Quantum simulation of ³He impurities and of ⁴He interstitials in solid ⁴He

Keola Wierschem¹ and Efstratios Manousakis^{1,2}

¹Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA ²Department of Physics, University of Athens, Penipistimiopolis, Zografos, 157 84 Athens, Greece

(Received 15 September 2010; published 16 November 2010)

We have studied the role of an atomic ³He impurity and an interstitial ⁴He atom in two-dimensional (2D) and three-dimensional (3D) solid ⁴He using path-integral Monte Carlo simulation. We find that when a substitutional ³He impurity is introduced, the impurity becomes localized and occupies an ideal lattice site. When an interstitial ³He impurity is introduced in the ⁴He solid, we find that the impurity becomes localized at a substitutional position and, thus, promotes the extra ⁴He atom to the interstitial space. As a consequence we find that the one-body density matrix (OBDM) and the superfluid fraction, for the case of a ⁴He solid with an interstitial impurity, are very similar to those calculated for a ⁴He solid with a ⁴He interstitial atom. Namely, while the off-diagonal OBDM approaches zero exponentially with increasing particle displacement for the "pure" solid, an interstitial ⁴He atom or a ³He impurity appear to enhance it at long distances. Finally, the effective mass of the ³He impurity quasiparticle in 2D and 3D crystalline ⁴He is estimated.

DOI: 10.1103/PhysRevB.82.184524

PACS number(s): 05.30.Jp, 67.80.bd, 67.80.dj

I. INTRODUCTION

The torsional oscillator experiments of Kim and Chan,¹ where at low temperature a drop in the moment of inertia is observed, have motivated a number of computational studies^{2–9} of solid ⁴He as well as various theoretical proposals^{10–12} to explain the observation. Additionally, the annealing and quenching torsional oscillator experiments of Ritter and Reppy ¹³ have shown the important role of defects in the outcomes of these experiments.

There is evidence of a very strong dependence of the superfluid response on the ³He impurity concentration¹⁴ as well as other well known facts¹⁵ about the role of impurities in solid ⁴He.^{16–18} Proposals for the possible role of ³He impurities in solid ⁴He have a long history and date back in the late 60s (Ref. 19) and 70s.^{20,21} In addition, there are several experimental studies of the NMR relaxation of such impurities in solid helium.²² It is, therefore, of great interest to study the role of impurities in solid ⁴He. Boninsegni et al.⁶ have carried out a path-integral Monte Carlo (PIMC) simulation of three-dimensional (3D) solid ⁴He using the worm algorithm and found that vacancies phase separate. Pollet et al.⁷ and Boninsegni et al.⁸ have also used the above PIMC technique to show that grain boundaries in solid ⁴He and screw dislocations lead to superfluidity. In addition, using the same method Pollet et al.⁹ have shown that the gap to create vacancies closes by applying a moderate stress.

In the present paper, motivated by the recent experimental and theoretical activity on the possible role of the ³He impurities in solid ⁴He, we study the role of a ³He impurity and of an interstitial ⁴He atom in two-dimensional (2D) and 3D solid ⁴He using PIMC simulation. In addition to the motivation generated by the previous discussed experimental activity, this problem is of interest in its own right because it is not really known what happens locally when one injects a ³He atom in 2D or 3D solid ⁴He, and this can be studied by quantum simulation. In particular, we use the worm algorithm⁵ to simulate the 2D and 3D solid helium in the presence of such crystalline defects. We present results of the radial distribution functions and off-diagonal one-body density matrix (OBDM) for the following cases. (a) Pure solid ⁴He at somewhat above but near the liquid-solid melting density (ρ =0.026 Å⁻³ for 3D and σ =0.070 Å⁻² for the pure 2D case^{23–25}). (b) A single substitutional ³He impurity in solid ⁴He. (c) An interstitial ⁴He atom (defect). This atom is identical to the other ⁴He atoms and, therefore, it participates in permutation cycles. (d) An interstitial ³He impurity in solid ⁴He.

