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Thermal hysteresis in a micron-size superconducting quantum interference device ��-SQUID�, with weak
links as Josephson junctions, is an obstacle for improving its performance for magnetometry. Following the
“hot-spot” model of Skocpol et al. �J. Appl. Phys. 45, 4054 �1974�� and by incorporating the temperature
dependence of the superconductor thermal conductivity under a linear approximation, we find a much better
agreement with the observed temperature dependence of the retrapping current in short superconducting Nb-
based weak links and �-SQUIDs. In addition, using the temperature dependence of the critical current, we find
that above a certain temperature hysteresis disappears. We analyze the current-voltage characteristics and the
weak link temperature variation in both the hysteretic and nonhysteretic regimes. We also discuss the effect of
the weak link geometry in order to widen the temperature range of hysteresis-free operation.
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I. INTRODUCTION

A micron-size superconducting quantum interference de-
vice ��-SQUID� consists of two superconducting Dayem
bridges or weak links �WLs�,1 of dimension on the order of
the superconducting coherence length, in parallel, forming a
loop with area in the �m2 range. A single WL behaves very
much like a Josephson Junction1 with the supercurrent ap-
proximately given by I= Ic sin �, where Ic is the critical cur-
rent and � is the phase difference across the junction. When
two such junctions are fabricated in parallel in a SQUID,
interference between the two current branches gives an os-
cillatory behavior of the critical current Ic with the external
magnetic field.2 The flux period is equal to the flux quanta
�0=2.05�10−15 T m2. This makes the SQUID a very sen-
sitive device to measure magnetic field. While the flux sen-
sitivity achieved by conventional SQUIDs is better than
10−7�0 /�Hz, for a �-SQUID it has only been about
10−4�0 /�Hz.3 �-SQUIDs have been used to study the mag-
netization reversal3 of an isolated magnetic nanoparticle, the
persistent current in phase-coherent rings4 and also in scan-
ning SQUID microscopy.5 An improved sensitivity of
�-SQUIDs would be useful for probing ferromagnetic par-
ticles of smaller size or where the surface spins play an im-
portant role.6

Other than the sensitivity, the hysteresis in �-SQUIDs
current-voltage �I-V� characteristic �see, e.g., Ref. 5� is a
major hurdle as it �1� increases the measurement time, �2�
complicates the measurement electronics, �3� changes the
temperature of the sample placed in close proximity with the
�-SQUID. Thus it is important to understand this hysteresis
and devise ways of eliminating it. Hysteresis in the current-
voltage characteristic is a very common phenomena for
many superconducting nanostructured systems, especially
WLs. It includes conventional superconductor-insulator-
superconductor �S-I-S� Josephson junctions,2

superconductor-normal-metal-superconductor �S-N-S�
junctions,7,8 superconducting nanowires,9 and superconduct-
ing �-bridges.10–12 When the current is ramped up from zero
across such junctions, the system suddenly switches to a

nonzero voltage state at the critical current Ic. After switch-
ing, when the current is ramped down, the system comes
back to a zero-voltage state at a particular current, called the
retrapping current Ir. At very low temperature, the retrapping
current can be smaller than the critical current: Ir� Ic. This
defines a hysteretic I-V curve.

A number of models have been proposed in the last few
decades to understand the hysteresis in superconducting
WLs. The resistively and capacitively shunted junction2

model predicts the I-V curve for a conventional S-I-S junc-
tion very well. In this case, the capacitance across the junc-
tion is responsible for the hysteresis. But for lateral junctions
�either S-N-S junctions or constrictions�, the geometrical ca-
pacitance is too small to explain hysteresis. Hence an alter-
native theory of an effective capacitance Cef f was
proposed,12 where one equates the charge relaxation time
RnCef f with the Cooper-pair relaxation time h /�. Here Rn is
the normal resistance and � is the superconducting gap pa-
rameter. The same method was recently extended to S-N-S
junctions7 by equating RnCef f with the diffusion time of An-
dreev pairs. Though these methods reproduce some of the
features of the I-V curves, no justification behind the origin
of an effective capacitance has been found.

Recently, Courtois et al.13 have unambiguously shown, by
directly measuring the electronic temperature, that heating is
responsible for hysteresis in S-N-S junctions. According to
the “hot-spot” model of Skocpol et al.,11 the heat generated
in the resistive region of the WL raises locally its tempera-
ture above the critical temperature Tc. The temperature goes
down to the bath temperature as one moves away from the
hot spot. This gives rise to a normal-metal-superconductor
interface along the surface defined by T=Tc. The interface
location is self-consistently determined by the heat generated
and the coupling to the thermal bath. It was found that below
a certain current, identified as the retrapping current, this
interface becomes unsustainable and the WL turns fully su-
perconducting. For a short WL, the hot spot may spread be-
yond the WL and into the electrodes. This hot-spot model
reproduced most of the features of the I-V characteristics of
superconducting WLs. It also predicted a �1−T /Tc depen-
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dence of Ir on T; however the latter was not experimentally
verified. Further, this model ignored the temperature depen-
dence of the thermal conductivity of superconductor. Incor-
porating an approximate form for this temperature depen-
dence, Tinkham et al. described the I-V characteristics of
free-standing superconducting nanowires.14 In this case, the
N-S interface occurs inside the long nanowire, making the
problem one dimensional. This work did not address the tem-
perature dependence of the hysteresis in the I-V characteris-
tics.

