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The chiral topological superconductor in two dimensions has a full pairing gap in the bulk and a single chiral
Majorana state at the edge. The vortex of the chiral superconducting state carries a Majorana zero mode which
is responsible for the non-Abelian statistics of the vortices. Despite intensive searches, this superconducting
state has not yet been identified in nature. In this paper, we consider a quantum Hall or a quantum anomalous
Hall state near the plateau transition and in proximity to a fully gapped s-wave superconductor. We show that
this hybrid system may realize the chiral topological superconductor state and propose several experimental
methods for its observation.
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I. INTRODUCTION

There are two basic types of topological states in two
dimensions �2D� which break the time-reversal symmetry T.
The first is the quantum Hall �QH� state which has a full gap
in the bulk and gapless chiral modes at the edge. The integer
number of the chiral edge modes N is a topological invariant
which can be directly related to the bulk topological invari-
ant of the QH state.1 The quantum Hall state is realized in the
presence of a large external magnetic field, however, the
quantized-Hall conductance can, in principle, also be real-
ized in topological insulators which break the T symmetry.2,3

More recently, realistic proposals suggest that doping 2D to-
pological insulators such as HgTe and Bi2Te3 with magnetic
dopants,4,5 can result in the so-called quantum anomalous
Hall �QAH� insulator without an external magnetic field. The
second state is the chiral superconductor which has a full
pairing gap in the 2D bulk and N gapless chiral Majorana
fermions6,7 at the edge. The case of a chiral superconductor
with N=1 is most interesting. The edge state has half the
degrees of freedom of an N=1 QH or QAH state, therefore,
this is the minimal topological state in 2D. The vortex of
such a chiral topological superconductor �TSC� carries a
single Majorana zero mode,8 giving rise to the non-Abelian
statistics9,10 which could provide a platform for topological
quantum computing.11 The simplest model for an N=1 chiral
TSC is realized in the px+ ipy pairing state of spinless
fermions.9 A spinful version of the chiral superconductor has
been predicted to exist in Sr2RuO4,12 however, the experi-
mental situation is far from definitive. Recently, several new
proposals of realizing Majorana fermion state with conven-
tional superconductivity have been investigated by making
use of strong spin-orbital coupling.13,14

In this paper we propose a general and intrinsic relation
between QH states and the chiral TSC state, which leads to a
different method to generate a chiral TSC from a QH or a
QAH parent state. When a QH state is coupled to a conven-
tional s-wave superconductor through the proximity effect,
the topological phase transition between phases with trivial
and nontrivial Hall conductance is, in general, split into two
transitions, between which there is always a chiral TSC

phase. Compared to conventional QH systems, the QAH sys-
tem can realize the QH state and the topological phase tran-
sition without a large external magnetic field, which makes
the proximity effect to a superconductor much easier to re-
alize. Physically, our proposal is based on the observation
that the QAH system with N chiral edge modes in proximity
with a conventional superconductor is already a chiral TSC
with an even number N=2N of chiral Majorana edge modes.
Since the degeneracy among these chiral Majorana modes is
lifted by the proximity to the superconductor, the transition
from the QAH insulator to a topologically trivial insulator
must generically pass through a chiral TSC phase with an
odd number N of chiral Majorana edge modes. This is the
interesting state with non-Abelian statistics. The proposed
device is illustrated in Fig. 1.

II. QAH INSULATOR

Our proposal works both for a QH state near the plateau
transition and a QAH state near the topological phase tran-
sition to a trivial insulator. For definiteness, we focus on the

QAH
SC

B-field

FIG. 1. �Color online� Our proposed hybrid device consists of a
QAH insulator layer and a fully gapped superconductor layer on
top. When the QAH insulator is close to the topological quantum
phase transition, the proximity effect to the superconductor generi-
cally induces a chiral topological superconductor phase with an odd
number of chiral Majorana edge modes. In the presence of a mag-
netic field B, vortices carry Majorana zero modes with non-Abelian
statistics. The QAH insulator could also be replaced by a QH state
near the plateau transition.
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QAH case in most of our paper and comment on the gener-
ality, and the QH state near the end. We take the simplest
model QAH Hamiltonian realized with low-energy states
near the � point3

HQAH = �
p

�p
†hQAH�p��p,

hQAH�p� = � m�p� A�px − ipy�
A�px + ipy� − m�p�

� , �1�

where m�p�=m+Bp2, A ,B ,m are material parameters, and
�p= �cp↑ cp↓�. For B=0, this Hamiltonian is exactly the
massive Dirac Hamiltonian in 2+1 dimensions, however, the
presence of the B term in the QAH Hamiltonian is crucial for
determining the topological properties. In the following we
will take B�0. The bulk energy spectrum E��p�
= ��A2p2+ �m+Bp2�2 is gapped as long as m�0. The Hall
conductance of any gapped system is quantized, i.e., �H
=Ne2 /h, where N is the first Chern number in momentum
space defined by1,3

