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Recently bound states in vortex cores were observed by scanning tunneling microscopy measurement in iron
pnictides. The local density of states ��� ,r� is asymmetrically peaked below the Fermi energy for r=0 �at the
vortex core� and the peak splits and merges to the gap edges away from the vortex core �r�0�. We performed
exact large-scale calculation of the vortex-core electronic structure in effective lattice models with both in-
phase s-wave �s++� and antiphase s-wave �s+−� pairing, and found results in qualitative agreement with the
experiment. We argue that the peak energy �p is determined by the normal-state band structure, insensitive to
the relative phase of the pairing gaps on the multiple bands. The observed bound state is compatible, although
not exclusively, with s+− pairing.
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I. INTRODUCTION

Iron pnictides are a new family of high-temperature su-
perconductors that have been the subject of extensive recent
research �for example, see Refs. 1 and 2�. Theoretically,
since electron-phonon interaction does not seem to be strong
enough to cause the high transition temperature,3 pairing
mechanism based on electron-electron interaction itself has
been the focus of much attention. The multiband structure
leads to disconnected Fermi pockets in the momentum space.
Interpocket scattering is believed to first cause a spin-
density-wave instability, and second by Luttinger-Kohn-type
mechanism4 �via higher order particle-hole processes� trig-
gers a repulsive interpocket pair-scattering interaction, lead-
ing to antiphase s-wave �or s+−� pairing gaps on the � and M
pockets.5–8 The same type of pairing also follows from some
specific local-moment models,9 which however has to be rec-
tified against the apparent lack of Mott gap in iron pnictides.
Clearly, the intrapocket pairing symmetry and perhaps more
importantly the relative phase of the gap functions are the
essential ingredients of electronic pairing mechanisms that
have to be verified/falsified.10–13 Experimentally, it seems
that most pnictides have nodeless gaps,14–16 compatible with
s-wave pairing, except KFe2As2,17 LaFePO,18 and
BaFe2As2−xPx.

19 Neutron-scattering and phase-sensitive tun-
neling measurements are performed in search of the signa-
ture of s+− pairing,20,21 but consensus has not been achieved
yet.

Recently, scanning tunneling spectroscopy �STM� mea-
surements were performed on high-quality Ba0.6K0.4Fe2As2
samples in the mixed state.22 In iron pnictides, clear Andreev
bound states around the vortex core were observed. The local
density of states �LDOS� ��� ,r� is asymmetrically peaked at
�p below the Fermi energy for r=0 �at the vortex core�, and
the peak splits and merges to the gap edges away from the
vortex core �r�0�. The purpose of this work is to understand
such features and uncover the connection, if any, to the pair-
ing symmetry and the relative gap phase.

We performed exact large-scale calculation of the vortex
core state with in-phase �s++� and s+− pairing, using a variety
of tight-binding models. For both pairing symmetries, the
calculated LDOS shows one peak at the core center, and the

peak splits far away from the center and eventually merges to
gap edges. The sign of the peak energy is however model
dependent. In the simplest two-band model proposed in Ref.
23 �model A�, �p is above the Fermi level, inconsistent with
the STM result. In the two-band model proposed in Ref. 24
�model B�, the three-band model proposed in Ref. 25 �model
C�, and the five-band model proposed in Ref. 7 �model D�,
�p is below the Fermi level, in agreement with STM result.
The difference arises from the different band structures. In
model A, the Fermi level is near the bottom of the electron
pockets, while in model B, C, and D, it is near the top of one
or several hole pockets. The sign of �p is negative/positive
for hole/electron pocket edges. This difference is internally
consistent by charge conjugation if only the shallow bands
dominate the bound state. We therefore argue that the asym-
metric bound state is due to the band edge effect and is
therefore unfortunately insensitive to the relative phase of
the pairing gaps. The observed bound state is compatible,
although not exclusively, with s+− pairing.

The rest of this paper is organized as follows. In Sec. II
we discuss the vortex states within a simple one-band model.
This is used to gain insights without the complication of
multiband structure. In Sec. III, we discuss the vortex states
within four different lattice models for iron pnictides. Finally
Sec. IV contains the summary and discussion of the results.