In this paper, we describe an effective one-dimensional
thermal model to find out the temperature profile near a short
WL connected to wide electrodes. We calculate the I-V char-
acteristics as well as the �bath� temperature dependence of
the retrapping current. Our model predicts how the normal-
superconducting �N-S� interface position varies with various
parameters such as temperature, current, and geometry. We
also discuss the detailed temperature profile and how it
changes with the bias current. Using the temperature depen-
dence of the critical current near Tc, we find that above a
certain temperature Th, hysteresis disappears. The effect of
the WL geometrical parameters on Th is discussed quantita-
tively. As the same model is directly relevant to �-SQUIDs,
we test it on several such samples. Our model fits our data
very well. Finally, we discuss how the nonhysteretic regime
can be achieved over a wider temperature range, followed by
conclusions.

II. THERMAL MODEL OF HYSTERESIS

Following the hot-spot model,11 we consider a single WL
connected to two extended electrodes, as shown in Fig. 1�a�,
and investigate the temperature distribution around it in the
resistive state. We assume a local quasiequilibrium condition
so that a local temperature can be defined at each point of the
sample. The length and width of the WLs under study are in
50–200 nm range, i.e., on the order of the coherence length
of bulk Nb ��Nb�39 nm�. In this range, a WL behaves very
much like a Josephson Junction.1

Since the WL size is very small, we assume that in the
resistive state the entire WL region stays at a uniform tem-
perature. In reality, the WL will have certain spatial tempera-
ture variation but what will matter here is the heat evacuated
out of the WL. This assumption will not affect our conclu-
sions as long as the WL temperature is not so large as to
affect its resistance. We also assume the pads connecting to
the WLs to be much wider than the length scale over which
the temperature relaxes to the bath temperature.

At a given bias current, we can divide the device into
three regions as shown in Fig. 1�b�: �1� the narrow WL at a
uniform temperature T1 consisting of the rectangular �width
w and length l� area in the center and terminating into a
semicircle of radius r1=w /2 at each end, �2� a normal state
�T	Tc� semicircular region in each electrode with r0	r
	w /2, and �3� a superconducting �T�Tc� region for r	r0.
We have assumed a rounded WL of radius r1=w /2 to avoid
logarithmic divergence in the resistance calculation. This ap-
proach is unlike the hot-spot model for a long WL,11 where
the hot-spot develops near the center of the WL. Beyond the
WL, we assume that the heat conducts away radially in the
bulk of the film. Thus the temperature also decreases radially
inside the two electrodes, reaching the bath temperature Tb
far away from the WL. This enables us to use an effective
one-dimensional model for finding the spatial variation in
temperature. The source of heat is the resistive dissipation in
the normal region, which extends up to a radial distance r0 in
each electrode, thus defining a N-S interface with T=Tc be-
tween normal and superconducting regions.

In the resistive state, the Joule heat near the WL region is
removed in two ways: conduction within each electrode and
surface heat flow from film’s bottom surface to the substrate.
The latter is assumed to be proportional to the temperature
difference between the film and the substrate. This approxi-
mation has been used extensively;11,15,16 we will discuss its
validity later. We neglect the heat loss from the top surface of
the film as we operate in a vacuum cryostat. We also assume
that the entire substrate stays at the bath temperature Tb.
Thus, the general heat flow equation can be written as

− 

dT

dr
2�rd + �

r1

r

��T − Tb�2�rdr + ��T1 − Tb�A = I2R�r� .

�1�

Here 
 is the thermal conductivity, d is the thickness of the
film, A is the area of the WL region given by A= �wl+�r1

2�, I
is the current. The surface heat loss coefficient � is expressed
in W /m2 K. R�r� is the resistance of the electrode within a
radius r including the resistance of the WL. Assuming a ra-
dial and isotropic current flow in the electrodes giving rise to
circular equipotential lines, the resistance R�r� is given by

R�r� = R0 + Rc ln� r

r1
	 , �2�

where �Rc /2=N /d is the square resistance of the film, with
N as the normal state resistivity. Thus Rc defines a charac-
teristic resistance of the film. The resistance R0 of the WL is
given by R0= �l+2r1�N /wd.

