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Bose condensation in flat bands
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We derive effective Hamiltonians for lattice bosons with strong geometrical frustration of the kinetic energy
by projecting the interactions on the flat lowest Bloch band. Specifically, we consider the Bose Hubbard model
on the one-dimensional sawtooth lattice and the two-dimensional kagome lattice. Starting from a strictly local
interaction the projection gives rise to effective long-range terms stabilizing a supersolid phase at densities
above v,=1/9 of the kagome lattice. In the sawtooth lattice on the other hand we show that the solid order,
which exists at the magic filling v.=1/4, is unstable to further doping. The universal low-energy properties at
filling 1/4+ 6v are described by the well-known commensurate-incommensurate transition. We support the
analytic results by detailed numerical calculations using the density-matrix renormalization group and exact
diagonalization. Finally, we discuss possible realizations of the models using ultracold atoms as well as
frustrated quantum magnets in high magnetic fields. We compute the momentum distribution and the noise
correlations, that can be extracted from time of flight experiments or neutron scattering, and point to signatures
of the unique supersolid phase of the kagome lattice.

DOI: 10.1103/PhysRevB.82.184502

I. INTRODUCTION

Strong geometric frustration can prevent straightforward
ordering and thus lead to the emergence of novel highly cor-
related ground states. The best known examples of this phe-
nomenon are from spin systems. Frustration of the magnetic
exchange interactions on certain lattices gives rise to exten-
sive degeneracy of classically ordered states,'” invalidating
a direct semiclassical spin-wave analysis. This picture has
close analogy in the physics of the fractional quantum hall
effect, where the huge degeneracy of a partially filled Landau
level invalidates perturbative analysis in the interactions. In
both cases the true ground state, which could be a Laughlin
state, a spin liquid or some unexpected broken symmetry
state, emerges from the degenerate manifold in a highly non-
trivial way.

In this paper we address a related question concerning the
ground states of weakly interacting bosons in a lattice which
fully frustrates the bosons’ kinetic energy. The usual expec-
tation is that weakly interacting bosons will form a conden-
sate in the lowest-energy single-particle state, or in other
words, the lowest eigenstate of the kinetic-energy operator.
However, if the hopping matrix elements on the lattice are
sufficiently frustrated, the lowest Bloch band becomes flat,
thus providing a huge degeneracy of single-particle states to
which the bosons may condense. The nature of the ground
state is now fully determined by the interactions acting
within the hugely degenerate manifold. Under these condi-
tions a straight forward perturbative treatment in the interac-
tion is of no use. The problem is inherently strongly corre-
lated and provides an interesting route for understanding and
perhaps even realizing novel phases of matter.

We shall specifically consider a Hamiltonian of the form

H=2 |t;|[b[b;+Hec]+ gE bibibb;, (1)

(ij) i
where b; are bosonic operators defined on the sites of the
two-dimensional kagome lattice. This model gives a flat
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lower Bloch band in the single-particle spectrum.'®-'? We
shall also consider a related one-dimensional model defined
on the sawtooth lattice. Both models and the band structure
they give rise to are depicted in Fig. 1.

Such models of bosons with flat bands are of direct rel-
evance to real physical systems. Recently a number of pro-
posals were put forward for realization of models with frus-
trated hopping using ultracold atoms in optical lattices.!3!4
Another natural realization involves frustrated spin-1 mag-
nets. If the Curie-Weiss temperature is sufficiently low, as in
m-MPYNN-BF, (Refs. 15 and 16) (Ocw=3 K), the spins
can be fully polarized, or nearly so, by external magnetic
fields. The dilute population of magnons, or depolarized
spins, in the highly polarized regime is well described by
Hamiltonian (1).

The presence of a flat band implies the existence of local-
ized eigenstates of the kinetic energy, as illustrated in Figs.
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FIG. 1. (Color online) (a) Single-particle dispersion on the
kagome lattice along high-symmetry lines in the Brillouin zone
(gray). (b) The kagome geometry with its lattice vectors a;,, and the
basis sites A, B, and C in each unit cell (gray). (c) Single-particle
dispersion on the sawtooth lattice as a function of momentum k for
t'=\21. (d) The sawtooth geometry with couplings 7 and 7’ and the
basis sites A and B in the unit cell (gray).
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FIG. 2. (Color online) Strictly local eigenstates of the kinetic
energy (local magnon states). (a) Resonating hexagon state on the
kagome lattice where the + and — refer to the wave-function ampli-
tude on each site around the hexagon. (b) Localized V-state on the
sawtooth chain. (c) Ground state of the many-magnon system on
the kagome lattice at density v,=1/9. (d) Ground state of the many-
magnon system on the sawtooth chain at v.=1/4.