We find that an initial interstitial impurity quickly relaxes to a regular lattice site of the ⁴He solid by creating an interstitial ⁴He atom as was proposed in Ref. 11. Furthermore, we find that introducing such interstitial impurities in ⁴He solid greatly enhances the long-distance part of the off-diagonal OBDM. This enhancement as well as the calculated superfluid response is comparable to that of interstitial ⁴He atomic defects. It is quite possible that at a finite density interstitial ⁴He atoms phase separate as do vacancies.⁶ In such case the enhancement of the OBDM at long distances and of the superfluid density, due to a single interstitial ³He or ⁴He atom found in the present paper, may disappear when a finite density of such impurities or interstitials is introduced. However, interstitial atoms or impurity atoms can bind to already existing defects, such as dislocations or disclinations (especially in 2D) and this tendency for phase separation may be avoided. In general, it is of great value to know what happens *locally* in the 2D and in the 3D crystalline ⁴He when a ³He impurity or an interstitial ⁴He atom is introduced.

The paper is organized as follows: in Sec. II we briefly describe the PIMC method used to study this system. In Sec. III, we present and discuss the pair-distribution functions for the case of a 2D and 3D solid with and without the introduction of a ³He impurity and ⁴He interstitial atom. The energetics of creating such atomic defects in the 2D and 3D solids as well as the calculation of the effective mass of ³He impurity in solid ⁴He is discussed in Sec. IV. In Sec. V we present the results for the one-body density matrix, the superfluid density and a histogram of the number of particles involved in the same permutation cycle for the cases (a)–(d)

above for 2D and 3D solid helium. Finally, the main findings as well as the limitations of the present work are discussed in Sec. VI.

II. SIMULATION DETAILS

Using an approximation for the density matrix that is accurate to fourth order²⁶ in τ , we use 320 time slices to reach a simulation temperature of 1 K. We have collected data from 2500 continuous iterations for our simulations in 2D, and ~1000 continuous iterations for our simulations in 3D. Each iteration consists of 500 Monte Carlo moves. All data presented in this paper were obtained at a simulation temperature of 1 K, unless otherwise stated.

All simulated atoms considered in our present studies are isotopes of helium and therefore interact via the same potential. We use the Aziz²⁷ potential to model both the ⁴He-⁴He interaction and the ³He-⁴He interaction. With the exception of the ³He impurity atom the rest are all ⁴He atoms which will be treated appropriately to simulate their bosonic nature. The impurity atom is distinguishable from the "background" ⁴He atoms.

Our simulation cell is designed to accommodate either a 2D 56-site triangular lattice that is very nearly square (25.86 Å×25.60 Å), or a 3D 180-site hexagonal close-packed lattice (18.35 Å×19.07 Å×17.98 Å). In both cases of the 2D and 3D lattices we have used periodic boundary conditions. The density of lattice sites is fixed at 0.0846 Å⁻² (2D) and 0.0286 Å⁻³ (3D). We will use the term *pure solid* for the case where there is exactly one ⁴He atom per lattice site. The term *substitutional solid* will be used when a single ⁴He atom is removed from the pure solid and is replaced with an impurity atom. Additionally, the term *interstitial solid* will be used when a single atom (either ⁴He or an impurity) is added to the pure solid.

III. DISTRIBUTION FUNCTIONS

In this section we present our results for the various combinations of pair-distribution functions. Besides the fact that these quantities are directly related (via Fourier transforms) to the static structure factor which can be accessible to experiments, they will also help us draw conclusions about the role of ³He impurities and interstitials locally in the 2D and 3D solid.