FIG. 1. �a� Scanning electron micrograph �SEM� image of a
WL. �b� Sketch of the sample geometry with the three regions dis-
cussed in the text.
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Since we consider low temperatures, we ignore the
phonon’s contribution to the thermal conductivity. In the nor-
mal state, the electronic part of the thermal conductivity 
n
can be found using the Wiedemann-Franz law: 
n=L0T /N,
with L0 as the Lorentz number. In the superconducting state,
as the number of quasiparticles decreases significantly, one
expects the thermal conductivity 
s to be much less. At very
low temperature, since only very few quasiparticles are left
to carry thermal energy, 
s can be exponentially small. We
use here a linear approximation, 
s /
n=T /Tc, which gives

s=
n at T=Tc as expected. From the theory,17 this linear
approximation is well justified near Tc. The same approxima-
tion was also used by Tinkham et al.14

Using the above expressions for 
 and R�r� and differen-
tiating Eq. �1� with respect to r, one gets

1

r

d

dr

rT

dT

dr
� −

N�

L0d
�T − Tb� = − � In

�d
	2 1

L0r2 ,

�r1 � r � r0� , �3�

1

r

d

dr

rT2dT

dr
� −

N�Tc

L0d
�T − Tb� = 0 �r 	 r0� . �4�

The boundary conditions are: �1� at r=r1, T=T1 and Eq. �1�
gives −
�T1� dT

dr 2�r1d+��T1−Tb�A= I2R0, �2� at r=r0, T=Tc,
T and dT

dr are continuous, and �3� for r→�, T=Tb. The radius
r0 and WL temperature T1 have to be found self-consistently
using these boundary conditions.

An inspection of the above two equations gives us a
length scale,

� =�L0Tcd

�N
=�2L0Tc

��Rc
�5�

and a current scale

I0 =
�dTc

N

�L0 =
2Tc

Rc

�L0 =
��

�L0

�2. �6�

Here I0 would determine the scale of the retrapping current Ir
while � would determine the length scale of temperature
variation. For WLs based on a Nb film deposited on a Si
substrate, one typically uses a thickness of 20 to 150 nm.
Depending upon the detailed preparation method, some typi-
cal parameters would be N=15–50 �� cm, Tc=6–9 K
and �=1–3 W cm−2 K−1.15 Using L0=2.44
�10−8 W � K−2, we get ��1–3 �m and I0�0.5–2 mA.

Equations �3� and �4� can be written in terms of the di-
mensionless variables x=r /�, t=T /Tc, i= I / I0, x1=r1 /�, x0
=r0 /�, and tb=Tb /Tc as follows:

1

x

d

dx

xt

dt

dx
� − �t − tb� = −

i2

x2 �x1 � x � x0� , �7�

1

x

d

dx

xt2 dt

dx
� − �t − tb� = 0 �x 	 x0� . �8�

In terms of the reduced variables, the boundary conditions
become: �1� at x=x1, −x1t1

dt
dx + �t1− tb� A

2��2 =
�dR0

2N
i2, �2� at x

=x0, t=1 and dt /dx is continuous, and �3� for x→�, t= tb.

For short weak links, using A
2��2 �1, the first boundary con-

dition becomes t1
dt
dx =−�i2 /x1 with �=

�R0d

2N
=

R0

Rc
 �

2 �1+ �
w �.

Equations �7� and �8� are second-order and nonlinear dif-
ferential equations that can be solved only numerically. We
wish to go beyond the approximation of 
 being independent
of temperature, which would give solutions in terms of
modified Bessel functions as discussed by Skocpol et al.11

We choose to simplify the above equations by substituting
y1= t2 and y2= t3 in Eqs. �7� and �8�, respectively. y1 and y2
then satisfy

d

dx

x

dy1

dx
� = −

2i2

x
+ 2��y1 − tb�x �x1 � x � x0� , �9�

d

dx

x

dy2

dx
� = 3�y2

1/3 − tb�x �x 	 x0� . �10�

Let us first consider the superconducting region �x	x0�
described by Eq. �10�. In this equation, y2 varies between tb

3

and 1. For this range of y2, we linearly approximate the
�y2

1/3− tb� term as

y2
1/3 − tb �

y2 − tb
3

1 + tb + tb
2 , �11�

so as to keep the end points of �y2
1/3− tb�, i.e., 0 at t= tb and

�1− tb� at t=1, fixed. This approximation becomes more and
more accurate as tb approaches 1, i.e., the bath temperature
Tb approaches the critical temperature Tc. Equation �10� then
reduces to the modified Bessel equation s2��+s��−s2�=0,
where �=y2− tb

3 and s=�x with �=�3 / �1+ tb+ tb
2�. With the

boundary condition t= tb �i.e., �=0� at x→�, the only ac-
ceptable solution is �=CK0�s�, where K0 is the modified
Bessel function of second kind and zero degree. Using the
boundary condition t=1 at x=x0, we get the final solution for
x	x0 as

t3 = tb
3 +

1 − tb
3

K0��x0�
K0��x� . �12�

Figure 2 shows, for comparison, the numerical solution of

FIG. 2. �Color online� Comparison between exact �Eq. �11�,
black� and approximate �Eq. �12�, red� solution for the reduced
temperature profile for x	x0. The respective calculated slopes at
the origin are −5.1 and −4.80. Parameters are tb=0.5 and x0

=0.015.
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the nonlinear Eq. �10� and the corresponding solution to the
linearized Eq. �12� for tb=0.5 and x0=0.015. The overall
shapes of the curves are similar, justifying our approxima-
tion.