II. ONE-BAND MODEL

As a digression and technical preparation, we first con-
sider bound states in vortex cores of conventional s-wave
superconductors. These bound states are marked by their
magnetic quantum number � �with 2� an odd integer� and
come in pairs with opposite energies �because of pairing�.
For small ���, the energies of the bound states are equally
spaced by ���� /kF�,26–28 where � is the bulk gap, kF the
Fermi wave number, and � the coherence length. The guiding
centers �the locus of the maximum wave-function amplitude�
of such states are concentric circles around the vortex core
and the guiding radius r� increases with increasing energy
���. At a particular radial distance r, the contribution to
LDOS comes mainly from the bound states with r��r. In
the presence of small but finite smearing �due to thermal
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effect or elastic scattering by impurities�, the bound states
lead to a zero-energy peak in LDOS for r=0 �the vortex-core
position�, and a pair of peaks at positive and negative ener-
gies for r�0. This cartoon-picture view summarizes the
main results by quasiclassical Green’s-function
approaches.29,30 However, implicit in such approaches is the
assumption of a wideband with particle-hole symmetry,
which is unable to capture the asymmetry under concern. On
the other hand, the quasiclassical treatment requires kF�	1.
In this limit, ��
� so that the discrete levels would be
easily smeared out by thermal energy and/or quasiparticle
scattering. A better case can be made if � is on the order of
the Fermi wavelength 2� /kF. In this case the Fermi level is
close to the band edge within an energy scale of the pairing
gap, and one has to go beyond the quasiclassical approxima-
tion and solve the problem exactly. Because of the impor-
tance of the band edge, the band structure is no longer sym-
metric with respect to the Fermi level within the gap energy
scale, and nor would the bound states be. As a result, observ-
able asymmetric bound states would appear, as found
experimentally31 and studied in a continuum model,32 where
such states were referred to as the quantum limit of the
Caroli de Gennes states.

In the following we check whether the above picture
manifests in lattice models. The purpose is threefold. First,
we will use lattice models for the multiband iron pnictides.
Second, in the above-mentioned quantum limit, the lattice
model is better defined. Third, in the experimental situation,
the intervortex distance is of the order of a few hundreds of
the lattice constant. To mimic the situation we will consider
an isolated vortex in an open L�L lattice system with large
enough L. The large size reduces finite-size effect and also
the overlap between core states from different vortices. How-
ever, with the large lattice �and also lack of knowledge of the
pairing interaction for the pnictide models� we are unable to
do self-consistent calculation for the vortex state. It is there-
fore important to check that an assumed profile for the vortex
configuration is enough to reveal the bound states.

The lattice Hamiltonian can be written as

H = �
i,j

i
†�− tij�3 − ��ij�3 + ��i�ij�+ + H.c.�� j , �1�

where i= �ci↑ ,ci↓
† �T is the real-space Nambu spinor, �+

= ��1+ i�2� /2 and �3 are Pauli matrices, tij is the hopping
integral, and �i is the on-site pairing potential. In what fol-
lows we take tij = t=1 for nearest neighbors only and �0
=0.2. We take the lattice constant a=1 and assume �=10
unless indicated otherwise. In principle, in the presence of a
magnetic field tij should include a Peierls factor relating to
the vector potential. However, for a dilute vortex lattice, we
ignore this factor. This approximation is common27 and in
fact reliable in dealing with the vortex-core states. We con-
sider an isolated vortex in an open L�L lattice with L
=401 in this section. The vortex is characterized by �i
=�0 tanh�ri /��exp�i�i�, where ri ��i� is the radial distance
�azimuthal angle� of a site i with respect to the core center.33

To calculate the LDOS around the vortex efficiently in our
large lattice, we follow the real-space recursion method.34,35

To be specific, the LDOS at site i is calculated as follows.

We take the single-particle state ci↑
† �0�, where �0� is the

vacuum with no electrons, as an initial state and apply the
standard Lanczos method to convert the single-particle
Hamiltonian to a tridiagonal matrix with 	ak ;k=0, . . . ,K

and 	bk ;k=0, . . . ,K−1
 as the diagonal and subdiagonal el-
ements, respectively. Here K is the optimal size of the Lanc-
zos chain. Then the retarded local Green’s function �suitable
for ci↑� at site i is given by a continued fraction,

G��,i� =
1

� + i� − a0 −
b0

2

� + i� − a1 −
b1

2

¯

, �2�

where � is a suitable smearing factor, on the order of t /L,
which effectively reduces finite-size effect. Finally the
LDOS is obtained as ��� , i�=−Im G�� , i� /�.