A. Two-dimensional solid ⁴He

How does the impurity atom affect the pair-distribution function g_{44} of the ⁴He atoms of the underlying solid? We find that when a substitutional impurity is introduced it becomes localized and occupies an ideal lattice position with its own zero-point motion determined by its different mass. In Fig. 1 we present the calculated $g_{44}(r)$ radial distribution for pairs of ⁴He atoms for the four different case systems studied: (a) pure solid ⁴He (dashed line), (b) the ⁴He solid with a substitutional ³He impurity (also dashed line), (c) the ⁴He solid with an interstitial ⁴He defect (solid line), and (d) the ⁴He solid with an interstitial ³He impurity (also solid line). Within the accuracy of our results we cannot discern

FIG. 1. (Color online) Here we show the radial distribution function, $g_{44}(r)$, for pairs of ⁴He atoms in two dimensions. The organizational structure of the ⁴He atoms does not change in the presence of a substitutional impurity. However, when an interstitial defect or impurity is present, we can see that $g_{44}(r)$ becomes less peaked at the nearest-neighbor distance lattice positions.

any difference in the g_{44} distribution function for the cases of the pure solid and the substitutional impurities. When an interstitial impurity is present in the ⁴He solid, we find that the impurity becomes localized at a substitutional position, thereby promoting the extra ⁴He atom to the interstitial band. This is shown by the snapshot space-time configuration shown in Fig. 2. Notice that while the initial configuration has an interstitial ³He impurity, in the configuration obtained after thermalization (shown in Fig. 2) the ³He becomes substitutional by promoting an interstitial ⁴He atom. Namely, in the equilibrium configuration, shown in Fig. 2, the ³He atom, in our lattice with periodic boundary conditions, is located in a regular triangular lattice position surrounded by six ⁴He atoms. In addition, a ⁴He atom has been promoted to the

FIG. 2. (Color online) A snapshot of a space-time configuration for the 2D triangular solid, after thermalization, and starting from a configuration with an interstitial ³He atom. Each atom's trajectory in imaginary time appears as fractal covering a finite size spot. The crosses (red in the online version) and the circles (blue in the online version) are the ⁴He atoms and the ³He impurity atom.

FIG. 3. (Color online) Top: the pair-distribution function $g_{44}(x, y)$ for pure 2D solid ⁴He. Middle: contour plot of the distribution function for pairs of ⁴He atoms, $g_{44}(x, y)$ in the pure solid. Bottom: the difference δg_{44} between g_{44} of the pure (solid) and that of the solid with interstitial impurity.

interstitial space which creates larger density fluctuations in the crystalline arrangement in some parts of the system. As a consequence of this fact $g_{44}(r)$, in Fig. 1, is less peaked at the lattice positions. In Fig. 3 (top) the calculated pairdistribution function $g_{44}(x,y)$ for pure 2D solid ⁴He is shown and in Fig. 3 (middle) we present the contour plot of the same $g_{44}(x,y)$. This function is nearly identical for the substitutional solid (which is not shown, as it looks exactly alike). This implies that the introduced substitutional impurity becomes localized and it only affects its neighboring

FIG. 4. (Color online) Top panel: contour plot $g_{44}(x,y)$ for the interstitial solid. This function is independent of the type of defect or impurity. Bottom panel: contour plot of the distribution function $g_{34}(x,y)$ for the same interstitial solid.

atoms. In the case of an interstitial impurity the difference in the g_{44} distribution function, as discussed above and shown in Fig. 1 and Fig. 3 (bottom), is significant because the added impurity takes the position of a ⁴He atom and, thus, there is an extra ⁴He atom that necessarily becomes interstitial. In the bottom panel of Fig. 3 we plot $\delta g_{44}(x,y)$, the difference between $g_{44}(x,y)$ of the pure solid and the solid with a single interstitial impurity. Notice that the extra atom is truly interstitial since the g_{44} is reduced by an amount in the neighborhood of the ideal lattice positions and enhanced in the interstitial space by the same amount. It was verified through integration in the enhanced regions (or the reduced regions) finding exactly one extra ⁴He atom in the interstitial regions.