Let us now consider the normal region �x�x0�. Equation
�9� is difficult to linearize as y1 varies between tb and t1, and
t1 is not known before-hand. The nature of boundary condi-
tions does not allow a simple numerical solution. We make
the approximation to neglect the surface loss term, i.e., the
��y1− tb� term in Eq. �9�. This is justified for finding the
retrapping current Ir in the regime x0�x1, in which case the
heat loss to the substrate is not significant as compared to the
heat conducted out. With this approximation, there is an ana-
lytical solution: y1=−i2��ln x+C1�2+C2�. Here C1 and C2 are
constants to be found from the boundary conditions: y1= t2

=1 at x=x0 and dy2 /dx=−2�i2 /x1. Finally, we get for x1
�x�x0

t2 = 1 − i2
�ln
x

x1
+ �	2

− �ln
x0

x1
+ �	2� . �13�

This relation gives the temperature profile for x�x0 and de-
termines the WL temperature t1= t�x1� in terms of x0. To find
x0, we have to use the continuity of dt /dx at x0 using solu-
tions given by Eqs. �12� and �13�. This gives the following
transcendental equation for x0,

i2 =
�x0�1 − tb

3�K1��x0�
3�ln�x0/x1� + ��K0��x0�

. �14�

As shown in Fig. 3�a�, the right-hand side of above Eq.
�14� features a minima in current i as a function of x0. This
means that below this current, the Joule heat is not sufficient
to uphold a normal-metal-superconductor �N-S� interface
with T=Tc. This current is thus identified as the retrapping
current ir= Ir / I0. Figure 3�b� shows that it decreases with
increasing bath temperature whereas the related x0 increases.
At high temperature, a regime where the retrapping current
exceeds the critical current �ir	 ic� can be reached. In this
case, the WL is resistive while its temperature stays below
Tc. Only if the bias current becomes larger than ir, does a
N-S interface with T=Tc appear at r0�	r1�. We will discuss
this regime in more detail later.

Equation �14� provides the relation between the current
bias I and the N-S interface position x0. One can then calcu-
late the resistance R�x0� using Eq. �2�. The related current-
voltage characteristic V= IR�x0� is plotted in Fig. 3�c� for
different bath temperatures. At low voltage, a negative dif-
ferential resistance branch appears, meaning that, in this re-
gime, for a given current, the voltage can have two distinct
values. Since this branch is unstable under current biasing,18

only the higher voltage is accessible. But if one performs
voltage-biased measurements, then one can access the nega-
tive differential resistance branch as well, as was observed
by Skocpol et al.11 in microbridges and Steinbach et al.19 in
Josephson junction.

For illustration, let us now consider a WL biased at its
retrapping current. Figure 4 shows the radial temperature dis-
tribution for different bath temperatures and for some typical

values of � and x1. Expectedly, at large distance, the tem-
perature asymptotically decreases to the bath temperature.
The temperature profile close to the WL exhibits a large tem-
perature gradient as compared to the superconducting region,
see Figs. 4�c� and 4�d�. The intercepts of the different curves
with the dotted horizontal lines representing t=1 indicate the
location of the N-S interfaces. The temperature values at x
=x1 �=0.015 here� indicate the WL temperature.

Still at retrapping, Figs. 5�a� and 5�b� show the variation
in the N-S interface position r0 in units of r1 as a function of
the bath temperature for different x1 and � values and as a
function of � at a fixed bath temperature for different x1
values. For large values of �, i.e., for long WLs, the N-S
interface is closer to the WL. Figures 5�c� and 5�d� show the
temperature of the WL as a function of the bath temperature
for a combination of � and x1 values. We observe a non-
monotonic behavior, which is due to the increase in the ther-

FIG. 3. �Color online� �a� Plot of Eq. �14� right-hand side as a
function of x0 at different bath temperatures. The minima shown by
arrows define the retrapping current ir. �b� Variation in the retrap-
ping current as a function of the bath temperature. �c� I-V charac-
teristics near ir at three different bath temperatures as indicated in
the figure. The current and the voltage axes are normalized with
respect to I0 and I0Rc, respectively. All the curves are plotted for
�=3.5 and x1=0.015.
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mal conductivity with increasing temperature. The contrast
between, on one hand, the monotonic evolution of the cur-
rent ir and the N-S interface position x0 with tb and, on the
other hand, the nonmonotonic evolution of the WL tempera-
ture at retrapping indicates that it is the size of the normal
region and not its local temperature that governs the ampli-
tude of the retrapping current.

