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Motivated by a recent experiment directly measuring the current-phase relation �CPR� in graphene under the
influence of a superconducting proximity effect, we here study the temperature dependence of the CPR in
ballistic graphene superconductor-normal metal-superconductor �SNS� Josephson junctions within the self-
consistent tight-binding Bogoliubov-de Gennes �BdG� formalism. By comparing these results with the standard
Dirac-BdG method, where rigid boundary conditions are assumed at the S �N interfaces, we show on a crucial
importance of both proximity effect and depairing by current for the CPR. The proximity effect grows with
temperature and reduces the skewness of the CPR toward the harmonic result. In short junctions �L��� current
depairing is also important and gives rise to a critical phase �c�� /2 over a wide range of temperatures and
doping levels.
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I. INTRODUCTION

Ever since the discovery of graphene1 there has been in-
terest in merging the unique two-dimensional massless rela-
tivistic Dirac fermion spectrum of graphene with supercon-
ductivity. A few years ago, graphene superconductor-normal
metal-superconductor �SNS� Josephson junctions were suc-
cessfully fabricated.2–5 Here superconductivity is induced in
the S regions of the graphene through proximity to supercon-
ducting contacts deposited on top of these regions, and,
through the Josephson effect, a finite supercurrent can exist
even in the N region of the graphene. One of the key prop-
erties of a SNS junction is the current-phase relation �CPR�,
and, very recently, the first direct measurement of the CPR in
graphene SNS junctions appeared.6

Theoretically, ballistic graphene SNS junctions were stud-
ied even before the first experimental results. Several fea-
tures were discovered, such as specular Andreev reflection,7

and a finite supercurrent in undoped graphene at zero tem-
perature, despite the pointlike Fermi surface.8 These results,
along with most theoretical results on the Josephson effect in
graphene SNS junctions,9–12 have employed the Dirac-
Bogoliubov-de Gennes �DBdG� formalism, where the stan-
dard BdG formulation is applied to the Dirac spectrum.7 To
solve the resulting equations, rigid boundary conditions are
assumed for the superconducting order parameter �, such
that � takes on a fixed, nonzero value in S, whereas it is zero
in N. However, such an approach explicitly ignores any pro-
cesses in which � is reduced in the S regions, such as prox-
imity effect or depairing by current �see, e.g., Ref. 13 for a
review�. Moreover, with the Josephson current in the DBdG
approach usually calculated as the current carried by subgap
Andreev bound states, this method is limited to junction
lengths L��, where � is the superconducting coherence
length. Other, related methods have been employed to relax
some of the constraints in the original works but they still
apply rigid boundary conditions for �.14–16 In fact, in order
to not apply any boundary conditions on � at the S �N inter-
face, a self-consistent treatment is needed. One such method

is the self-consistent tight-binding �TB� BdG formalism,
where one only assumes that the superconducting contacts
induces a pairing potential into the graphene and then solve
self-consistently for � in the whole SNS structure.17–19 Not
only does this approach give an explicit calculation of the
full proximity effect, including current depairing but it also
results in a Josephson current appropriately calculated from
this proximity effect. Previous works by the authors19,20 em-
ploying this formalism at zero temperature showed on some
corrections to the CPR compared to the DBdG results, as
well as deviations for the critical current as function of junc-
tion length.

Now, with experimental data on the CPR in graphene at
hand, it is of large interest to theoretically map out the tem-
perature dependence of the CPR in graphene. Very recently,
some theoretical temperature dependent CPR results ap-
peared using the DBdG approach16 but otherwise all theoret-
ical work have been at zero temperature. The goals of this
work are thus twofold: �1� establish the correct CPR in bal-
listic graphene SNS Josephson junctions as function of tem-
perature using the self-consistent TB BdG formalism. �2�
Determine how well the DBdG approach captures the CPR,
and, if applicable, determine the source�s� of discrepancy.