Our finding that the interstitial impurity becomes localized at regular lattice sites can be further illustrated by comparing the contour plots of the $g_{44}(x, y)$ and $g_{34}(x, y)$ for the case where we have a ⁴He solid with an interstitial impurity. In the top panel of Fig. 4, we present the contour plot of the distribution function $g_{44}(x, y)$ for the case of a ⁴He solid with an interstitial impurity. Within the accuracy of the discretization of the probability density of the contour plot this function is independent of the type of defect or impurity. In the lower panel is the distribution function $g_{34}(x, y)$ for pairs

FIG. 5. (Color online) The radial distribution function for pairs of ⁴He atoms in the three-dimensional HCP lattice simulation cell, $g_{44}(r)$. The organizational structure of the ⁴He atoms does not change in the presence of a substitutional impurity. However, when an interstitial defect or impurity is present, by looking at $\Delta g_{44}(r)$ (scale on the right) we can see that $g_{44}(r)$ becomes less peaked at the nearest-neighbor distance lattice positions.

consisting of the impurity atom and one ⁴He atom. Because the contour plots for both $g_{34}(x,y)$ and $g_{44}(x,y)$ are identical in shape and in form, we may surmise that the impurity atoms are located at lattice sites.

B. Three-dimensional solid ⁴He

In Fig. 5 we show $g_{44}(r)$ for the 3D system. As in 2D, we find that the pure solid and the substitutional solid are nearly identical in structure, as are the two interstitial solids. Also shown is the difference, $\Delta g_{44}(r)$, between $g_{44}(r)$ the pure solid and the interstitial solid. As expected, $g_{44}(r)$ for both interstitial solids is less peaked at lattice positions compared to the pure and substitutional solids. This indicates that the ⁴He interstitial solid really does have a ⁴He atom in the interstitial space, and also that the interstitial ³He solid has relaxed into a space where the ³He interstitial atom has become substitutional, and in doing so promoted a ⁴He atom to the interstitial band.

IV. ENERGETICS OF IMPURITY AND INTERSTITIAL

If a ³He atom, initially placed in the interstitial region of a triangular solid of ⁴He atoms, relaxes onto a lattice site by promotion of a ⁴He atom to the interstitial space, this should be seen in the energy values of the simulated atoms. The potential energy of a ³He atom in the substitutional and interstitial ³He solids as a function of the Monte Carlo iteration shows that there is a short relaxation time for the interstitial solid, as the ³He atom relaxes onto the lattice. After that short relaxation time scale, the potential energy of a ³He atom in both systems is almost the same. After several hundreds of iterations, small bumps can be seen in the energy of the (initially) interstitial ³He atom. During these bumps the ³He atom is no longer at an equilibrium lattice position but rather at what appears to be a possible edge dislocation. This is not entirely unexpected, as a ³He atom in solid ⁴He exhib-

TABLE I. Excitation energy of an interstitial ⁴He atom, as calculated by the difference in energy between (1) the pure solid and the interstitial ⁴He solid and (2) the substitutional solid and the interstitial ³He solid.

Energy difference	2D	3D
Int. ⁴ He-pure ⁴ He	50.27 ± 0.54 K	22.4±1.3 K
Int. ³ He-sub. ³ He	50.41 ± 0.55 K	24.1 ± 1.2 K

its a high rate of diffusion. Such "blips" in the energy of the ³He in the interstitial solid occur occasionally throughout our simulation but account for no more than 5% of configurations.