III. TRANSPORT EXPERIMENTS ON WEAK LINK
�-SQUIDS

We have tested the above model on single WL and
�-SQUID samples. A micrograph of one such device is
shown in Fig. 6 inset. We use Nb films deposited using dc
magnetron sputtering in a chamber with a base pressure in
the 10−7 mbar range. For most of the samples, Nb thin films
are deposited on a Si wafer and a photoresist is spun on the
films. Using optical lithography, we form a coarse pattern
�several micron size� on this resist, which is transferred to
the film by wet chemical etching using dilute hydrofluoric
acid. The final desired pattern is obtained by finer milling
with the help of focused ion beam �FIB�.

The film thickness d was measured using a profilometer
across a step made by masking during deposition. The width
w and length � of the WLs were estimated from the SEM

FIG. 4. �Color online� Temperature �normalized� evolution with
radial distance �normalized� in a WL biased at its retrapping current
at different bath temperatures indicated in the figures. The param-
eters are x1=0.015 and �a� �=3.5, �b� �=1.5. �c� and �d� are mag-
nifications near the normal region, corresponding to �a� and �b�,
respectively. The intersection with the dotted lines at t=1 indicate
the N-S interface position.

FIG. 5. �Color online� Variation in the N-S interface position r0

in units of r1 at the retrapping current as a function of �a� bath
temperature tb for different values of x1 and �, �b� parameter �, at
tb=0.15 for different values of x1. �c� and �d� show the variation in
the WL temperature at retrapping as a function of bath temperature
for �c� �=3.5 and �d� �=1.5 for x1=0.015 and 0.02. The arrows
show the maxima.

FIG. 6. Resistance vs temperature curve for sample S2 down to
4.2 K at a bias current of 0.1 mA. Inset shows the SEM image of a
typical �-SQUID with a loop area 3.5�3.5 �m2.
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images. The sample thickness varies between 30 and 75 nm
whereas the width and length of the WLs vary from 50 to
200 nm. All the WL dimensions are thus much smaller than
the length � defined earlier. For most of our devices, the
maximum asymmetry between the two junctions is less than
10% both in length and width.

In this paper, we report on four �-SQUID �S1–S4� and
two single WL �WL1 and WL2� samples, whose detailed
parameters are given in Table I. Transport experiments on
�-SQUID were performed down to 300 mK in a 3He cry-
ostat whereas the single WLs were measured down to 4.2 K.
We used rf filters at several stages of the cryostat to mini-
mize noise. Measurements were done in current bias mode
using a dc source. No magnetic field was applied for the data
presented here.

Figure 6 shows the temperature variation in resistance of
S2 sample down to 4.2 K. The main and sharp transition with
an onset at 7.44 K is expectedly for the bulk film. The other
transitions �steps� correspond to relatively smaller pads con-
nected to the WLs. Since the resistance has a large tail, it is
difficult to define the critical temperature Tc from this data.
We therefore define Tc from I-V measurements �discussed
below� as the temperature above which Ic is zero, i.e., the I-V
curve is ohmic.

The I-V characteristics of S1 at different bath tempera-
tures are shown in Fig. 7�a�. At low temperature, the curves
are clearly hysteretic. From this type of data, we experimen-
tally define the critical current as the maximum current up to
which no measurable voltage is observed when the current is
ramped from zero. Here, we do not distinguish between criti-
cal current and switching current. In the retrapping branch,
we define the retrapping current as the current at which the
resistance goes back to zero. For most of the samples, with
the above definitions, the detection of Ic and Ir are accurate
within about 1% for Tb�1 K and about 10% near Tc /2.
Close to Tc, because the transition region width, Ic or Ir can-
not be defined with an accuracy better than 50%. Figure 7�b�
shows the variation in critical Ic and retrapping Ir currents as
a function of bath temperature for the same sample. Above a
temperature Th, the retrapping and the critical currents are
equal, meaning that hysteresis in the I-V curve has disap-
peared.

Figures 8�a�–8�d� show the experimental I-V at the lowest
temperature for the four samples together with their fit by
our model. The current and voltage are normalized with re-
spect to the fit-derived parameters I0 and RcI0. In Fig. 8�e�,

the variation in retrapping current as a function of tempera-
ture is shown for all the six samples. Here also the current is
normalized with respect to I0 whereas the temperature is nor-
malized with respect to the critical temperature Tc. The val-
ues of the fit parameters Rc, I0, and Tc together with the
experimental parameters are listed in Table I. Here the ex-
perimental Rc=2n /�d is calculated by measuring the resis-
tance of a known rectangular geometry and I0=2Tc

�L0 /Rc is
calculated by using the value of above Rc and experimental
Tc. In every case, we could fit both the low-temperature hys-
teretic I-V curves and temperature dependence of the retrap-
ping current with our model very well. We have also success-
fully used the same model for single WLs and �-SQUIDs
from Hasselbach et al.5 with a different geometry.