2(a) and 2(b) for the kagome and sawtooth lattices. At suffi-
ciently low filling of the lattice one can construct exact
many-body ground states of Hamiltonian (1) from the local-
ized single-particle states.!®!7!8 This is done by occupying
some subset of spatially nonoverlapping localized states. Of
course the ground state in this case is massively degenerate
because of the many possible arrangements of nonoverlap-
ping localized orbitals. However, there is a critical density v,
at which the occupied localized states are closely packed,
making an ordered crystal structure that breaks the lattice
symmetry as shown in Figs. 2(c) and 2(d). The critical den-
sity is v.=1/9 for the kagome and v,=1/4 for the sawtooth
lattice, respectively. Formation of the close-packed crystals
is expected to give rise to magnetization plateaux in quantum
magnets'® and to incompressible insulators in ultracold
atomic systems. Any additional bosons on top of the close
packed configurations must overlap spatially with other
bosons and the exact construction then no longer works.

The question we address in this paper is what ground
states form at lattice filling slightly above v,.. In particular, do
the added atoms condense to form a superfluid on top of the
underlying density wave? Such condensation is unusual be-
cause it would be entirely driven by the interactions rather
than by the hopping. Another question is whether delocaliza-
tion of the added atoms leads to destruction of the solid
order.

Our general strategy to treat these systems is to project
Hamiltonian (1) onto the flat Bloch band and to obtain in this
way an effective low-energy Hamiltonian which depends
only on the (weak) interaction U. This approach is in the
same spirit in which projection to the lowest Landau level is
used to derive effective theories of quantum Hall states.””
The resulting low-energy model is defined on a new lattice,
and is not frustrated. We are therefore able to analyze it using
standard methods, such as bosonization and mean-field theo-
ries. The results are then checked against numerical calcula-
tions performed on the original Hamiltonian (1) defined on
the kagome and sawtooth lattices.

Before proceeding we make note on previous work deal-
ing with lattice boson models such as Eq. (1) in the regime of
large number of bosons per site > 1, which is the opposite
of the regime we consider here.?! If v>|t|/U>1, then
Hamiltonian (1) can be mapped to an effective Josephson
array model. In the classical limit (where the charging energy
can be neglected) the ground state manifold can be mapped
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onto a height model at its roughening transition. As a conse-
quence, there is no long-range order in the phase {¢'¢) but a
“tripled” condensate forms where (e*¢) exhibits long-range
order.”!

Below we lay out the structure of the paper and give a
brief overview of our main results. In Sec. II we consider the
sawtooth model. The one-dimensional character of the chain
allows to introduce the key ideas in a simple setup before
applying them to the more complicated kagome lattice. The
crucial step is to define an orthonormal basis of Wannier
functions, which reside in the flat band. Projection of the
Hamiltonian on the flat band then takes the form of a spin-
1/2 model with the spins located on the center of the Wannier
functions and representing occupation of these states by
bosons. Next, we take the long-wavelength limit in a har-
monic fluid approach.?? This analysis shows that upon in-
creasing the density away from the magic filling v.=1/4, the
charge-density wave (CDW) is immediately destroyed due to
proliferation of domain walls, which gain their mobility from
the interaction term. The transition is in the universality class
of the commensurate-incommensurate transition,2>2 from
which several sharp predictions follow. First, the delta-
function peak in the density correlations at wave vector 7/ a,
which appears at 1/4 filling, splits into a pair of power-law
singularities at (7 26v)/a, where dv=v—1/4>0. Second,
the established condensate is characterized by the Luttinger

parameter K=(1+Dév)/4, which controls the power-law
singularities. Here D is a positive constant independent of v.

Note, that the value of K=1/4 at the transition point is quite
remarkable for a system of bosons with purely on-site inter-
actions and is a direct consequence of the geometric frustra-
tion. We find all of these predictions to be in good agreement
with numerical density-matrix renormalization group
(DMRG) calculations performed on the original sawtooth
model.

In Sec. III we turn to the kagome lattice, focusing on
filling v=v,.=1/9. Added bosons may either form mobile
domain walls in the solid order or alternatively move as in-
dependent particles on interstitial sites of the density wave.
Within an effective theory for these defects we estimate that
the energy of a mobile interstitial, which does not destroy the
density-wave order, is lower. To substantiate this result we
again derive an effective low-energy model by projecting
Hamiltonian (1) onto the flat band. The resulting spin-1/2
model, written in terms of occupation of the flat-band Wan-
nier states, lives on the triangular lattice defined by the mid-
points of hexagons in the original kagome lattice. Because of
the absence of a gap in the single-particle spectrum [see Fig.
1(a)], the justification of the low-energy theory is not as ob-
vious in this case as in the sawtooth model. However, we
show that interaction with the uniform component of the
density in the flat band generates a gap to excitation of the
second band, which justifies the projection scheme. A mean-
field treatment of the low-energy Hamiltonian yields a
“lattice supersolid” phase in the intermediate density regime
v.<v<wyp, in which both the CDW order and the off-
diagonal order are present. The phase ordering structure is in
the form of a 120° pattern on the v3 X V3 unit cell of the
CDW. In Sec. IV we discuss the experimental implications of
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our finding for both the cold atoms and the spin-1 implemen-
tations.