As a reference, Fig. 1�a� shows the normal state DOS for
�=0. There is a Van Hove singularity in the band center. By
tuning � the Fermi level is either close to the bottom or the
top of the band. In the vortex state, we first present the
LDOS in the symmetric case ��=0� in Fig. 1�b�. We see a
zero-bias peak at the vortex-core center and the peak splits
along the cut away from the core �thin lines�. Far from the
core the peaks merge to the gap edges and the curve evolves
to the zero-field one �thick line�. These qualitative features
are in line with the above-mentioned cartoon picture and are
known from other techniques.30,36,37 Figures 1�c� and 1�d�
are the same plots as Fig. 1�b�, except that �= �2 in �c� and
�d�, respectively. The sign of �p, as highlighted in the insets,
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FIG. 1. �Color online� LDOS of the one band nearest-neighbor
tight-binding model. �a� LDOS of normal state for �=0. �b� LDOS
along a cut �0,y� starting from the vortex core �thin lines�. Viewing
at zero energy, y increases by a successively from top to bottom.
The thick line indicate the zero-field LDOS �or far from the vortex
core�. Here �=0. �c� The same plot as �b� but for �=2. �d� The
same plot as �b� but for �=−2. The insets in �b�–�d� blow up the
low-energy peaks.

WANG et al. PHYSICAL REVIEW B 82, 184519 �2010�

184519-2



is negative �positive� for �=2 ��=−2�, in line with the po-
sition of the Fermi level with respect to the band edges.

To see the systematics we performed calculation of the
LDOS for a range of � and �. The peak energy as a function
of 1 /kF� is shown in Fig. 2 for �=−3.0,−2.8, . . . ,−1.0 from
top to bottom. Here �p�0 since the Fermi level is closer to
the bottom of the band in the cases considered. We see that
the curves merge together in the limit 1 /kF�
1, confirming
the results in the quasiclassical limit. For large 1 /kF�, the
magnitude of �p is larger if the Fermi level is closer to the
band bottom �or for more negative ��. This result is in agree-
ment with the continuum model in the same limit32 and vali-
dates the assumptions we made for the vortex states.33

III. MULTIBAND MODELS FOR IRON PNICTIDES

A. Model A

Having understood the origin of the nonzero bias peak,
we now consider model A, a simplest two-band model pro-
posed in Ref. 23 for the iron pnictides. The Hamiltonian is
written as

H = �
ia,jb

ia
† �tia,jb�3 − ��ij�ab�3 + ��ij�ab�+ + H.c.�� jb,

�3�

where i and j are site indices, and a and b are orbital indices.
In the present two-orbital case a or b runs over the xz
and yz orbitals. We adopt the hopping integrals suggested
in Ref. 23 for tia,jb and set �=1.45 to produce a right topol-
ogy of the Fermi pockets. The pairing is assumed to occur
between identical orbitals since nodal gap would appear oth-
erwise according to a group theoretical analysis.38 We con-
sider two typical s-wave pairing cases. For the s++ case we
assume electrons pair on-site wise, leading to a uniform gap
everywhere in the momentum space �in the absence of vor-
tices�. For the s+− case we assume electrons pair on next-
nearest-neighboring sites, leading to a gap form factor
cos kx cos ky in the momentum space, which changes sign
from the hole pocket to the electron pocket. Similar to the
one-band case, the vortex here is characterized by �ij

=�0 tanh�rij /��exp�i�ij� in which rij is radial center-of-mass
position of the electron pair, and �ij is the associated azi-
muthal angle.33 A 401�401 lattice is used in the following
calculations.