We will here show that both the proximity-effect deple-
tion of superconductivity in the S regions and depairing by
current are large in short junctions �L���. In fact, these
effects lead to a CPR where the critical current is reached for
a phase �c�� /2. This is true over a large temperature range
and even more prominent for high doping levels in the
graphene. In order to capture these effects a self-consistent
solution of � is crucial since rigid boundary conditions ex-
plicitly ignores any such processes in the S regions. For
longer junctions �L��� the proximity-effect depletion is un-
changed but depairing by current is now not a big issue, and
here �c�� /2. In this junction length regime the DBdG ap-
proach using Andreev bound states is not formally justified,
and due to a large proximity effect, a self-consistent ap-
proach is still needed.
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The rest of the article is organized as follows. In the next
section we briefly introduce the methods used, both the self-
consistent approach and the DBdG equation using rigid
boundary conditions. Then in Sec. III we report our results,
including the temperature dependent CPR for different junc-
tions as well as an analysis of the influence of proximity
effect and current depairing on the CPR. Finally, we summa-
rize our key findings and comment on the applicability of our
results to current and future experiments.

II. METHOD

Our starting point is the nearest-neighbor tight-binding
Hamiltonian on the graphene lattice together with an on-site
s-wave superconducting order parameter �i, which is in-
duced by the proximity to external superconducting contacts

H = − t �
�i,j�,	

�ai	
† bj	 + H.c.� + �

i	


i	�ai	
† ai	 + bi	

† bi	�

+ �
i

�i�ai↑
† ai↓

† + bi↑
† bi↓

† � . �1�

Here ai	
† �bi	

† � creates an electron with spin 	 on the A �B�
sublattice in unit cell i. t�2.5 eV is the nearest-neighbor
hopping amplitude whereas 
i is the chemical potential. We
will assume that, due to the external contacts, the chemical
potential is rather large and constant in the S regions whereas
it can be tuned �to a constant value� with a back gate voltage
in the N region.

A. DBdG equation

For an analytical treatment within the DBdG framework
we set �N=0 whereas �S=��T� with ��T=0�=�0. Here
��T� is set to the standard BCS temperature dependence.
This amounts to applying rigid boundary conditions on �i at
the S �N interface. By treating the S and N regions separately,
the above Hamiltonian can be Fourier transformed and the
kinetic-energy linearized around the Dirac points to produce
the standard DBdG equation7

�H0 − 
 �

�† − H0 + 

	� = �� , �2�

where � and 
 take on different, but constant, values in the
S and N regions, as described above. Moreover, H0=
−i
vF�	x�x+	y�y�, where 
vF=
3ta /2 with a=2.46 Å be-
ing the lattice constant of graphene.

The strategy for calculating the Josephson current in the
junction is to first obtain the energy spectrum for the
Andreev-bound states in the N region. This is done by
matching the wave functions given by Eq. �2� at the two S �N
interfaces and then solve for the allowed energy eigenstates,
�. The general expression for the Josephson current can then
be written as:21

I��� =
4e



�
�

�
n

���,n

��
f���,n� , �3�

where the summation over � denotes all Andreev levels and
the summation over n denotes the transverse momentum in-

dex. Here, � is the phase drop across the junction, f�x� is the
Fermi-Dirac distribution function, and the prefactor of four is
due to the spin- and valley-degeneracy. Let us first consider
the case of 
S=
N, i.e., no Fermi level mismatch �FLM� in
the junction. In the wide junction limit where the junction
width W satisfies W�L, we may replace the summation over
discrete transverse momentum indices with an integral as
follows:

�
n

→� dky

2�/W
=


NW

2�
vF
� d� cos � , �4�

where the integration over the angle � takes into account all
possible trajectories. The Andreev levels in a SNS junction
with no FLM have the form21

�� = � ��T�
1 − � sin2��/2� , �5�

where for graphene � has the specific form

� =
cos2 �

1 − sin2 � cos2�
NL cos �/�
vF�

. �6�

Inserting the above equations in to Eq. �3� and introducing
the normalization constant I0= �W /��e�0 /
, where �
=
vF /�0 is the superconducting coherence length, we arrive
at the expression

I���
I0

=

N

2��0
�

−�/2

�/2

d�
���T�
2

�0�+

� sin � cos �

tanh−1���+/2�
, �7�

where � is the inverse temperature. Finally turning our atten-
tion to the FLM case, a similar procedure8 leads to the ex-
pression

I���
I0

=
��T��
�0W

�
n

�
�n sin �


1 − �n sin2��/2�
, �8�

where �n is given by Eq. �17� in Ref. 8.