II. SAWTOOTH CHAIN

We start with the discussion of the sawtooth chain
model!%11:26 [cf. Fig. 1(d)], which can be viewed as a one-
dimensional analog of the kagome lattice. It is similarly con-
structed from corner-sharing triangles and can support a flat
band for a specific ratio between the hopping matrix ele-
ments along the base and edges of the triangles.

A. Flat band

Let us review the features of a tight-binding model on the
sawtooth lattice. We shall obtain the ratio of coupling con-
stants required to give a flat lower band and define basis sets
of localized states residing in this band. This will be impor-
tant for implementing the projection on the flat band in the
next section.

The hopping Hamiltonian can be formulated as a 2 X2
matrix in terms of the “spinor” I;k:[bB!k,bA!k]T representing
the two sites in the unit cell,

Hygn= 2 b}
[’

(1 +e*y | .

2 k
[ t cos(ka) ' g 2

(1 + e~*a)
The sum runs over the first Brillouin zone and a denotes the

distance between adjacent B sites. The resulting dispersion is
given by

hw. (k) =t cos(ka) = V& cos’(ka) + 2t'? cos(ka) + 2¢'>

t’—_nﬁt — 21, \
~ | 241 + cos(ka)]. ®)

We see that for the special ratio y=t'/t= \2 we indeed obtain
a flat lower band which is separated by an energy gap A
=2t from the next band. The eigenstates take the form

(B—,k) _ (— sin(9;/2) Cos(ﬁk/z)e—ikalz) .
Bk “\ cos(9/2)  sin(9,/2)e*? k>

(ka)

21 + cos
Uy = arctan

cos(ka) } + 7O[-cos(ka)]. (4)

The flat dispersion allows to construct wave packets of Bloch
states [Eq. (4)] from the flat band that form localized kinetic-
energy eigenstates. For example, we can obtain the states
shown in Fig. 2 that are strictly localized to three sites, as

1 ~
|Vi> = V}L|O> = E(\Qb;i - b;,i—l - bjx,i)|0>~ (5)

Because these states are strictly localized, one can use
them to construct many-body ground states of the interacting
Hamiltonian by occupying only nonoverlapping |V} states.
In particular, the CDW state on a lattice with N sites is given
by
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|ICDW, ) = [ ] Vj |vac). (6)
=0

This state is clearly an eigenstate of the interaction energy
with zero eigenvalue as there are no two sites with more than
one particle. Note that N/2 particles correspond to a density
v,=1/4.

Although the states |V;) are linearly independent and com-
plete in the flat-band subspace, they are not a convenient
basis to work with because they are not orthogonal. This is
evident from the fact that neighboring states |V;) and |V,,)
actually share a site. We therefore define an alternative set of
localized wave functions residing in the flat band, which do
form an orthonormal basis. These are constructed as Wannier
states,?’

wioy=>, [wi(r;— r[)bj"j +wp(r;— r,-)b;j]|0>,
J
T dk )
WB(rj) =— f _Sin(ﬁk/z)elkrj, (7)
_g 2T

T dk o
wA(rj):J ;Tcos(ﬂkﬂ)e’k’.f"k/z. (8)

By construction these states are orthogonal and exponentially
localized around the unit cell i. Locally, they have the struc-
ture of the V-states but they fall off exponentially with a
localization length of £=1log(2.15)a, cf. Appendix A.

B. Projection onto the flat band

The exact ground state [CDW,,4) at v.=1/4 corresponds
to a close packing of V-states. If we dope the system with
additional particles we loose this property and we expect a
transition to a different phase. Let us assume small interac-
tions U<<A. Any phase transition as a function of v is then
necessarily driven by the interactions as the kinetic energy is
completely quenched for energies below A. This provides
strong motivation for projecting the interaction Hamiltonian
onto the flat band, in analogy with projection to the lowest
Landau level for quantum Hall states.?”

To implement the projection we express the bosonic op-
erators in terms of the Wannier basis derived above

bI‘(B)’l- = W) (ri—1;) WJT + higher bands 9)
J

and project out the contributions from the higher band. Due
to the exponential tail of w, g () the projected Hamiltonian
acquires arbitrarily long-ranged interaction terms. However,
the rapid decay of the Wannier functions on the scale of a
lattice constant allows us to truncate the sum to |r,-—rj| =a.

The resulting Hamiltonian contains a renormalized on-site

interaction (l~]) and further range interactions as well as as-
sisted hopping terms. Since all the coupling constants turn
out to be smaller than the on site repulsion by a factor of ~4

we replace U with a hard core constraint. Now the effective
Hamiltonian can be written as a spin-1/2 chain model,
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FIG. 3. Processes in the spin-1/2 Hamiltonian (10). Arrows de-
note hopping (or spin-exchange) and dashed lines stand for density
(0%) interactions.

W

o
H = E Fojor,, + 7(0-;7 +1/2)(0} 07, + He.)