The LDOS in the vortex states is presented in Fig. 3.
Since the general feature does not depend on the orbital char-
acter in this case, only the total LDOS, an equal-weight sum
of the contributions from both orbitals are shown. In both �a�
s++ and �b� s+− cases, we find a nonzero �p above the Fermi
level at the vortex-core center �top line�.39,40 While the fol-
lowing peak splitting and merging to the gap edge as we
move away from the vortex core center is in agreement with
the STM result, the sign of �p disagrees. Moreover, a com-
parison between Figs. 3�a� and 3�b� shows that the general
features of the vortex-core states are indifferent to the rela-
tive phase of the pairing gaps.

To check whether the band edge effect found in the one-
band model preserves in the multiband case, we also per-
formed calculations for � in the whole band range �for s++
pairing only, given the indifference of �p to the two types of
s-wave pairing�. In Figs. 4�a� and 4�b�, we plot the band-
structure and normal-state DOS. We find that the Fermi level
used in Fig. 3 is just above the band bottom near �� ,0� and
a positive �p seems to be consistent with the band-edge ef-
fect in the one-band case. In Fig. 4�c�, we plot a series of
LDOS curves at the vortex-core center, vertically shifted for
clarity. We see that the magnitude of �p is particularly large
at ��−8, 1.2, and 4 �marked by A, B, and C, respectively, in
Fig. 4� where the Fermi level is near the bottom or top of the
bands within the gap energy scale. The sign of �p is also in
agreement with the band-edge effect found in the one-band
model.

Therefore, the wrong sign of �p in Fig. 3 �as compared to
the experimental one� is clearly an artifact of this model.
Although it produces Fermi pockets in qualitative agreement
with the local-density approximation �LDA� band structure
after folding the Brillouin zone, the Fermi level is close to
the bottom of the electron pockets, as shown in Fig. 3�a�, in
contrast to the LDA band structure.

B. Model B

We now consider another two-orbital model proposed in
Ref. 24 �model B�. This model breaks the A-B lattice sym-
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FIG. 2. �Color online� The peak energy �p as a function of
1 /kF�. From top to bottom, �=−3.0,−2.8, . . . ,−1.0.
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FIG. 3. �Color online� LDOS of model A with �a� s++ and �b� s+−

pairing along a line cut �0,y� starting from the vortex-core center.
Viewing at zero energy, y increases by 2a successively from top to
bottom. The thick line indicates the bulk LDOS.
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metry and is subject to some debate.41 However, it repro-
duces two hole pockets that are nondegenerate at the zone
center, in better agreement with angle resolved photoemis-
sion spectroscopy. Therefore it might be a suitable effective
model. For the parameters we refer to Ref. 24. The setting of
the pairing potential is the same as in model A. The band
structure is shown in Figs. 5�a� and 5�b�, for �=
−0.512 eV, which yields a reasonable doping level and
Fermi-surface topology. The band structure is very different
from model A. The Fermi level is close to the top of the hole
band at �0,0�. The DOS is also very different. According to
the band-edge effect we would expect opposite sign of �p in
these two models. This is indeed the case. For both s++ �Fig.
5�c�� and s+− �Fig. 5�d��, there is a nonzero-bias peak below
the Fermi level ��p�0� at the vortex-core center, splitting
far away from the center, and eventually merging to the gap
edges, in qualitative agreement with the STM data.22 The
magnitude of �p is relatively small for �=10 in our calcula-
tion but it could be tuned larger for smaller �.

C. Model C

Next we consider a more sophisticated three-band model,
model C, for the iron pnictides. The purpose is twofold. First,
a three-band provide a more faithful approximation to the
LDA band structure. Second, we use this model to check
whether the band-edge effect survives with more bands. We
use the tight-binding model proposed in Ref. 25. The model
includes the xz, yz, and xy orbitals. The results are presented
in Fig. 6. The Fermi level is marked by the dotted line in
Figs. 6�a� and 6�b�. It is also near the top of the hole bands.

The bound state energy �p is negative as seen in the LDOS
near the vortex core, as shown in Figs. 6�c� and 6�d�, for s++
and s+− pairing, respectively. The evolution of the LDOS
along the cut is similar to that in model B and the asymmet-
ric peak is also insensitive to the s-wave pairing symmetries.