N =
1

2�
�

En	0
� d2p��xay

nn − �yax
nn� �2�

with ai
nn=−i�n ,p	� /�ki	n ,p
 the Berry phase connection in

momentum space and n the band index. For the specific
model in Eq. �2�, the Hamiltonian can be rewritten as hQAH
=�ada�p��a with �a the Pauli matrices and da�p�
= �Apx ,Apy ,m�p��. We see that the m�p� term generally
breaks the T symmetry. The Chern number for Hamiltonians
of this form has a simple expression3

N =
1

8�2� d2p
abcd̂a
� d̂b

�px

� d̂c

�py
, �3�

where the unit vector d̂a�p�=da�p� /��da
2�p�. According to

Eq. �3�, the Hall conductance is determined by the winding

number of the unit vector d̂�p� in momentum space. It is

straightforward to see that for m	0 d̂�p� has a Skyrmion
configuration with N=1 while for m�0 the winding number
is trivial N=0.3 The point m=0 is a quantum-critical point
between a trivial insulator and a QAH insulator. The QAH
phase with Chern number N has N chiral edge states. In the
simplest case of N=1, the edge state is described by the
effective one-dimensional Hamiltonian Hedge=�pvp�p

†�p,
where �p

† and �p are the creation and annihilation operators
of the chiral edge fermion.

III. PHASE DIAGRAM OF QAH-SC SYSTEM

In proximity to an s-wave superconductor, a finite pairing
potential can be induced in the QAH state. The
Bogoliubov–de Gennes �BdG� Hamiltonian for the proximity
coupled QAH state is

HBdG =
1

2�
p

�p
†�hQAH�p� −  i��y

− i���y − hQAH
� �− p� + 

��p,

�4�

where �p= �cp↑ cp↓ c−p↑
† c−p↓

† �T. Just as in the QAH case,
the superconductor Hamiltonian in Eq. �4� can be classified
by the Chern number N defined in Eq. �2� in momentum
space. However, there are two key differences from the QAH
case. First, for the superconductor Hamiltonian, the Chern
number N does not physically correspond to a quantized
Hall conductance because charge is not conserved. A super-
conductor with Chern number N has N edge states, similar
to the QAH system, but the number of edge states is counted
in the basis of chiral Majorana fermions, which are their own
anti particles. For example, the edge state of an N=1 TSC
state is described by Hedge=�p�0vp�−p�p, where the chiral
Majorana fermion operators �p satisfy �−p=�p

†, �p ,�q�
=�p+q. Second, a superconductor has quantized vortices. A
TSC with odd Chern number N generically has a Majorana
zero mode in the vortex core,9 which is described by a Ma-
jorana operator �0 satisfying ��0 ,HBdG�=0 and �0=�0

†. The
Majorana zero mode is protected topologically because the
energy spectrum of the BdG Hamiltonian is always symmet-
ric around zero energy. The presence of the Majorana fer-
mion is essential for topological quantum computing
applications.11

We will first study the phase diagram of the system in Eq.
�4� for =0. The bulk quasiparticle spectrum is E��p�
= ��A2p2+ ���m�p��2. Since topological invariants cannot
change without closing the bulk gap, the phase diagram can
be determined by first finding the phase boundaries which
are gapless regions in the �m ,�� plane, and then calculating
the Chern number of the gapped phases. For this model the
critical lines are determined by 	��m	=0 which leads to the
phase diagram as shown in Fig. 2�a�. �Only the region
��0 is shown.� As expected, the phase boundary reduces to
the critical point m=0 between the QAH phase and a trivial
or normal insulator �NI� phase in the limit �=0. The point
m=0 is a multicritical point in this phase diagram. For
m�0 and 	m	� 	�	 the system is adiabatically connected to a
trivial insulator state with a full gap and no edge state so it
must be a trivial superconductor phase. For m	0 and
	m	� 	�	 the system is in a nontrivial TSC state which is
adiabatically connected to the QAH state in the �=0 limit.
The Chern number of this phase can be determined by the
�=0 limit, in which case the off-diagonal terms of the BdG
Hamiltonian in Eq. �4� vanish. In this limit the eigenstates of
HBdG are determined by the eigenstates of the QAH Hamil-
tonian hQAH�p� �Eq. �2��. It is straightforward to check from
Eq. �2� that the Chern number Np and Nh for the particle and
the hole states are both equal to that of the QAH system. In
the m	0 phase we have Np=Nh=1, leading to the total
Chern number N=Np+Nh=2.