+IP[(oF + 1/2) (0,07, + He))]. (10)

The interaction constants derive from the overlap of Wannier
functions on different sites and are given by (see Appendix A
for more details)

U=~ 040U(—»), F=~0.112U, (11)

Y =~ —-0.025U, I*=-0.011U. (12)

Note that all terms are proportional to the interaction U.
This is because the effective Hamiltonian (10) is just the
projection of the interaction onto the flat band. For the same
reason all terms in the Hamiltonian are four-W operator
terms. Even off-diagonal terms exclusively include assisted
hopping o</%P) The processes in Hamiltonian (10) are il-
lustrated in Fig. 3.

Note that Hamiltonian (10) describes a spin system on a
linear chain. The sawtooth geometry is absorbed by the pro-
jection onto the flat band. The density v, of the original
model now translates to half filling or zero magnetization of
the effective spin-1/2 model. Furthermore, the exact CDW
solution of the underlying model corresponds to a perfect
Néel order of the spin chain. Due to the truncation of the
Wannier wave functions, this state is not an exact eigenstate
anymore. However, the dominating Ising interaction
2> [96P) stil] leads to a large staggered magnetization in the
ground state at zero magnetization.

C. Analysis of the effective Hamiltonian

We are now in the position to investigate the fate of the
CDW at lattice filling above w,, which corresponds to
(0%)>0 in the effective model. Hamiltonian (10) is similar to
a XXZ model with a dominating Ising interaction but with
hopping terms replaced by assisted hopping. In the latter
model the charge density is destroyed upon doping away
from the magic filling by the mechanism known as the
commensurate-incommensurate transition.>>>> We will show
that the system described by Hamiltonian (10) undergoes the
same transition.

As usual in one dimension single particles doped into the
commensurate CDW can either go into an interstitial site of
the CDW or break up into a pair of domain walls in that
order, each carrying half of the added charge.”® We will show
below, that energetically, condensation of domain walls is
favorable to that of the interstitial sites. With this input we
shall derive the appropriate long-wavelength description of
Eq. (10) via bosonization, which yields specific predictions
for the emergent critical state at v>v,.
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1. Domain walls versus interstitial condensate

Particles added to the CDW state correspond to adding
up-spins to the effective spin model on top of the z-Neél
state. The flipped spins can behave in two ways: (i) they can
exist as well-defined excitations and condense as interstitials
without destroying the CDW order; or (ii) break up into two
mobile domain walls in the Ising spin configuration, each
carrying a spin-1/2, thus leading to destruction of the CDW
order. If one thinks of domain walls as the elementary exci-
tations, then the option (i) above can be viewed as having a
bound state of a kink and an antikink. Which of the two
options is realized in a specific model is ultimately a matter
of energetics.

Let us then estimate and compare the energies of an in-
terstitial to that of a pair of free domain walls. The Ising
interaction energy associated with an interstitial (flipped
spin) is 2 because this state violates two Ising bonds. In
addition, the interstitial can hop to the next empty site
(down-spin) via the term I*P. Therefore, the kinetic energy
gain is —2/°P.

The pair of domain walls still violate two bonds and
therefore incur the same interaction energy as the interstitial,
i.e., 2IF. However, each domain wall can move due to the
action of the assisted hopping term I*¥, which leads to the
kinetic-energy gain —4I%% per added particle (two domain
walls). With the coupling constants given by Eq. (12), the
pair of domain walls are seen to be clearly favorable to the
interstitial. We therefore conclude that the long-range order
of the CDW state at 1/4 filling will be immediately destroyed
by proliferation of free domain walls upon increasing the
density.

2. Long-wavelength description

The energetic considerations detailed above imply de-
struction of the density-wave state immediately upon in-
creasing the density above v.=1/4. The emergent critical
state is naturally described within the continuum limit by
bosonizing the effective spin-chain model (10). However, the
usual scheme,? of first mapping to a fermion system using a
Jordan-Wigner transformation is not straightforward. Be-
cause there are no quadratic terms in the spin-1/2 Hamil-
tonian, there results no obvious Fermi surface to support an
expansion in slow modes. Under such conditions it is more
convenient to employ the so called phenomenological ap-
proach to bosonization of bosons.® For this, we reintroduce

the on-site interaction U and write the density and field op-
erators as

pi= |:L + M} E ei['n’m—Zml‘}(x,-)]’

2a T mel

12
W, = ei¢(x,~)|:i + M] 2 elLmm=2m0(x)]

2a u me7

Note, that we expand around v=1/2a. The most relevant
density wave captured with this approach is of wavelength
N=2a and is described by the order parameter {cos[49(x)]).
We take a naive continuum limit by rewriting Eq. (10) in
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terms of the new fields ¢(x) and 9(x), keeping only the most
relevant terms we obtain

1 Q
H.= ij dx{—(&xﬁ)z + K(ﬁxcp)z] + —f dx cos(49)
2 K 2

(13)

with

w= 230" )+ 1) = “0 08,

I%%/4 + [P
K= | —— =042,
U-3(I* + )

- U
Q=T(@G-F-1_rr)~ 005
a a

We find the expected CDW reproduced also within this long-
wavelength theory, as the term o«cos(4d) is relevant for
K<1/2. Note, that instead of taking the naive continuum
limit one can regard Eq. (13) as a phenomenological descrip-
tion of the CDW, as long as K<<1/2. The results we draw
from Eq. (13) will not depend on these details but rely solely
on the form of the cosine term.