TABLE I. Comparison between various experimental �exp� and fit parameters for four SQUIDs �S1–S4� and two WL �WL1 and WL2�:
WL length � and width w, film thickness d, characteristic resistance Rc, critical temperature Tc, current scale I0.

Sam. no.
�

�nm�
w

�nm�
d

�nm� � x1

Rc �exp�
���

Rc �fit�
���

Tc �exp�
�K�

Tc �fit�
�K�

I0 �exp�
�mA�

I0 �fit�
�mA�

S1 95 75 45 3.5 0.015 2.7�0.3 2.5�0.5 5.50�0.10 5.25�0.53 0.64�0.10 0.81�0.10

S2 100 100 55 3.0 0.02 2.3�0.2 1.6�0.3 5.70�0.10 5.60�0.56 0.77�0.12 0.78�0.09

S3 150 145 65 3.0 0.025 2.0�0.2 1.9�0.3 5.80�0.10 5.60�0.56 0.91�0.14 0.97�0.12

S4 150 150 30 3.0 0.015 5.3�0.5 5.1�0.5 4.5�0.10 4.35�0.44 0.27�0.04 0.24�0.03

WL1 160 155 70 3.0 0.035 1.7�0.2 1.5�0.3 5.40�0.10 5.40�0.54 0.99�0.15 0.92�0.12

WL2 200 180 75 3.5 0.02 1.7�0.2 1.6�0.3 8.7�0.10 8.6�0.60 1.94�0.29 1.9�0.24

FIG. 7. �Color online� �a� I-V curve of sample S1 at four differ-
ent bath temperatures. The plots of 1.5 K, 4.5 K, and 5.5 K have
been shifted upward by 5 mV, 10 mV, and 15 mV, respectively, for
clarity. �b� Temperature dependence of the critical and retrapping
currents for the same sample.
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Figure 8�e� also shows a fit of the retrapping current with
the �1− t dependence from Skocpol et al.11 for sample S2.
The fitted coefficient 0.18 compares reasonably with the es-
timated value of 0.34, assuming a Wiedemann-Franz law to
get the normal-state thermal conductivity. Nevertheless, our
model gives a clearly much better agreement, which we at-
tribute to incorporation of the superconductor thermal con-
ductance temperature dependence in our model.

IV. DISCUSSION

The exact thermal model for our system is quite involved
with complicated nonlinear differential equations. In this pa-
per, we have tried to simplify them in a way that the essential
features are preserved. This simplified model fits the experi-
mental data very well. Nevertheless, several approximations
need further discussion.

We assumed the width of the connecting pads to be much
greater than � but in actual experiments it is comparable to
it. Therefore the actual thermalization would be poorer than

what is being assumed; we may be slightly overestimating
x1. As it is difficult to estimate � for our samples and it
actually has a temperature dependence,15 the determination
of � and hence x1 can again be significantly erroneous. For
most of the cases, we could fit our data with a 20% variation
in the value of x1 by adjusting the other parameters.

We have made the hypothesis that the electron and pho-
non temperatures are equal in the superconducting region.
The electron-phonon coupling power in a volume V is given
by20 P=�V�Te

5−Tp
5�, where �=2.4�109 W m−3 K−5 is the

electron-phonon coupling parameter for Nb. Taking typical
experimental values Ir=0.12 mA, Rc=2.4 �, r0 /r1=1.1
�that gives R�r0�=8 ��, we get a dissipated power P
= Ir

2R�r0�=0.12 �W. Nearly all of this resistive heat is trans-
mitted to the substrate in the superconducting region only.
Though the temperature decreases sharply making the heat
loss rather nonuniform, the effective size of this region is of
order �, which ranges between 1 and 3 �m. Taking �
=2 �m, d=50 nm and an average electron temperature Te
=4 K, the volume of the superconducting region is, V
=��2d=3.5�10−19 m3. This gives the temperature differ-
ence Te−Tp as 0.06 K only, validates our hypothesis.

We took a linear approximation for the surface loss term.
The metal film and the substrate phonons exchange heat
through a Kapitza resistance, giving a power Ka�T4−Tb

4� per
surface unit, with Ka as the Kapitza constant.20 For T close to
Tb, the above expression can be approximated as 4KaTb

3�T
−Tb�. From the temperature profile in Fig. 4, we can say that
for most of superconducting region the above approximation
is valid except for the region close to the N-S interface �r
�r0�. However, if the bath temperature is close to the critical
temperature then for the entire WL the above approximation
would be valid.