B. Self-consistent treatment

In the self-consistent numerical treatment we do not pre-
determine the value of �i nor apply rigid boundary condi-
tions at the S �N interface. Instead we assume that the influ-
ence of the superconducting contacts on the underlying
graphene is only through an induced attractive pairing poten-
tial. For s-wave pairing the simplest potential is a constant,
nonzero, attractive Hubbard-U term in the S regions. By ap-
plying the mean-field approximation to the attractive Hub-
bard model we reproduce Eq. �1� but with an added self-
consistency condition

�i = − Ui
�ai↓ai↑� + �bi↓bi↑�

2
, �9�

where Ui=U in S but zero in N. We can now solve self-
consistently for �i by first guessing a profile for �i through-
out the SNS junction, solving Eq. �1� with this guess, recal-
culating �i using Eq. �9�, and then reiterate this process until
two subsequent �i profiles are within a predetermined error
margin. In order to study the proximity effect between the S

ANNICA M. BLACK-SCHAFFER AND JACOB LINDER PHYSICAL REVIEW B 82, 184522 �2010�

184522-2



and N regions in the graphene we focus on the pairing am-
plitude Fi=�i /Ui. While �i will only be nonzero in the S
regions, Fi can, due to proximity-effect leakage from S to N,
be nonzero even in N. Alongside this leakage also comes a
depletion of F in S such that F��0 /U close to the interface.
It is this latter process that, as we will show below, signifi-
cantly changes the CPR. The other important property is the
Josephson current I that flows through the junction if there
exists a phase difference � in �i across N. From the conti-
nuity equation for the charge current we can, using the self-
consistent solution for �i, calculate I. For additional details
on this self-consistent method see Ref. 19.

C. Simulation details

We will assume clean, smooth interfaces such that a Fou-
rier transform along the direction parallel to the interface is
applicable. In the self-consistent treatment, the type of inter-
face can be varied but with an on-site pairing the direction of
the interface will not matter. We will here use the zigzag
interface, such that one unit cell is 
3a /2 long. Moreover,
we will only consider the wide junction regime, W�L��.
In the self-consistent treatment the junctions are naturally
infinitely wide, due to Fourier transforming along the inter-
face whereas in the DBdG approach W=30� is used. For a
direct comparison between the two methods the current will
be given in units of W /�.

In this article we will focus on a few representative values
for the various physical input parameters. In the supercon-
ducting S regions we use U=1.36t and 
S=0.6t. These val-
ues give �0=0.042t, and a superconducting coherence length
�=
vF /�0�24 unit cells. This satisfies ���F=
vF /
 in
both S and N, a requirement for the DBdG solution, and will
also allow us to self-consistently investigate both the L��
and L�� regimes, where L is the length of the N region.
Moreover, with these values we get S regions as small as 50
unit cells displaying clear bulk behavior, which is advanta-
geous due to the computational demands of the self-
consistent method. Note though that for a direct comparison
with an experimental setup �0 is very large. However, we
believe that our results are applicable even for smaller �0,19

and we, therefore, explicitly only report our results in dimen-
sionless units. We will vary the chemical potential in the N
region from the Dirac point �
N=0� to moderately doped
�
N=0.47
S�, to no FLM at the interface �
N=
S�. In addi-
tion, we will investigate both short junctions with L=0.42�,
where our DBdG approach is technically justified, and long
junctions with L=2.1�.

Finally, let us comment on the application of a phase gra-
dient in �i. We apply a phase difference �� between the
superconducting order parameters in the outermost regions
of the two S regions. In the self-consistent treatment the
phase is, however, allowed to relax also in the S regions
close to the interfaces. Thus the phase drop � across the
junction itself, i.e., across N, will necessarily satisfy �
����� in the self-consistent treatment, with an inequality
in the first step as soon as the supercurrent is nonzero. As a
consequence, we will not be able to trace out the self-
consistent CPR for � close to � in junctions with high cur-

rents. While this appears as a numerical artifact in this con-
text, it is, in fact, closely related to the physical 2� phase-
slip process in Josephson junctions �see, e.g., Ref. 22�.