Let us now proceed with the discussion of an additional
density ov=v—v,. above the CDW. Forcing év>0 is equiva-
lent to a chemical potential larger then the CDW gap Acpw-
To characterize the resulting gapless state above Acpyw, we
can use results from the commensurate-incommensurate
transition introduced by Pokrovsky and Talapov,?? in particu-
lar, the critical behavior discussed by Schulz.>* The long-
wavelength theory is now given by a Luttinger liquid with?

(1+Dbv), (14)

where D is a positive number independent of Sv. Further-
more, we can calculate correlation functions by using the

new Luttinger liquid with K and by introducing a shift
H(x) — 9(x) + mxSv. One readily obtains?>*

a 2K
(P(X)P(0)>qzm*008[77(1+25V)x/a]<;) . (15)

a 12K
(W () W(0))y~g = (;) . (16)

We show a sketch of the density correlations in Fig. 4(a),
together with the v=v, result.

From the above considerations we conclude that under
particle doping the exact ground state [CDW,,,) melts due to
delocalization of domain walls. The harmonic fluid approach
allows for a prediction of both the functional form of the
density-density correlations and the effective Luttinger liquid

parameter K. In the next section we test these predictions by
numerical analysis of the sawtooth chain.
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FIG. 4. (Color online) Fourier transform of the density correla-
tions in the sawtooth chain. (a) Prediction of the long-wavelength
theory. The delta-function peak at g=/a (red dashed line), which
signals the CDW at v=v,, splits with increased density v=wv.+ v
into two  power-law  peaks (blue full line) at
q+=m(1 £26v). The effective Luttinger parameter, which controls
the power law is given in Eq. (14). (b) Density correlations
computed using DMRG. The splitting of the peak by one quanta
5k=2777 per added particle confirms the predicted g. of the long-
wavelength theory.

D. Numerical analysis

To complement the analytical study and confirm its pre-
dictions we analyze the original sawtooth lattice model nu-
merically using the DMRG method. Calculations are per-
formed on an 80-site lattice (L=40 unit cells) with the
parameters t=U=1 and ¢’ =2 and we retain up to 200 states.
In all calculations we make use of the ALPS DMRG code.!
We consider particle numbers N=20+ 6N (6N=0,1,2,3,4)
particles. Note, that SN=0 corresponds to v=v,, and we in-
deed find the exact ground state [CDW, ;) at this point. This
is evident from the perfect staggered density correlations
seen in Fig. 4(b) as a sharp peak in the static structure factor
at wave vector m/a. As we dope the system above v, the
peak splits in two, with a shift that grows by 27/L per added
particle. Exactly as expected from the bosonization study
above.

To capture the critical behavior of the system it is better to
extract the off-diagonal correlations because they have a
faster decay. At the special point =, these are found to be
strictly local, as expected. For SN >0 on the other hand the
decay of the off-diagonal correlations is consistent with a
power law. As the density is increased the critical exponent is
reduced continuously from a=2 at SN=0". This is consis-

tent with a Luttinger parameter K which grows continuously

from K~1/4, as predicted by the long-wavelength theory
above, cf. Fig. 5.
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FIG. 5. (Color online) The effective Luttinger parameter Kasa
function of density dv=v-wv, extracted from the off-diagonal cor-
relation function calculated using DMRG. The black line is a guide
to the eyes.

The numerical study thus confirms our main predictions.
The density-wave state is immediately destroyed upon in-
crease in the density. The exact density-wave state is re-
placed by power-law density correlations at the incommen-
surate wave vector consistent with the doping away from v.,.
The emergent Luttinger liquid phase that forms is character-

ized by a Luttinger parameter K=1/4.

III. KAGOME LATTICE

We now turn to the discussion of the kagome lattice, fo-
cusing on the question, which ground state forms when the
density is increased beyond v.=1/9.

A. Flat band

Let us review the essential features of the tight-binding
Hamiltonian on this lattice. It is useful to introduce the vec-
tor notation

bi,A bk,A 1
biz bi,B and bk: bk,B = ’1—2 eik.Ribi.
VM
bi,C bk,C

The unit cells i are at positions R;=ma,+n;ay, m;,n;eZ
with a;=a(1,0), a,=a(1/2, \3/2) and a the lattice constant.
Furthermore, the subscripts A, B, and C label the lattice sites
in a unit cell at R;, R;+a;/2, and R;+a,/2, respectively, cf.
Fig. 1(b); M denotes the total number of unit cells. The wave
vectors are confined to the first Brillouin zone as defined by
the Wigner-Seitz cell with respect to the reciprocal-lattice
vectors Q1=277T(1 ,—1/y3) and Q2=27"(0,2/\c"§), see insets of
Fig. 1(a). The hopping Hamiltonian now reads