Similarly, the Chern number of the superconductor phase
emerging at finite � can be determined by studying the spe-
cial limit of m=0 �point C in Fig. 2�a��. In this limit, Hamil-
tonian �4� can be block diagonalized by a basis transforma-
tion into the following form:
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HBdG�p� =
1

2�
p

�̃p
†�h+�p�

− h−�− p�� ��̃p

with

h��p� = �� 	�	 + Bp2 A�px − ipy�
A�px + ipy� − �� 	�	 + Bp2�

� . �5�

Thus we see that the Hamiltonian is equivalent to two copies
of the QAH Hamiltonian in Eq. �2� but with opposite mass
parameters m= � 	�	. The Chern number of h+�p� is trivial
and that of h−�p� is N=1 so that the total Chern number of
this TSC state is N=1. In other words, we have proven that
a TSC phase with odd Chern number N=1 emerges in the
neighborhood of the quantum-critical point between the
QAH insulator and trivial insulator phases.

Next, we consider �0 in the Hamiltonian in Eq. �4�,
which corresponds to proximity induced superconductivity
in a doped QAH system. Practically, the proximity effect is
expected to be stronger in this case due to the finite density
of states at the Fermi level. Similar to the =0 case, we
determine the phase boundaries by the gapless regions in the
energy spectrum, which leads to the following condition:

�2 + 2 = m2.

The entire phase diagram in the �m , ,�� space is shown in
Fig. 2�b�. Except for the metallic phase in the �=0 plane
with 		�m, and the phase boundaries, there are three-
gapped phases. The Chern number of each phase can be
determined by its adiabatic connection to the =0 limit. It
can be seen from the phase diagram that a wide TSC phase

with Chern number N=1 emerges between the N=2 and
N=0 phases, which are adiabatically connected to the QAH
and trivial insulator phases, respectively.

IV. EDGE PICTURE

An intuitive way to understand such a TSC phase emerg-
ing near the QAH/NI transition is through the evolution of
the edge states. As was discussed earlier, the edge state of the
QAH state �e.g., the point A in the phase diagram in Fig.
2�a�� is described by the effective one-dimensional Hamil-
tonian Hedge=�pvp�p

†�p. We can decompose the complex
fermion operator into its real parts, �py

=1 /�2��py1+ i�py2�
and �py

† =1 /�2��−py1− i�−py2�, where �pya are Majorana fer-
mion operators satisfying �pya

† =�−pya and �−pya ,�py�b�
=�ab�pypy�

. The Hamiltonian now becomes

Hedge = �
py�0

py��−py1�py1 + �−py2�py2� �6�

up to a trivial shift of the energy. In comparison with the
edge theory of the chiral TSC state, we see that the QAH
edge state can be considered as two identical copies of chiral
Majorana fermions so that the QAH phase with Chern num-
ber N=1 can be considered as a TSC state with Chern num-
ber N=2, even for infinitesimal pairing amplitudes. This is
consistent with the Chern number analysis of the bulk
Hamiltonian discussed earlier.

When ��0, the constraint between the two chiral Majo-
rana modes �py1 and �py2 is lifted and they evolve indepen-
dently. An easy way to see this is to consider the width of the
edge states along the direction perpendicular to the edge. At
�=0, the edge state at k=0 has a width15 ��A / 	m	.
For finite pairing their width can be estimated by
�1�A / 	m−�	 , �2�A / 	m+�	. As � increases, the localiza-
tion length of one of the edge modes begins to diverge and
the corresponding Majorana modes gradually move into the
bulk, as shown schematically in Fig. 3�b�. At the critical
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FIG. 2. �Color online� �a� Phase diagram of the QAH-SC hybrid
system for =0. The x axis labels the mass parameter m and the y
axis labels the magnitude of �. Integers N label the Chern number
of the superconductor, which is equal to the number of chiral Ma-
jorana edge modes. �b� Phase diagram for finite  shown only for
��0. Phases QAH, NI, and Metal �labeled in bold� are well de-
fined only in the �=0 plane.

