity of our results for real
experimental systems. The main assumption of our consider-
ation is the existence of a path between the input and the
output end that is free from merons and weak links. We
imply that the phase of the order parameter is continuous one
along this path. Systems, where such a path does not exist
but which have quite long areas without merons may also
demonstrate similar behavior. In the latter case the tunnel
critical current at By �0 should be larger than in the case
considered in this Brief Report. It is because two ends will
work separately.
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