III. RESULTS

We will start by reporting the CPR for several different
ballistic graphene SNS junctions. Then we will explicitly
analyze the critical current and phase, followed by a qualita-
tive analysis of the effect of proximity effect and current
depairing on the CPR. The latter two quantities are captured
by our self-consistent approach but is not included within the
DBdG framework.

A. CPR

Figure 1 shows the CPR for four representative cases with

N=0 and no FLM, and for short and long junctions, respec-
tively. For each case we plot the CPR at four different tem-
peratures, T /Tc=0, 0.14, 0.43, and 0.87. For short junctions
we also report the DBdG results as dashed curves for a
straightforward comparison. We will comment more specifi-
cally on the skewness, or anharmonicity, of the CPR when
extracting �c in Fig. 2 but we see directly that the DBdG
results only approximately reproduces the self-consistent re-
sults in the limit of low-temperature and low doping levels in
N. For increasing doping levels and/or increasing tempera-
tures, the self-consistent results have a skewness toward �c
�� /2 whereas �c�� /2 is always the case for the DBdG
results. By parameterizing the skewness as S=2�c /�−1, we
will refer to the former case as negative skewness. We also
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FIG. 1. �Color online� Josephson current I in units of I0

= �W /��e�0 /
, when vF=1, as a function of the phase drop �
across the junction for ��a� and �b�
 
N=0 and ��c� and �d�
 no FLM
for ��a� and �c�
 short junctions and ��b� and �d�
 long junctions at
T /Tc=0 �black, ��, 0.14 �blue, ��, 0.43 �red, ��, and 0.87 �green
��. In �d� T /Tc=0.025 �magenta, �� is also plotted whereas it falls
on top of the T=0 results in the other plots. Self-consistent TB BdG
results �solid, lines are only guides to the eye�, and DBdG results
�dashed�.
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directly see that the total current in the junction is naturally
increased with increasing doping level, decreasing junction
length, or decreasing temperature. Note though that the self-
consistent results show a much larger suppression of the cur-
rent with increasing temperature than the DBdG results.

Before we continue, the case of no FLM at the interface
deserves special attention. Here there is no interface barrier
and we thus have an SNS junction with fully transparent
interfaces. Such junctions, independent on junction length,
have been shown to have a 1 /T diverging superconducting
decay length �N in the normal region.18 For T=0 this is di-
rectly manifested in a linear drop of �� throughout the
whole junction �i.e., even in the S regions� and, conse-
quently, also a linear CPR, resulting in �c→�.19 The diverg-
ing �N at T=0 also leads to currents not limited by tunneling
through Andreev bound states but by the size of the �in-
duced� superconducting gap in the N region. Due to these
high currents we cannot fully trace out the CPR in these
junctions at low temperatures. However, in the accessible
range, the self-consistent CPR is indeed linear, which sup-
ports the claim that �c→� as T→0. Note that this numeri-
cal problem can partially be circumvented by studying
longer junctions, as seen in Fig. 1�d� since these junctions
carry smaller currents due to a smaller superconducting gap
in the N region. Since the current calculation in the DBdG
framework explicitly assumes the presence of a finite num-
ber of Andreev bound states in the normal �metal� N region,
this method cannot capture the effects of the diverging �N.
This results in an underestimation of both the skewness and
the absolute value of the critical current in junctions with no
FLM at very low temperatures when using the DBdG
method.