D. Model D

Finally we consider the five-band models which respect
the LDA band structure most comprehensively.7,42–44 With
many bands or orbitals, the pairing amplitude may strongly
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sample is marked by the dotted line. �b� LDOS in the normal state.
The energy is in units of t1. �c� LDOS at the vortex-core center for
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depend on the band. In the absence of a clear understanding
of the pairing interaction in such sophisticated models, the
band-dependent amplitudes cannot be resolved. Leaving
band- or orbital-dependent pairing potential for further study,
in the following we take the same assumption on the pairing
potential as in previous models for the simplest purpose. The
Hamiltonian now contains five orbitals, namely, the 3z2−r2,
xz, yz, xy, and x2−y2 orbitals. We adopt the hopping integrals
proposed in Ref. 7 and set �=10.92 eV to yield a reasonable
doping level. The band structure and the total DOS are pre-
sented in Figs. 7�a� and 7�b�. We remark that at this doping
level there are in fact three hole pockets in the folded
Brillouin-zone center which is different from models A, B,
and C. Because of strong orbital dependence, we also show
the normal-state orbital-resolved DOS in Figs. 7�c�–7�f�. To
enhance numerical resolution but without loss of generality,
we use a larger gap size �=0.02 eV and a smaller coherence
length �=5a. The lattice size is still 201�201.

The LDOS for the s++ and s+− cases are shown in Figs. 8
and 9, respectively. Since the five orbitals contribute un-
evenly, we present orbital-resolved LDOS in panels �a�–�c�
in these figures for xz /yz, x2−y2, and xy channels, respec-
tively. �The 3z2−r2 channel is not shown since its contribu-
tion is one or two orders of magnitude smaller than the oth-
ers.� The evolution of the LDOS along the cut is similar to
the other models. At the vortex-core center �y=0�, the asym-
metry of the peaks are apparent in the x2−y2 and xy orbitals,
but is barely visible in the xz and yz channels. This can be
understood in terms of the band-edge effect as follows. From

Fig. 7�a� the Fermi level is near the tops �bottoms� of the
hole �electron� pockets. By further inspection of the distribu-
tion of the orbital characters on the Fermi pockets �not
shown here�, we find that the x2−y2 and xy orbitals contrib-
ute closed �� ,�� and �0,0� pockets, respectively, yielding the
negative peaks in these two channels. On the other hand, the
xz and yz orbitals contributes to both electron pockets and
disconnected �0,0�-hole pockets. Moreover the band bottom
and top are nearly symmetric with respect to the Fermi level.
This leads to cancellation in the asymmetry. In Figs. 8�f� and
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FIG. 7. �Color online� Band structure and DOS of the normal
state of the five-orbital model. �a� Band structure of the five-orbital
model, plotted along the path �0,0�→ �� ,0�→ �� ,��→ �0,0�. �b�
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9�f�, we add the contributions of all of the five orbitals di-
rectly. The asymmetry is resolvable and the evolution of the
peak structure along the cut is in qualitative agreement with
the STM results. However, a quantitative comparison be-
tween theory and experiment would be difficult since in
STM the tunneling matrix element might require significant
orbital dependence.

We conclude that the band-edge effect holds in all of the
four models considered so far, and that models B, C, and D
provide results in qualitative agreement with the STM results
since in these models the Fermi level is near the top of at
least one hole band. While it is insensitive to the relative
phase of the pairing gaps, the asymmetric peak does favor
models B, C, and D instead of A.

IV. SUMMARY AND DISCUSSION

To summarize, by exact large-scale calculation of the
vortex-core state with s++ or s+− pairing, we find a bound
state LDOS peak at the core center, which splits away from
the center and eventually merges to gap edges. The sign of
the peak energy is positive/negative if the Fermi level is near
the bottom/top of the electron/hole bands but turns out to be
insensitive to the relative phase of the pairing gaps. In the
four models considered for the iron pnictides, models B, C,
and D produces results consistent with the STM results. We

therefore argue that the asymmetric bound state is due to the
band-edge effect. The observed bound state is compatible,
although not exclusively, with s+− pairing.