0 L+t 1+¢k

=X bl 1+ 0 1+e® |b,  (17)
k l+e™® 1+eks 0

where k,=k-a,, v=1,2, and ky3=k,—k,. Diagonalizing this
matrix gives the three bands,
hawyk)==2t, ho(k)=11=%= V3 +2A(K)]

with
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A(K) = cos(k;) + cos(ks) + cos(k,), (18)

shown along the high-symmetry lines in Fig. 1(a). The eigen-
states corresponding to the flat band are given by

sin(k3)
KlBo = \| ————
Klo —3+A(K)

e 2 sin(k,) | (19)
— e 22 sin(k,)

The existence of a flat band allows to construct localized

eigenstates of the same energy. The most local wave function
of this type is confined within a single hexagon'?

1 6

e

(= )%} . (20)

Here a; labels the sites around the hexagon, cf. Fig. 2(a) and
i labels the hexagon. It is easy to see that destructive inter-
ference on the sites adjacent to the hexagon sites prevent the
spread of the wave function. Delocalization on the hexagon
gives rise to the kinetic energy —2f. Therefore A:f indeed
creates an eigenstate with the energy of the flat band. More-
over, by acting on the vacuum with the operators A}L to create
any number of spatially nonoverlapping states, it is possible
to the construct exact many-body ground states of the total
interacting Hamiltonian (1). For sufficiently low lattice fill-
ing there is a huge number of degenerate arrangements of the
localized states. However, these localized orbitals become
close packed at the critical filling v.=1/9, at which point
there are only three ground states corresponding to the three
degenerate density-wave states,

|CDW,,0) = [ ] Af|vac). (21)

ieT

The set T contains close packed nonoverlapping hexagons as
depicted in Fig. 2(c).

At higher lattice filling ¥>1/9 such a construction would
fail to create eigenstates of the interaction term because it is
no longer possible to construct a spatially nonoverlapping set
of states. Our strategy to address this regime is, the same as
in the sawtooth model, to derive an effective Hamiltonian
using a projection on the flat band. For this purpose we shall
introduce an orthonormal set of localized states, which be-
long exclusively to the flat band, and are defined on every
unit cell. These are the Wannier states

- dk .
Wi(l')=f v_<k|,30,k>€lk'(r_r"), (22)
0

where the integral runs over the first Brillouin zone and v,
denotes its volume. Note, that due to the band touching at the
I" point, these Wannier states are not exponentially localized
but have power-law tails.?” Their slowest decay is along
high-symmetry directions of the lattice where they fall off

W(r)~1/|r; see Appendix A for more details.

B. Projection into the flat band

We are now in the position to derive an effective Hamil-
tonian for the low-energy dynamics by projecting the inter-
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actions onto the flat band. In this case the projection is
fraught with further complication because of the vanishing
gap in the single-particle spectrum between the flat band and
the second Bloch band. Recall that in the case of the saw-
tooth model the projection was controlled by the band gap
A=2t, which gave rise to the small parameter U/A. The
situation is different on the kagome lattice because the non-
interacting model has a topologically protected!>*? band
touching (A=0) at the I' point. Below we argue that for
filling factors »=1/9 the interactions open an effective band
gap which ultimately controls the projection.'!

The key point is that a particle in the second Bloch band,
with small quasimomentum k=0, suffers an energy shift
A=U/9 due to interaction with the mean density (»);. A
particle on the flat band on the other hand, does not suffer the
same mean-field energy shift because of the extra freedom it
has to be in superpositions of Bloch states. This is explicitly
evident in the energy scales of the effective spin Hamiltonian
generated by projection to the flat band, which turn out to be
~0.02U, much less than the energy shift A=U/9 of the
second band. Thus the projection is justified a posteriori.

Technically we carry out the projection by expressing the
boson operators appearing in the original Hamiltonian (1)
using the Wannier operators W; while truncating the contri-
bution from Wannier states of the higher bands. The resulting
Hamiltonian then contains terms of the form /;;,., Wl-T W; W.W,,
where the coefficients /;;,, consist of wave-function overlaps
of the Wannier functions located at i, j, r, and s. The largest

term is an effective on-site interaction U ~0.14U, which
comes from i=j=r=s. The next coefficient stems from i=j
and r=s with i and r nearest neighbors. The resulting

nearest-neighbor interaction has magnitude /,=~0.02U < U.
Other terms, as we shall see below are even smaller. We can

therefore safely replace U with a hard-core constraint. This
restriction is also required in order to be consistent with ne-
glecting occupation of particles in the second band, which is
at an energy A= U/9 above the low-energy manifold, but
comparable to the on-site interaction. The projected Hamil-
tonian is therefore given by a hard-core boson (or spin-1/2)
model on a triangular lattice.