In Table I we show the activation energy of an interstitial ⁴He atomic defect. This is calculated by subtracting the total energy of the pure solid from the total energy of the interstitial ⁴He solid. If the interstitial ³He solid is actually the substitutional solid with an added interstitial ⁴He atom, as we propose it is based on the distribution functions above, then the activation energy can also be calculated by subtracting the total energy of the interstitial ³He solid. We find that both methods give activation energies in agreement with one another. Notice that the value of the activation energy for an interstitial in the 3D solid compares well with that reported by Boninsegni *et al.*⁶

We have also estimated the effective mass of the ³He impurity in solid 2D and 3D ⁴He using our data on the imaginary time diffusion following Ref. 28. Namely, we approximate the low-energy (which dominates the long time evolution) impurity quasiparticle spectrum by the dispersion near the Γ point of the Brillouin zone of both the triangular 2D solid and of the hexagonal closed packed 3D lattice

$$E(k) = \Delta + \frac{\hbar^2 k^2}{2m^*}.$$
 (1)

It is straightforward to carry out the imaginary-time evolution for this spectrum and to calculate the average of $[\mathbf{r}(0) - \mathbf{r}(\tau)]^2$, where $\mathbf{r}(\tau)$ is the impurity coordinate in imaginary time. When we use the expression given by Eq. (1), we find that the quantity,

$$R(\tau) = \frac{\langle [\mathbf{r}(0) - \mathbf{r}(\tau)]^2 \rangle}{2d\lambda} \frac{\beta}{\tau(\beta - \tau)},$$
(2)

where $\lambda = \hbar^2/(2m)$ and *d* is the dimensionality, is a constant independent of τ and it is equal to m/m^* . In practice, however, $R(\tau)$ is expected to be a function of τ , which defines a quantity $m/m^*(\tau)$, i.e., an imaginary-time-dependent effective mass which for short time scales (high-energy scales) it should be equal to 1, and at long time scales it should give the low-energy quasiparticle effective mass (see Fig. 6). Therefore, we can define a temperature-dependent effective mass at temperature *T* as

FIG. 6. (Color online) Top: the ratio m/m^* as a function of τ for 2D interstitial impurity and T=1 K (Solid line) and T=0.5 K (dashed line). Bottom: the ratio m/m^* as a function of τ for 3D and T=1 K for substitutional and interstitial ³He impurities.

$$\frac{m}{m^*} = R(\tau)\big|_{\tau=\beta/2},\tag{3}$$

as the mass which controls the longest possible imaginarytime diffusion which is $\tau_{\text{max}} = \beta/2$. Clearly, this is meaningful when the correlation function given by Eq. (2) above becomes flat near $\tau = \beta/2$ (see Fig. 6).

In Fig. 6 we plot the right-hand side of Eq. (2) as calculated from our simulation for the 2D [Fig. 6 (top)] and 3D [Fig. 6 (bottom)] case. We find that in the 2D case the effective mass ratio of the ³He interstitial impurity at T=1 K is 5.10 ± 0.02 while at T=0.5 K it increases to 9.06 ± 0.04 . In the 3D case we have available results only for T=1 K, where the substitutional and the interstitial impurity masses are found to be 5.67 ± 0.03 and 5.47 ± 0.04 , respectively.

V. OFF-DIAGONAL ONE-BODY DENSITY MATRIX

In Fig. 7 we compare the one-body density matrix n(r) for (a) defect-free solid ⁴He (solid line), (b) solid ⁴He with a substitutional ³He impurity (dotted line), (c) solid ⁴He with an interstitial ⁴He defect (long-dashed line), (d) solid ⁴He with an interstitial ³He impurity (dashed line). Notice that the substitutional ³He impurity and the pure solid have similar one-body density matrices. On the contrary, a ⁴He solid with interstitial ³He impurity and a ⁴He solid with interstitial ⁴He atoms have one-body density matrices which are signifi-

FIG. 7. (Color online) The one-body density matrix, n(r). Although no difference is observed between the pure solid and the substitutional solid, the interstitial solid clearly shows a significant enhancement of n(r) quantity.

cantly enhanced at long distances. This result agrees with the fact that winding numbers (and hence superflow) are observed in the interstitial solid (see Table II). Notice that these superfluid fractions are very high considering that the simulation was carried out at 1 K. The reason for these high superfluid fractions is finite-size effects. These results for the superfluid fraction are presented in order to make the case that an interstitial impurity has a very similar effect on the superfluid fraction and OBDM as an interstitial ⁴He atom.