According to the band-edge effect, the nonzero vortex-
core bound states, observed in Ba0.6K0.4Fe2As2,22 should also
be observed in Ba�Fe1−xCox�2As2 if the system is in the clean
limit, since by electron doping the Fermi level would be
closer to the top of the hole bands. However, Co doping into
FeAs layers, although provides charge carriers to achieve
superconductivity, it also introduces in-plane scattering cen-
ters. Therefore, the bound states could be smeared out in the
vortices of Ba�Fe1−xCox�2As2 �Ref. 45� while survive in the
off-plane doped Ba0.6K0.4Fe2As2.

During resubmission of this paper we became aware of a
related work46 addressing similar issues but using a vortex
lattice with an intervortex distance of 24 Fe-Fe lattice con-
stant. The dense vortices lead to double peaks at each core
center, possibly because of overlapping core states.

ACKNOWLEDGMENTS

The work was supported by NSFC under Grants No.
10974086 and No. 10734120, the Ministry of Science and
Technology of China �under Grants No. 2006CB921802 and
No. 2006CB601002�, and the 111 Project �under Grant No.
B07026�.

*qhwang@nju.edu.cn
1 I. I. Mazin, Nature �London� 464, 183 �2010�.
2 D. C. Johnston, Adv. Phys. 59, 803 �2010�.
3 L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett.

101, 026403 �2008�.
4 W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 �1965�.
5 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys.

Rev. Lett. 101, 057003 �2008�.
6 A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B 78,

134512 �2008�.
7 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani,

and H. Aoki, Phys. Rev. Lett. 101, 087004 �2008�.
8 F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D. H. Lee, Phys.

Rev. Lett. 102, 047005 �2009�.
9 K. Seo, B. A. Bernevig, and J. P. Hu, Phys. Rev. Lett. 101,

206404 �2008�.
10 J. S. Wu and P. Phillips, Phys. Rev. B 79, 092502 �2009�.
11 D. Wang, Y. Wan, and Q. H. Wang, Phys. Rev. Lett. 102, 197004

�2009�.
12 W. Q. Chen, F. J. Ma, Z. Y. Lu, and F. C. Zhang, Phys. Rev. Lett.

103, 207001 �2009�.
13 E. Plamadeala, T. Pereg-Barnea, and G. Refael, Phys. Rev. B 81,

134513 �2010�.
14 H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y.

Sekiba, A. Takayama, S. Souma, T. Sato, and T. Takahashi, EPL
83, 47001 �2008�.

15 T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E.
Tillman, E. D. Mun, J. Schmalian, S. L. Budko, M. A. Tanatar,
P. C. Canfield, and A. Kaminski, Phys. Rev. Lett. 101, 147003

�2008�.
16 T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L.

Chien, Nature �London� 453, 1224 �2008�.
17 J. K. Dong, S. Y. Zhou, T. Y. Guan, H. Zhang, Y. F. Dai, X. Qiu,

X. F. Wang, Y. He, X. H. Chen, and S. Y. Li, Phys. Rev. Lett.
104, 087005 �2010�.

18 J. D. Fletcher, A. Serafin, L. Malone, J. G. Analytis, J. H. Chu,
A. S. Erickson, I. R. Fisher, and A. Carrington, Phys. Rev. Lett.
102, 147001 �2009�.

19 Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, S. Kasahara, T. Shibau-
chi, Y. Matsuda, and T. Terashima, Phys. Rev. B 81, 020503
�2010�.

20 A. D. Christianson, E. A. Goremychkin, R. Osborn, S. Rosen-
kranz, M. D. Lumsden, C. D. Malliakas, I. S. Todorov, H. Claus,
D. Y. Chung, M. G. Kanatzidis, R. I. Bewley, and T. Guidi,
Nature �London� 456, 930 �2008�.

21 C. T. Chen, C. C. Tsuei, M. B. Ketchen, Z. A. Ren, and Z. X.
Zhao, Nat. Phys. 6, 260 �2010�.

22 L. Shan, Y. L. Wang, B. Shen, B. Zeng, Y. Huang, Y. Xuan, D.
Wang, H. Yang, C. Ren, S. H. Pan, Q. H. Wang, and H. H. Wen,
arXiv:1005.4038 �unpublished�.

23 S. Raghu, X. L. Qi, C. X. Liu, D. J. Scalapino, and S. C. Zhang,
Phys. Rev. B 77, 220503 �2008�.

24 D. G. Zhang, Phys. Rev. Lett. 103, 186402 �2009�.
25 M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys.

Rev. B 81, 014511 �2010�; Another three-band model �not used
in this paper� can be found in, e.g., P. A. Lee and X. G. Wen,
ibid. 78, 144517 �2008�.