TSC, �=2
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FIG. 3. �Color online� Evolution of the edge states. The four
panels �a�, �b�, �c�, and �d� correspond to the edge state configura-
tion of points A, B, C, and D in Fig. 2�a�, respectively. �a� and �b�
show that a single chiral edge mode of the QAH state can be de-
composed into two chiral Majorana edge modes of the TSC state.
Proximity coupling to the SC state lifts the degeneracy and one pair
of the chiral Majorana states can be annihilated in the bulk, giving
rise to a chiral TSC state with a single chiral Majorana edge mode
as shown in �c�. Further changes in the parameters can cause a
phase transition into the trivial or normal SC state as shown in �d�.
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pairing strength 	�	= 	m	 this edge state has completely
merged into the bulk states and the system is gapless. For
	�	� 	m	 a gap opens again in the bulk and we are left with a
single chiral Majorana edge mode. When the mass is in-
creased toward the trivial direction, such as from points C to
D in Fig. 2�a�, the width of the remaining edge state in-
creases and finally merges into the bulk at the critical line,
leaving a trivial-gapped superconductor on the other side of
the transition.

To directly verify this edge state evolution picture, we
have also studied the edge states numerically on a cylinder
geometry with periodic boundary conditions in the y direc-
tion and open boundary conditions in the x direction. The
BdG Hamiltonian in Eq. �4� can be regularized on a square
lattice by the simple substitution px,y→a−1 sin�px,ya� , p2

=2−2a−2�cos pxa+cos pya� with a the lattice constant used
in the discretization. For a→0 the lattice model has the same
properties as the continuum model. The energy dispersion
and edge state probability density for the points B and C in
the phase diagram Fig. 2�a� are shown in Fig. 4. As expected,
two chiral edge states with different penetration lengths exist
on each edge for the N=2 phase and only one chiral edge
state exists for the N=1 phase. Thus we see that the edge
state of the QAH can be considered as two copies of chiral
Majorana fermions. The topological phase transitions are
given by the annihilation of these two Majorana fermions,
which has to occur simultaneously if charge is conserved
��=0� but can generically occur at two separate transitions
at finite pairing strength. Consequently, the system must be
in a TSC phase with odd Chern number between the two
transitions.

V. DISCUSSION AND EXPERIMENTAL REALIZATION

In summary, we have shown that the proximity of a QH or
a QAH system with an s-wave superconductor provides a

different realization of a chiral TSC, the vortex of which has
non-Abelian statistics. Although the simple model in Eq. �2�
of the N=1 QAH state has been used to give an explicit
example, it is straightforward to see that this approach to-
ward TSC is generic and applies to any QH or QAH system
near a topological phase transition. In general, a QH or a
QAH state with Hall conductance Ne2 /h becomes a TSC
with Chern number N=2N when an infinitesimal pairing
strength is introduced by the proximity effect. Consequently,
two neighboring quantum Hall phases with Hall conductance
Ne2 /h and �N−1�e2 /h become TSC phases with Chern num-
ber N=2N and N=2N−2, between which a TSC phase with
Chern number N=2N−1 generally emerges. Our proposal is
different from that of Ref. 13 since the latter preserves time-
reversal symmetry and is not a purely two-dimensional state
while the state studied here is a realization of the two-
dimensional chiral superconductor. Our proposal is indepen-
dent of the details of the superconductor which provides the
proximity effect, as long as the proximity-induced supercon-
ducting gap is a full gap with no node. Our conclusion also
applies to an ordinary quantum Hall system near a plateau
transition, provided the magnetic field responsible for the
QH state is less than the upper critical field of the supercon-
ductor. For example, InAs quantum wells and graphene are
possible candidate materials. The advantage of QAH system
is the absence of large magnetic field, which makes the su-
perconducting proximity effect much easier.

There are two realistic proposals of QAH states, Mn-
doped HgTe quantum wells4 and Cr- or Fe-doped Bi2Se3 thin
films.5 The latter is proposed to be ferromagnetic, which thus
can have quantized-Hall conductance at zero magnetic field.
The former is known to be paramagnetic for small Mn con-
centration but only a small magnetic field is needed to polar-
ize the Mn spin and drive the system into the QAH phase.
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FIG. 4. �Color online� Energy spectrum of HBdG versus ky in a cylinder geometry with periodic boundary conditions in the y direction.
The calculation is done for m=−0.5, A=B=1.0 with a regularization lattice constant a=1 and length Lx=40 along the x direction �see text�.
The system has two edge states on each edge for �=0.35 as shown in �a� and one edge state on each edge for �=0.75 as shown in �b�. The
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This is not so prohibitive because a magnetic field is neces-
sary to generate superconducting vortices and the associated
Majorana zero modes anyway. Once such a heterostructure
of a QAH insulator and superconductor is fabricated, the
existence of a Majorana fermion zero mode in the vortex
core can be verified by scanning tunneling microscopy mea-
surements of the local density of states in the vortex core.
Several existing proposals of detecting the Majorana nature
of the edge state and vortex core zero mode such as by Jo-
sephson effect,16–18 charge transport,19,20 or nonlocal

tunneling,21 may also apply to our system, although they are
proposed in different physical systems.
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