In Fig. 8 we compare the one-body density matrix for the 3D results. As in 2D, both the pure solid and the substitutional solid show exponential decay of n(r). Although the enhancement of n(r) at large distance is not obvious for the interstitial ³He solid, it is very clear for the interstitial ⁴He solid. This may be due to a shorter MC run as compared to the 2D data. In any case, once again both interstitial solids display superfluidity while the pure and substitutional solids do not (see Table II). For comparison we have included the n(r) for the case of ⁴He solid with vacancies taken from the work of Galli *et al.*²⁹ Notice that the interstitial solid and the solid with vacancies have comparable n(r) for large r.

In Fig. 9 we present a histogram of cycles (i.e., how often in the simulation we encounter cycles of exchanges involving a given number of particles). Notice that in both 2D and 3D case, the pure solid and the ³He substitutional solid has only one or two particle permutation cycles, while when an interstitial ³He or ⁴He atom is introduced, it gives rise to permutations involving up to a ten-atom chain, which is as long as the longest possible distance in our lattice. This indicates that the result may not be a finite-size effect.

TABLE II. Supersolid fraction, ρ_s/ρ , in the presence of an interstitial atom. No global permutations were observed for the perfect lattice and the substitutional impurity.

Case	2D	3D
Interstitial ³ He	0.021(7)	0.007(4)
Interstitial ⁴ He	0.011(6)	0.012(5)

FIG. 8. (Color online) The one-body density matrix, n(r), of the 180-site hcp system in three dimensions. Although no difference is observed between the pure solid and the substitutional solid, the interstitial solid clearly shows a significant enhancement of n(r). For comparison to the case of vacancies we have included the line labeled "hcp with vacancies" which is taken from the paper by Galli *et al.* (Ref. 29) and it corresponds to an hcp density of 0.029 Å⁻³ with 0.558% vacancies.

VI. DISCUSSION

One of the main conclusions of the present paper is that the added interstitial impurity in both 2D and 3D ⁴He becomes substitutional by creating an interstitial ⁴He defect; we believe that this result is firm and it is not subject to finite-size effects. Furthermore, we find that the effective mass of a ³He impurity atom in both 2D and 3D solid ⁴He is large at T=1 K ($m^*/m \sim 5$) and at a lower temperature of 500 mK in 2D it becomes even larger ($m^*/m \sim 9$).

In addition, we find that the above-mentioned effect (i.e., the promotion of a ⁴He atom to the interstitial band by the impurity) gives rise to a nonzero superfluid response and a significant enhancement of the OBDM at long distances. This suggests that, provided that this effect persists when a finite density of ³He impurities is present and, provided that such a metastable state can be created and maintained, ⁴He solid with such impurities should be a supersolid. However, this cannot be established by the present calculation done for a single impurity in a pure ⁴He solid and it depends on a number of other factors. For example, while we have clearly demonstrated that a single ³He impurity acts as a donor of ⁴He atoms to the interstitial (conduction) band, the fate of these freed bosonic "carriers" is not certain when there is a finite density of ³He impurities. In this case the created interstitial ⁴He atoms can phase separate in a similar way as vacancies do,⁶ or they may bind to existing defects, such as, dislocations, domain walls, or grain boundaries or even remain free. It is not clear that such interstitial defects exist in the ⁴He solid caused by ³He or other impurities. This is an issue which could depend on the process of the crystal growth.¹⁶⁻¹⁸

A 2D ⁴He solid only exists as films on substrates, such as on graphite. The phase diagrams of first, second, third, and fourth layer of ⁴He on graphite, as a function coverage, has been studied by PIMC simulation.^{25,30} The role of substrate

FIG. 9. (Color online) Histogram of relative frequency of accepted particle permutations for various number of particles in 2D (top figure) and 3D (bottom figure).

corrugations, which is missing from the present simulation of the ideal 2D ⁴He, is important and the interplay of these substrate potential corrugations with the helium-helium interaction gives rise to a wealth of interesting phases.^{25,30} It is quite possible, however, that the main conclusion of the present paper, that introducing an interstitial ³He impurity in solid ⁴He leads to the promotion of a ⁴He atom to an interstitial position while the ³He impurity becomes substitutional, may remain valid even in the case of substrate corrugations.