26 C. Caroli, P. G. De Gennes, and J. Matricon, Phys. Lett. 9, 307

WANG et al. PHYSICAL REVIEW B 82, 184519 �2010�

184519-6

http://dx.doi.org/10.1038/nature08914
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1103/PhysRevLett.101.026403
http://dx.doi.org/10.1103/PhysRevLett.101.026403
http://dx.doi.org/10.1103/PhysRevLett.15.524
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/PhysRevB.78.134512
http://dx.doi.org/10.1103/PhysRevB.78.134512
http://dx.doi.org/10.1103/PhysRevLett.101.087004
http://dx.doi.org/10.1103/PhysRevLett.102.047005
http://dx.doi.org/10.1103/PhysRevLett.102.047005
http://dx.doi.org/10.1103/PhysRevLett.101.206404
http://dx.doi.org/10.1103/PhysRevLett.101.206404
http://dx.doi.org/10.1103/PhysRevB.79.092502
http://dx.doi.org/10.1103/PhysRevLett.102.197004
http://dx.doi.org/10.1103/PhysRevLett.102.197004
http://dx.doi.org/10.1103/PhysRevLett.103.207001
http://dx.doi.org/10.1103/PhysRevLett.103.207001
http://dx.doi.org/10.1103/PhysRevB.81.134513
http://dx.doi.org/10.1103/PhysRevB.81.134513
http://dx.doi.org/10.1209/0295-5075/83/47001
http://dx.doi.org/10.1209/0295-5075/83/47001
http://dx.doi.org/10.1103/PhysRevLett.101.147003
http://dx.doi.org/10.1103/PhysRevLett.101.147003
http://dx.doi.org/10.1038/nature07081
http://dx.doi.org/10.1103/PhysRevLett.104.087005
http://dx.doi.org/10.1103/PhysRevLett.104.087005
http://dx.doi.org/10.1103/PhysRevLett.102.147001
http://dx.doi.org/10.1103/PhysRevLett.102.147001
http://dx.doi.org/10.1103/PhysRevB.81.020503
http://dx.doi.org/10.1103/PhysRevB.81.020503
http://dx.doi.org/10.1038/nature07625
http://dx.doi.org/10.1038/nphys1531
http://arXiv.org/abs/arXiv:1005.4038
http://dx.doi.org/10.1103/PhysRevB.77.220503
http://dx.doi.org/10.1103/PhysRevLett.103.186402
http://dx.doi.org/10.1103/PhysRevB.81.014511
http://dx.doi.org/10.1103/PhysRevB.81.014511
http://dx.doi.org/10.1103/PhysRevB.78.144517
http://dx.doi.org/10.1016/0031-9163(64)90375-0


�1964�.
27 P. G. de Gennes, Superconductivity of Metals and Alloys

�Addison-Wesley, Reading, 1966�.
28 J. Bardeen, R. Kummel, A. E. Jacobs, and L. Tewordt, Phys.

Rev. 187, 556 �1969�.
29 S. Ullah, A. T. Dorsey, and L. J. Buchholtz, Phys. Rev. B 42,

9950 �1990�.
30 U. Klein, Phys. Rev. B 40, 6601 �1989�.
31 H. Nishimori, K. Uchiyama, S.-i. Kaneko, A. Tokura, H. Takeya,

K. Hirata, and N. Nishida, J. Phys. Soc. Jpn. 73, 3247 �2004�.
32 N. Hayashi, T. Isoshima, M. Ichioka, and K. Machida, Phys.

Rev. Lett. 80, 2921 �1998�.
33 The phase winding of the vortex is unique up to trivial gauge

transforms. On the other hand, in self-consistent calculations,
the vortex potential well might be slightly noncircular, particu-
larly in the subdominant channel of a model with competing
pairing order parameters, see, e.g., Y. Ren, J. H. Xu, and C. S.
Ting, Phys. Rev. Lett. 74, 3680 �1995�; Q. H. Wang and Z. D.
Wang, Phys. Rev. B 54, R15645 �1996�. However, we are ad-
dressing s-wave pairing models without subdominant channels.
Moreover, even a slightly noncircular vortex profile should only
lead to insignificant difference to the bound states since the latter
follow from the topological phase winding of the pairing order
parameter.