The effective Hamiltonian contains hopping and interac-
tion terms which fall off with range as 1/ |r 2 or faster, due to
the algebraic decay of the Wannier functions. To keep the
model simple, we truncate all interaction terms smaller than
I.«=IF/20. When necessary, we check against convergence
with respect to this cutoff.

To explicitly write the effective Hamiltonian we define
the vectors a,, a=1,..,6, connecting the nearest neighbors
on the triangular lattice as shown in Fig. 6. The Hamiltonian
in terms of spin-1/2 operators oii, o5 is given by

r+a, rda, Ur+a, .

6
Iz y
Hy~> > EO‘;O'” + (b + 120t ,, o

i a=1

Xy _+ - - Xy _+ -

+ 12 o-rl.+aa(a-rl.+aa+aa+1 + O-rl.+aa+aa_1) + 13 O-ri+z|a0'1ri+awr3
Xy o+ - e

+ 107 o Opana FHCY + 000 (23)

The coefficients read
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FIG. 6. (Color online) Illustration of the processes appearing in
the effective Hamiltonian (23) for the kagome lattice. A dot repre-
sents a density operator, lines denote either a nearest-neighbor in-
teraction (/°) or a hopping (/') assisted by the nearby density op-
erator. Note that [7); have negative effective hopping amplitudes
(red) while I3), have positive hopping (blue).

F=0028U F/F=-1/3, BIF=1/6,

BIF=-1/8, I/F=1/16. (24)

In Fig. 6 we illustrate the processes in Hg;.

Note that by projecting to a single band we removed 2/3
of the degrees of freedom and thus changed the lattice struc-
ture to a triangular lattice with one instead of three sites per
unit cell. The critical density at which the density-wave
states form in the kagome lattice is translated accordingly to
1/3 filling of the effective model on the triangular lattice.
Because the repulsive (or Ising antiferromagnetic) interaction
I, is the largest energy scale in Eq. (23) we do indeed expect
the density-wave state to form at this filling. Note, however
that the state with exactly one boson on every three sites is
not an exact eigenstate of the effective model (23). This is of
course due to the truncation of longer-range interactions in
Eq. (23). In what follows we will study the properties of the
effective model and the fate of the CDW order for filling
v=1/3 of the triangular lattice.

C. Domain walls versus interstitial condensate

When we increase the lattice filling beyond v,=1/9 of the
kagome lattice or 1/3 of the effective triangular lattice we
necessarily introduce defects to the density-wave structure
with one particle in every three unit cells. There are different
types of defects that can accommodate the extra particles. On
the one hand, the extra particles can hop around interstitial
sites of the lattice, which is innocuous to the underlying
density-wave structure. On the other hand, they can nucleate
mobile domain walls in the CDW order, that ultimately de-
stroy it.

An extra particle in an interstitial site has three nearest
neighbors in the CDW background. The resulting interaction
energy per particle is 37,. The particle can also hop between
interstitial sites and thereby gain kinetic energy from the as-
sisted hopping matrix elements I’ and 5*. The delocalization
energy of the added particle is —6|I}|-3|5"| =~ -2.51..

Let us compare to the case when particles are added as
domain walls. Domain walls between the three degenerate
CDW states come in two flavors, the “straight” and “zigzag”
domain walls, which are illustrated in Fig. 7. The line den-
sity, or number of added particles, associated with the zigzag
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FIG. 7. (Color online) Three patches of the CDW (different
colors/grayscale) with two types of domain walls: straight (left) and
zigzag (right). The thick lines denote the violated bonds which lead
to the interaction energy cost. The yellow (shaded) ellipses around
half of the particles in the zigzag domain wall indicate resonating
particles which gain the delocalization 15"

domain wall is twice that of the straight domain wall. How-
ever, they both incur the interaction energy cost of 3/, per
added particle, which is the same as the interaction energy of
a particle in an interstitial site.

The differences in energy between the defects stems from
the delocalization energy of particles within them. Consider
first the zigzag domain wall. Half of the particles in it can
resonate independently on the horizontal bonds, as shown by
the ellipses in Fig. 7, facilitated by the assisted hopping pro-
cess I5”. The energy gain per added particle is then seen to be
—6|I3’| = 1. Particles in the straight domain wall, on the other
hand, can hop with the matrix element F5” only to reach a
point where the interaction energy is increased by one bond
I.. Therefore, they can only move coherently by a second-
order process, gaining them delocalization energy of order
(1")?/1.. In both cases, of zigzag and straight domain walls,
the energy gain from delocalization is less than that of the
interstitial defect.

We conclude that doping of particles into interstitial sites
of the CDW, due to the high mobility they acquire, is ener-
getically favorable to nucleating domain walls. Since the in-
terstitial particles do not destroy the CDW, we expect that
order to survive and coexist with a condensate formed by the
mobile interstitial particles. In the next section we use the
effective spin model on the triangular lattice to formulate a
mean-field description of the resulting supersolid phase.