We also neglected the heat loss to the substrate from the
normal region, i.e., the WL and the semicircular region be-
tween r1 and r0. Let us compare the heat transfer to the
substrate Ps and the heat conducted out Pc under the linear
approximation. Considering only one half of the film, we can
approximately write Ps=��r0

2�t1− tb�Tc /2. We can also write
Pc=−
n�r0d� dT

dr �r=r0
=�r0dL0Tc

2�t1−1� / �n�r0−r1��. Here we
assume a linear temperature decrease within the normal re-
gion, which is fairly justified according to Figs. 4�c� and
4�d�. For t1=1.1, tb=0.05, r1=100 nm, r0=2r1, �
=5 W /cm2.K, d=50 nm, n=25 �� cm, and Tc=8 K,
one gets Pc=0.2 �W and Ps / Pc�0.1, which confirms our
assumption.

The surface heat loss from the WL normal-state region
was neglected by assuming �t1− tb� A

2��2 ��i2. Let us check
the argument for the worst possible case; i.e., at lowest pos-
sible temperature and for longer WLs. Taking tb=0.05, t1
=1.1, A=300�300 nm2, �=1 �m at i= ir=0.15, one gets
�t1− tb� A

2��2 =0.015, whereas with �=� �which corresponds
to �=w=300 nm� and i= ir=0.15 we get �i2=0.072, which
is almost 5 times higher than �t1− tb� A

2��2 .

V. WHEN DOES HYSTERESIS DISAPPEAR?

A key feature is the disappearance of hysteresis at high
temperature. In general, there is a particular bath temperature

FIG. 8. �Color online� �a�–�d� Experimental �black� and numeri-
cal fit �red� of normalized I-V curves for S1, S2, S3 at Tb

=300 mK and WL1 at Tb=4.2 K. �e� Variation in the normalized
retrapping current with the normalized bath temperature for the six
samples. The plots of S2, S3, S4, WL1, and WL2 have been shifted
upward by multiples of 0.075 for clarity. The black dots are the data
and the red curves are fits based on Eq. �14�. The fit parameters and
the values of � and x1 are listed in Table I. The blue curve in �e� for
S2 is the fit with Skocpol et al. �Ref. 11� �Eq. �14�� prediction, i.e.,
ir=0.18�1− t�1/2.
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Th at which Ir and Ic are equal. Above this temperature, for
I	 Ic the current is large enough to kill the superconductivity
in the WL, making it resistive. But the related Joule heating
is not sufficient to raise the WL temperature above Tc and
provide an N-S interface. In order to find the crossover tem-
perature Th, we need an expression for the temperature de-
pendence of the critical current. For a bath temperature near
the critical temperature, we can use the expression1,21 IcRn
=�Tc�1− tb�, where �=635 �V /K and Rn is the normal-state
resistance. In practice, � can vary significantly. Taking Rn
=R0, one can simplify the above equation to

ic =
�

2��L0

�1 − tb� . �15�

Here, ic= Ic / I0 and we have used �=635 �V /K, L0=2.44
�10−8 W � /K2. In Fig. 9, we plot the variation in Ic with
the bath temperature for S1 above Tc /2. From the linear fit,
we extract �=930 �V /K with the above L0 value, �=3.5
and Rc=2.28 �.

In Fig. 10, we plot the variation in ic �red curve� and ir
�black curve� as a function of the normalized bath tempera-

ture tb near tb=1 using Eq. �15�, for �=3.5 and x1=0.015.
The crossover temperature th is then straightforwardly deter-
mined from the intercept of the two curves. Let us point out
here that the critical current Ic and the retrapping current Ir
are controlled by two different physics, with Ic dependent on
the WL superconducting properties and Ir on the heat dissi-
pation. This justifies that these currents have a different tem-
perature dependence.

In Fig. 11, we plot the variation in th as a function of � for
three different values of x1. The top axis refers to � /w, which
is related to � by the formula: �= �

2 �1+ �
w �. The upper limits

�max of the parameter � are chosen in a way that at this point
x0=x1, i.e., the N-S interface is at the WL boundary, as be-
yond this value our short WL approximation does not hold.
From Fig. 11, this occurs at a th of about 0.8.

In the hysteresis-free regime t	 th, the detailed tempera-
ture profile ir	 i	 ic can be found by solving Eq. �10� for
x	x1, i.e., the superconducting region. The boundary condi-
tions used for solving this equation are �1� at x=x1, −x1t1

dt
dx

=
�dR0i2

2N
and �2� t= tb as x→�. Solutions for t were found

numerically and are plotted in Fig. 12�a�.
Figure 12�b� shows the temperature t1 of the WL as a

function of current for two bath temperatures, tb=0.90 and
tb=0.75, respectively, above and below the hysteresis thresh-
old th=0.83. As the current is ramped up from zero, the WL
temperature jumps from t1= tb to a higher value at i= ic. For a
bath temperature above the hysteresis threshold �tb	 th�,
there is another jump in WL temperature at i= ir and after
this the temperature keeps on increasing. The t1 vs i behavior
remains same when i is ramped down, i.e., there is no hys-
teresis. Let us point out that there is no actual retrapping at
this ir value but the appearance or disappearance of a N-S
interface close to the WL. For a bath temperature below the
hysteresis threshold �tb� th�, the behavior shows an upward
jump from t1= tb to a higher value when the current is
ramped up through i= ic, and a downward jump to t1= tb
when current is ramped down through i= ir. Hysteresis is
thus present.