Let us now focus on the critical phase �c, extracted for
three different doping levels in Figs. 2�a� and 2�b�. In short
junctions the DBdG results �dashed lines� show a notable
�positive� skewness away from the traditional harmonic Jo-
sephson relation I= Ic sin���. At the Dirac point at zero tem-
perature, �c=0.63� as already established analytically,8 but
with increasing temperature the CPR approaches the har-

monic form, in agreement with other recent DBdG results.16

The skewness in the DBdG approach is somewhat increased
with increasing doping but the overall temperature depen-
dence is not highly sensitive to the doping level in N, nor is
the no FLM case distinctly different from the other results.
What is most striking with Fig. 2�a� is the fact that the DBdG
results do not reproduce the self-consistent results reliably.
At low doping levels, �c is essentially uniformly shifted to
lower values in the self-consistent approach, such that �c
�� /2 above some temperature. The temperature at which
�c=� /2 decreases with increasing doping levels. This leads
to a substantial negative skewness with increasing doping,
and thus the self-consistent results deviate even more from
the DBdG results as the doping increases in the N region. At
very high temperatures there is finally a tendency to ap-
proach a harmonic CPR, which is the development for any
ballistic SNS junction with rigid boundary conditions as T
→Tc.

13 Within our numerical accuracy we cannot, however,
model temperatures close enough to Tc to formally see if
�c→� /2 as T→Tc.

For long junctions the skewness is instead in general posi-
tive or only minutely negative for the highest doping levels.
Also, �c→� /2 even for only moderately high temperatures.
We can for L�� not formally justify the use of our DBdG
framework, but a comparison still shows on a large discrep-
ancy between the self-consistent results and the DBdG re-
sults, although it is smaller than for shorter junctions. Nota-
bly, the self-consistent results reach the harmonic �c=� /2
result much faster than the DBdG results.

In terms of the critical current, even with the log scale in
Figs. 2�c� and 2�d�, we see that a self-consistent treatment
results in a significantly lower current for all junctions except
at very low doping levels and temperatures. In fact, the dis-
crepancy between the two methods grow strongly with in-
creasing temperature.

In aggregate, the above results directly leads to two con-
clusions: �1� a self-consistent approach is crucial in the short
junction regime and still important for longer junctions. �2�
A junction with no FLM at the interface at zero temperature
has a diverging superconducting decay length �N and is
therefore fully superconducting. This leads to a linear CPR
with �c→� as T→0. The large difference between the self-
consistent and the DBdG results must stem from processes
that are not captured when applying rigid boundary condi-
tions to �i at the S �N interface. We have already discussed
the special case of no FLM junctions at zero temperature
where �N becomes finite. Also, very generally, processes in-
fluencing the superconducting state in the S region are
present in all junctions and at all temperatures. These pro-
cesses include proximity-effect depletion of the pairing am-
plitude F in the S region close to the interface and the addi-
tional loss of pairs in the whole junction because of a finite
supercurrent, or, equivalently, a finite phase gradient. In fact,
shifts of �c to the region �c�� /2 are mainly governed by
processes in the N region, as evident in the DBdG approach
whereas shifts toward �c�� /2 occur because of processes
in the S regions.13 That is, in the absence of the loss of
Cooper pairs in the S regions of the interface, the self-
consistent results would reproduce the DBdG results, where
the intrinsic properties of the graphene N region lead to �c
�� /2.
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FIG. 2. �Color online� Critical phase �c /� ��a� and �b�
 and
critical current Ic / I0 ��c� and �d�
 as a function of the reduced tem-
perature T /Tc for 
N /
S=0 �black, ��, 0.47 �green, ��, and no
FLM �red, �� for short junctions ��a� and �c�
 and long junctions
��b� and �d�
. Self-consistent results �solid, lines are only guides to
the eye�, and DBdG results �dashed�. Note the log scale in ��c� and
�d�
.
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B. Proximity effect