The superfluid response which was calculated at 1 K and is given in Table II is very large considering the fact that the calculation was done at such a high temperature. This is a finite-size effect but at a much lower temperature the superfluid response is expected to be greater. A calculation of the superfluid density at a significantly lower temperature requires much larger computational time scales in order to be able to accurately sample it. In the 3D case, the zerotemperature condensate fraction obtained as the asymptotic value (infinite distance value) of the off-diagonal OBDM at zero temperature, is much smaller by at least one order of magnitude (as seen from Fig. 8). Therefore, as is well known, there is a large factor relating the superfluid response and the actual condensate fraction. It is clear that introducing just a single impurity and taking the infinite volume limit (or infinite area limit in 2D), the superfluid density and the condensate fraction should vanish. It is interesting, however, the fact that the ratio x_s/x of the superfluid fraction $x_s = \rho_s/\rho$ to the impurity fraction x (the impurity fraction is 1/N, where N is the total number of ⁴He atoms considered) is a number of order unity. Futhermore, the ratio n_0/x of the condensate fraction $n_0 = n(r \rightarrow \infty)$ to the impurity fraction for the 3D interstitial solid case is of order 0.1. We remind the reader that in strongly interacting Bose quantum fluids such as liquid ⁴He, the zero-temperature condensate fraction³¹ is only 0.1.

Our reported results on the off-diagonal OBDM and superfluid density are very interesting, however, one cannot

- ¹E. Kim and M. H. W. Chan, Nature (London) **427**, 225 (2004); Science **305**, 1941 (2004).
- ²N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **94**, 155302 (2005); E. Burovski, E. Kozik, A. Kuklov, N. Prokof'ev, and B. Svistunov, *ibid.* **94**, 165301 (2005).
- ³D. M. Ceperley and B. Bernu, Phys. Rev. Lett. **93**, 155303 (2004); B. K. Clark and D. M. Ceperley, *ibid.* **96**, 105302 (2006); M. Boninsegni, N. Prokof'ev, and B. Svistunov, *ibid.* **96**, 105301 (2006).
- ⁴M. Boninsegni and N. V. Prokof'ev, Phys. Rev. Lett. **95**, 237204 (2005).
- ⁵M. Boninsegni, N. V. Prokof'ev, and B. V. Svistunov, Phys. Rev. Lett. **96**, 070601 (2006); Phys. Rev. E **74**, 036701 (2006).
- ⁶M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. **97**, 080401 (2006).
- ⁷L. Pollet, M. Boninsegni, A. B. Kuklov, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. **98**, 135301 (2007).
- ⁸M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. **99**, 035301 (2007).
- ⁹L. Pollet, M. Boninsegni, A. B. Kuklov, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. **101**, 097202 (2008).
- ¹⁰A. T. Dorsey, P. M. Goldbart, and J. Toner, Phys. Rev. Lett. **96**, 055301 (2006).
- ¹¹E. Manousakis, EPL **78**, 36002 (2007).
- ¹²J. Toner, Phys. Rev. Lett. **100**, 035302 (2008).
- ¹³A. S. C. Rittner and J. D. Reppy, Phys. Rev. Lett. **97**, 165301 (2006); **98**, 175302 (2007).
- ¹⁴E. Kim and M. H. W. Chan, J. Low Temp. Phys. **138**, 859 (2005); E. Kim, J. S. Xia, J. T. West, X. Lin, A. C. Clark, and M. H. W. Chan, Phys. Rev. Lett. **100**, 065301 (2008).
- ¹⁵P.-C. Ho, I. P. Bindloss, and J. M. Goodkind, J. Low Temp. Phys. **109**, 409 (1997).
- ¹⁶A. Smith, V. A. Maidanov, E. Y. Rudavskii, V. N. Grigor'ev, V. V. Slezov, M. Poole, J. Saunders, and B. Cowan, Phys. Rev. B 67, 245314 (2003).
- ¹⁷E. Rudavskii, A. Ganshin, V. N. Grigor'ev, V. Maidanov, N. Omelaenko, A. Penzev, and A. Rybalko, J. Low Temp. Phys. **121**, 713 (2000).