Figure 12�c� shows the i-v curves as calculated from the
location of the N-S interface �above ir� and the resistance of

FIG. 9. �Color online� Variation in critical current with the bath
temperature in the high temperature regime for sample S1. The blue
line is a straight line fitting Ic= Ic0�1−Tb /Tc� with Ic0=0.84 mA
and Tc=5.05 K.

FIG. 10. �Color online� Temperature dependence of ic �red� fol-
lowing Eq. �15� and of ir �black� calculated from our model, near
the critical temperature. The parameters used for the plot are given
in the figure. At tb= th, the two curves cross each other, so that
hysteresis disappears for higher temperatures.

FIG. 11. �Color online� Variation in the hysteresis crossover
temperature th with the parameter � for three different values of x1

�i.e., WL width�. The top axis represents � /w, calculated using the
formula: �= �

2 �1+ �
w �.
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the WL �below ir� at the same two bath temperatures above
and below th. We see a close resemblance between the tem-
perature and voltage curves as a function of bias current.
While below th, the i-v spectra describe well the experimen-
tal curve, above th the calculated curve shows an extra step at
ir arising from the sudden creation of the N-S interface at a
position r0	r1. This step was not observed in experiments.
We believe that the predicted extra step may get significantly
rounded as the WL temperature approaches Tc. The super-
conducting region outside r1 will be close to Tc, reducing its
critical current density. The exact shape of the I-V curve in
the nonhysteretic regime will then be dictated by thermally
activated phase slips22,23 for i� ic and superconducting fluc-
tuations for i	 ic.

23

Let us now consider how one could manipulate the cross-
over temperature �th�. At a fixed x1 �which is proportional to
the width w�, th decreases with the increase in � �and hence
the length ��, see Fig. 11. This is desirable if we want hys-
teresis to disappear at low temperature. But the adjustment of
� to any arbitrary value is impossible, since we wish the WL
to behave like a Josephson Junction, which implies the con-
dition: w����.1 This gives a lower bound on � and x1 and
hence th in general. Therefore, it is generally not possible to
eliminate hysteresis for these WL junctions just by manipu-
lating the WL width and length.

However, since � is the ratio of WL resistance R0 to the
characteristic resistance Rc of the film, we can effectively
increase � by increasing the WL resistance. This can be done
by reducing the thickness of the WL alone. The reduction in
the whole film thickness �d� including the connecting elec-
trodes can also reduce Th: in this case, ���d is smaller,
giving a larger x0. This makes hysteresis disappear at smaller
temperatures �see Fig. 11�. If the critical temperature Tc is
not affected, a wider temperature span for the hysteresis-free
regime is achieved. This improvement was observed by
Tinkham et al.14 for superconducting nanowires. With an ap-
propriate choice of substrate and growth conditions, the re-
sistivity and critical temperature of very thin films can re-
main almost unaffected by thickness reduction �for Nb see
Ref. 24�, enabling similar results to be obtained with con-
tinuous films. Another possible way is to reduce the critical
current Ic �and possibly increase �� by either making the WL
with a poor superconductor or completely replacing it by a
normal metal. Angers et al.7 were able to get a Th�1.2 K
for �-SQUIDs made with SNS type weak links based on Nb.

VI. CONCLUSIONS

In conclusion, we have described a thermal model for
understanding the hysteresis in the I-V curve of short super-
conducting WLs and their extension to �-SQUIDs. Using
this model, we have calculated the detailed I-V characteris-
tics and the temperature profile near the WL as a function of
bath temperature. We have obtained a good agreement be-
tween experiments and theory in terms of I-V characteristics
and their temperature dependence. A key finding of this
model, which again is in agreement with the experiments, is
the disappearance of hysteresis above certain temperature.
We have discussed how one can adjust the WL geometry in
order to widen the temperature range of this hysteresis-free
regime of WL-based �-SQUIDs.
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FIG. 12. �Color online� Calculation results with parameters �
and x1 equal to 3.5 and 0.015, respectively, which give th=0.83. �a�
Calculated temperature distribution at a bath temperature tb=0.85
above the threshold temperature th for normalized bias currents of
0.024, 0.054 and 0.076. Here ir is 0.093. �b� and �c� Variation in WL
temperature �b� and i-v curve �c� as a function of bias current for
bath temperatures above the threshold tb=0.75 �black� and below
tb=0.9 �red�. The blue arrows indicate the direction of current
sweep.
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