Figure 3 contains the evidence for proximity-effect deple-
tion of pair amplitude at the interfaces. In �a� we see that for
strong doping �red� the proximity effect is clearly larger, with
more depletion of F in S and the accompanied accumulation
of pairs in N. This is expected since with increasing doping
in N, the effective barrier at the interface due to the FLM is
decreased. The increase in the Josephson current with doping
of N is a direct consequence of this enhancement of F in N.
In terms of temperature dependence, the pair amplitude re-
duction in the bulk S regions with increasing temperature
follow the standard BCS temperature dependence and is thus
also included in the DBdG treatment. On top of this, there is,
however, an additional loss of pair amplitude both on the S
and N sides of the S �N interfaces with increasing tempera-
ture. This latter process is only captured in the self-consistent
method. Also seen in �a� are oscillations in Fi at both ends of
the S regions. These are due to the outer edges of the S
regions but do not influence the results of the junction itself.
The small oscillations for 
N=0 at the interfaces at low tem-
peratures are directly correlated with Friedel-type charge os-
cillations, which are only present when N is close to the
Dirac point.19

In �b� we analyze the proximity effect at the interface
more closely. For strong doping in N �red, green�, the prox-
imity effect is notably stronger than for an undoped N region
�black, blue�. However, note that the proximity effect is es-
sentially independent on the junction length L. This directly
tells us that the stronger discrepancy between the DBdG and
the self-consistent results found for short junctions is not due
to the proximity effect. Moreover, there is also a significantly
increased interface proximity effect with increasing tempera-
ture. This explains the stronger decrease in both the critical
current and phase with increasing temperatures than found in
the DBdG results.

C. Current depairing

Finally in Fig. 4 we study the absolute value of the pair
amplitude �F� for both �=0 and �c in short junctions. A
difference in �F� for these two phase gradients will directly
signal the influence of a finite phase gradient or, by exten-
sion, a supercurrent on F. In the case of a loss of �F� going
from �=0 and �c this is known as depairing by current, a
process present in any junction carrying a finite supercurrent.

In �a� we see that for low doping levels in N, there is a
small amount of current depairing at low temperatures,
which decreases with increasing temperatures. For heavily
doped N regions �b�, the depairing is significantly larger,
though it also decreases with increasing temperature. The
same set of curves for long junctions show no change with
applied phase gradient and thus depairing by current is only
an issue in short junctions. This directly leads to the conclu-
sion that it is current depairing which is responsible for the
smaller and even negative skewness found in shorter junc-
tions. Its doping dependence also explains why the skewness
is more negative for larger doping levels. Moreover, the
strong increase in proximity effect with increasing tempera-
ture is partially counteracted in short junctions by the de-
creased current depairing. Thus we see less of a temperature
dependence for the skewness when the junction length is
decreased. In passing, we also note that the strength of the
depairing process continues to increase as � is increased
from �c toward �, despite a decrease in the supercurrent.
Thus the depairing is technically a function of the finite
phase difference over the junction and not per see of the
current, although they are intimately related.

IV. CONCLUSIONS

We have above self-consistently established the tempera-
ture dependent CPR in ballistic graphene SNS Josephson
junctions with varying doping levels and junction lengths.
We have also compared our results with the currently preva-
lent method of studying these junctions, the so-called DBdG
method, which explicitly relies on the use of rigid boundary
conditions for the superconducting order parameter � at the
S �N interfaces. The DBdG method gives a critical phase
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FIG. 3. �Color online� �a� Absolute value of the pairing ampli-
tude F in units of F0=�0 /U at the critical current in a short junction
for 
N=0 �black� and no FLM �red� for temperatures T /Tc=0, 0.43,
and 0.87 �decreasing amplitude�. Vertical lines mark the S �N inter-
faces. �The curve for no FLM at T=0 is at the highest achievable �,
which did not reach Ic.� �b� Ratio of �F� at the S �N interface to
�F � =F0 in the bulk as a function of the reduced temperature T /Tc