draw firm definite conclusions because of (a) finite-size effects and (b) they refer to the case of a single 3 He impurity or single 4 He interstitial.

ACKNOWLEDGMENTS

We want to thank Massimo Boninsegni for useful discussions and for his help with applying the worm algorithm to this problem. This work was partially supported by a NASA under Grant No. NAG3-2867.

- ¹⁸A. Ganshin, V. Grigor'ev, V. Maidanov, N. Omelaenko, A. Penzev, E. Rudavskii, and A. Rybalko, J. Low Temp. Phys. **116**, 349 (1999).
- ¹⁹A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP **29**, 1107 (1969); A. F. Andreev and A. E. Meierovich, *ibid.* **40**, 776 (1974).
- ²⁰A. F. Andreev, Sov. Phys. JETP **41**, 1170 (1976).
- ²¹Y. Kagan, *Defects in Insulating Crystals* (Springer-Verlag, Berlin, 1981), p. 17; Y. Kagan and L. A. Maksimov, Sov. Phys. JETP **60**, 201 (1984).
- ²²R. A. Guyer, R. C. Richardson, and L. I. Zane, Rev. Mod. Phys.
 43, 532 (1971); M. G. Richards, J. Pope, P. S. Tofts, and J. H. Smith, J. Low Temp. Phys. 24, 1 (1976); M. G. Richards, J. H. Smith, P. S. Tofts, and W. J. Mullin, Phys. Rev. Lett. 34, 1545 (1975); V. A. Mikheev, V. A. Maidanov, and N. P. Mikhin, Solid State Commun. 48, 361 (1983); A. R. Allen, M. G. Richards, and J. Schratter, J. Low Temp. Phys. 47, 289 (1982).
- ²³J. G. Dash, *Films on Solid Surfaces* (Academic, New York, 1975); M. Schick, in *Phase Transitions in Surface Films*, edited by J. G. Dash and J. Ruvalds (Plenum, New York, 1980); L. W. Bruch, M. W. Cole, and E. Zaremba, *Physical Adsorption: Forces and Phenomena* (Oxford, New York, 1997).
- ²⁴M. C. Gordillo and D. M. Ceperley, Phys. Rev. B 58, 6447 (1998).
- ²⁵M. Pierce and E. Manousakis, Phys. Rev. B **62**, 5228 (2000).
- ²⁶J. E. Cuervo, P.-N. Roy, and M. Boninsegni, J. Chem. Phys. **122**, 114504 (2005).
- ²⁷R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, J. Chem. Phys. **70**, 4330 (1979).
- ²⁸M. Boninsegni and D. M. Ceperley, Phys. Rev. Lett. **74**, 2288 (1995).
- ²⁹D. E. Galli, M. Rossi, and L. Reatto, Phys. Rev. B **71**, 140506(R) (2005).
- ³⁰M. Pierce and E. Manousakis, Phys. Rev. Lett. **81**, 156 (1998);
 Phys. Rev. B **59**, 3802 (1999); Phys. Rev. Lett. **83**, 5314 (1999);
 Phys. Rev. B **63**, 144524 (2001).
- ³¹E. Manousakis, V. R. Pandharipande, and Q. N. Usmani, Phys. Rev. B **31**, 7022 (1985).