34 E. R. Gagliano and C. A. Balseiro, Phys. Rev. Lett. 59, 2999
�1987�.

35 M. Cheng and W. P. Su, Phys. Rev. B 72, 094512 �2005�.
36 J. D. Shore, M. Huang, A. T. Dorsey, and J. P. Sethna, Phys. Rev.

Lett. 62, 3089 �1989�.
37 F. Gygi and M. Schluter, Phys. Rev. B 41, 822 �1990�.
38 Y. Wan and Q. H. Wang, EPL 85, 57007 �2009�.
39 X. Hu, C. S. Ting, and J. X. Zhu, Phys. Rev. B 80, 014523

�2009�.
40 H.-M. Jiang, J.-X. Li, and Z. D. Wang, Phys. Rev. B 80, 134505

�2009�.
41 M. Daghofer and A. Moreo, Phys. Rev. Lett. 104, 089701

�2010�; D. Zhang, ibid. 104, 089702 �2010�.
42 C. Cao, P. J. Hirschfeld, and H.-P. Cheng, Phys. Rev. B 77,

220506�R� �2008�.
43 V. Cvetkovic and Z. Tesanovic, EPL 85, 37002 �2009�.
44 M. J. Calderón, B. Valenzuela, and E. Bascones, Phys. Rev. B

80, 094531 �2009�.
45 Y. Yin, M. Zech, T. L. Williams, X. F. Wang, G. Wu, X. H. Chen,

and J. E. Hoffman, Phys. Rev. Lett. 102, 097002 �2009�.
46 Y. Gao, H. X. Huang, C. Chen, C. S. Ting, and W. P. Su,

arXiv:1008.3885 �unpublished�.

ELECTRONIC STRUCTURE AROUND A VORTEX CORE IN… PHYSICAL REVIEW B 82, 184519 �2010�

184519-7

http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1103/PhysRev.187.556
http://dx.doi.org/10.1103/PhysRev.187.556
http://dx.doi.org/10.1103/PhysRevB.42.9950
http://dx.doi.org/10.1103/PhysRevB.42.9950
http://dx.doi.org/10.1103/PhysRevB.40.6601
http://dx.doi.org/10.1143/JPSJ.73.3247
http://dx.doi.org/10.1103/PhysRevLett.80.2921
http://dx.doi.org/10.1103/PhysRevLett.80.2921
http://dx.doi.org/10.1103/PhysRevLett.74.3680
http://dx.doi.org/10.1103/PhysRevB.54.R15645
http://dx.doi.org/10.1103/PhysRevLett.59.2999
http://dx.doi.org/10.1103/PhysRevLett.59.2999
http://dx.doi.org/10.1103/PhysRevB.72.094512
http://dx.doi.org/10.1103/PhysRevLett.62.3089
http://dx.doi.org/10.1103/PhysRevLett.62.3089
http://dx.doi.org/10.1103/PhysRevB.41.822
http://dx.doi.org/10.1209/0295-5075/85/57007
http://dx.doi.org/10.1103/PhysRevB.80.014523
http://dx.doi.org/10.1103/PhysRevB.80.014523
http://dx.doi.org/10.1103/PhysRevB.80.134505
http://dx.doi.org/10.1103/PhysRevB.80.134505
http://dx.doi.org/10.1103/PhysRevLett.104.089701
http://dx.doi.org/10.1103/PhysRevLett.104.089701
http://dx.doi.org/10.1103/PhysRevLett.104.089702
http://dx.doi.org/10.1103/PhysRevB.77.220506
http://dx.doi.org/10.1103/PhysRevB.77.220506
http://dx.doi.org/10.1209/0295-5075/85/37002
http://dx.doi.org/10.1103/PhysRevB.80.094531
http://dx.doi.org/10.1103/PhysRevB.80.094531
http://dx.doi.org/10.1103/PhysRevLett.102.097002
http://arXiv.org/abs/arXiv:1008.3885