for 
N=0 in a short junction �black, �� and long junction �blue, ��
and for no FLM in a short junction �red, �� and long junction
�green, ��.
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N=0 �a� and no FLM
�b�. Vertical lines mark the S �N interfaces.
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�c=0.6�–0.7� at zero temperature, with larger values for
higher doping levels in N, which slowly then reduces to the
harmonic value of �c=� /2 as T→Tc. Our DBdG results are
formally only valid in the short junction regime �L��� but
other recent work within the same DBdG framework has
shown on a similar behavior for long junctions.16 The self-
consistent results, however, are in most junctions qualita-
tively different from the DBdG results. First of all, any pro-
cess influencing the superconducting state in the S regions of
the junction can only be captured when the rigid boundary
conditions are removed and � is calculated self-consistently.
Such processes are known13 to decrease the skewness of the
CPR and can even produce negative skewness, i.e., give �c
�� /2. We have studied both the influence of proximity-
effect depletion of � in S close to the interfaces and the
additional loss of Cooper pairs when a finite phase gradient
is applied across the junction. The latter process, is known as
depairing by current and is present whenever there is a finite
supercurrent in the junction. The proximity effect is impor-
tant and modifies the CPR in all junctions we have studied. It
increases with doping and, even more so, with temperature.
It is, however, independent of the junction length. Current
depairing, on the other hand, is only important in short junc-
tions. It increases with doping, but decreases with tempera-
ture, both natural consequences of the amount of current in
the junction. In fact, current depairing helps explain the
growing discrepancy in Ic with decreasing L between the
analytical and self-consistent results found in Ref. 20. Based
on these results we can qualitatively explain the modified
CPR in the self-consistent results: For long junctions only
the proximity effect modifies the DBdG results. The proxim-
ity effect reduces the skewness significantly and also heavily
suppresses the critical current, especially at higher tempera-
tures. However, for T approaching Tc, �c is pinned to the
harmonic result, thus implying that in the very high-
temperature limit rigid boundary conditions are still appli-
cable. In shorter junctions, the same proximity effect is at
play but here current depairing causes further decrease in �c.
This is especially true for higher doping levels where we find
�c as small as � /4. The temperature dependence for the
current depairing is opposite that of the proximity effect, and
we thus see a somewhat smaller temperature variation in �c
for shorter junctions. Also, for short junctions a noticeable
anharmonicity is present closer to Tc, which by itself
strongly signals that these junctions are not well modeled
using rigid boundary conditions.13 In addition to these pro-
cesses, junctions with no FLM at the interfaces have �c
→� as T→0, due to a 1 /T diverging superconducting decay

length �N.18,19 Since the DBdG framework assumes �N=0,
also this effect is only captured in our self-consistent treat-
ment.

Let us finally also briefly comment on the applicability of
our results to an experimental setup. In the recent experiment
measuring the CPR in graphene SNS junctions,6 the skew-
ness was found to always be positive and increasing linearly
with the critical current �i.e., with decreasing temperature
and/or increasing doping�. It was, however, concluded that
the junctions were very likely in the quasidiffusive regime
and, thus, an explicit comparison with our work is not pos-
sible. Nonetheless, in Ref. 16 a qualitative comparison was
made to ballistic DBdG results in the appropriate long junc-
tion regime �L�3.5��, which also showed linear behavior
for small Ic, although the slope did not match the experimen-
tal results. Our results show that, even in this long junction
limit, self-consistency is necessary in ballistic junctions in
order to correctly capture the CPR, due to the proximity
effect. The temperatures used in the experiment was, how-
ever, large enough that within our current model setup we
cannot study these high temperatures since ��T� becomes
too small. Still, we can see that at slightly lower tempera-
tures the skewness is not hugely temperature or doping de-
pendent. We thus speculate that when relaxing the ballistic
requirement, proximity-effect corrections become less im-
portant. Ballistic transport has, however, already been dem-
onstrated in graphene SNS junctions with the measurement
of multiple Andreev reflections.3 Thus, a measurement of the
CPR in ballistic graphene junctions does not seem to be a too
distant an achievement. Our main, and easily verifiable, pre-
diction in ballistic junctions—that the skewness becomes
negative due to a combination of current depairing and prox-
imity effect in short junctions—will therefore be important
as the experimental junction lengths shrink in the future.

In summary, we have found that proximity effect, depair-
ing by current, and diverging superconducting decay length
all qualitatively modifies the CPR in graphene Josephson
junctions. Thus, a correct description of the CPR necessarily
requires a self-consistent treatment of the superconducting
order parameter. This is different from metallic SNS junc-
tions where it has been shown that rigid boundary conditions
are applicable for junctions with large FLM at the
interface.13,23
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