D. Mean-field treatment

In the last section we established that the added particles
preferably hop on interstitial sites of the CDW and do not
lead to proliferation of domain walls. Consequently the
CDW order is preserved and a mean-field treatment of the
coexisting CDW and interstitial condensates is justified. The
mean-field approximation consists of making a site factoriz-
able ansatz for the wave function,

(W) = [ [cos(9,/2)[1); + e sin(9/2)[1),].  (25)

l

In order to account for the broken translational symmetry, we
assume space-dependent coefficients 1; and ¢; with the unit
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cell of the CDW at filling v.=1/9. The variational energy
E,..=(V|H.4| W), then depends on the three angles 9, and
phases ¢, as

U
Evar[ﬂa’ @a] = 2 {_ |ITV|[S]n(ﬁA) + sin(ﬁB)]sinZTC

C.T.

) 0 ) 0
+|I5|cos(@up) { sin27A + sinzf] sinTAsinyB
D) )
+41, sin”>sin®—2 ¢ (26)
2 2

The sum runs over cyclic permutations of A, B, and C and
®ap=®s— ¢p, etc. Here we only gave the explicit expression
for the expectation values of the leading terms in Eq. (23).
When solving the variational problem numerically, we also
included, and found no significant effect, of the other terms.
Let us first consider two simple limits of the variational
problem. The pure CDW state corresponds to the configura-
tion 9,=7 and Uz=3,=0. Plugging this into Eq. (26) we
see that all terms, “interaction” and ‘“kinetic,” vanish and the
phases ¢, all drop out of the problem. The other simple limit
is a pure condensate with no density modulation, so that
Jy=05=0-=7. In this case, the problem reduces to

0}
E[Y,0,]=2 sin25{{— 3|1 |sin 9+ 31[1 - cos(9)]

+[13[sin 9cos(gap) +cos(@pc) +cos(oca) ]}

The value of ¥ is set by the density év and we are left with
an optimization with respect to the phases ¢,. The energy is
minimal for

es=0, @p= *27/3, @c= *4m/3. (27)

For the experimental realizations discussed below, it is inter-
esting to note that when Fourier transformed, this phase pat-
tern corresponds to the K or K’ points of the Brillouin zone
of the triangular lattice. However, in the reduced CDW Bril-
louin zone these points correspond to the I' point.

In the general case we optimize for the angles 4, and
phases ¢, numerically to find the mean-field density pattern.
Starting from an initial guess of the form J,=, Up,=0, the
minimal energy is always obtained for a solution of the form
Uy =m, O3=73,=0. Furthermore, above the critical filling
(i.e., Sv>0) the phases quickly approach the 120° pattern
found above for the case of a pure condensate.

Using the optimized variational wave function we com-
pute the order parameters of the CDW

(W05 — o3| P)
Vstag - M (28)
>, (|0 v
and of the superfluid
gr= (Wl W)l (29)

Both are shown in Fig. 8. The CDW order parameter vy, is
seen to decrease continuously from the perfect CDW at the
magic filling v,=1/9 (6v=0) until it vanishes at an upper
critical density ovyp=0.13. At the same time there is a build
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CDW + SF SF

order parameter

FIG. 8. (Color online) Order parameters in the kagome system
as a function of the density v=w.+ Jv. The lines are the result of the
mean-field analysis of the effective Hamiltonian on the flat band.
The CDW order parameter is shown as a full (red) line while the
superfluid order parameter is the dashed (blue) line. Circles (CDW)
and triangles (superfluid) mark the values obtained from exact di-
agonalization of the original kagome system on a small cluster. The
(blue) star at Sv=0.15 is the fluctuation reduced superfluid order
parameter. The mean-field result shows a critical density where the
CDW order vanishes.

up of the superfluid order parameter . The change from an
increase to a reduction and eventual vanishing of ¢ with
density at v=1/3 is an artifact of the mapping to spin-1/2
degrees of freedom (hard-core bosons). However at this
stage our lowest band approximation breaks down. The en-
ergy cost of interaction with neighboring particles grows to a
point that it becomes energetically favorable to occupy the
second band (and consequently also induce double
occupancy).

The above analysis of the effective model should give
qualitatively correct results at moderate densities but should
not be relied upon for high quantitative precision. One cause
for quantitative error is the truncation of further than nearest-
neighbor interactions that were generated by the projection
to the lowest Bloch band. Second, the mean-field approxima-
tion neglects quantum fluctuations of the effective spin—% de-
grees of freedom. Inclusion of these effects certainly lead to
quantitative changes, such as a shift of the upper critical
filling Svyr at which the CDW order vanishes. Nevertheless
the main features, including the existence of a finite window
of coexisting CDW and superfluid orders, as well as the or-
dering pattern of the superfluid, are expected to be robust.

We have quantified the effect of quantum fluctuations,
which were neglected in the mean-field approximation by
including spin-wave corrections. This is done using the
Holstein-Primakoff approach (see, for example, Ref. 60),
where we expand the Hamiltonian to quadratic order in the
Holstein-Primakoff bosons. The reduced value of the super-
fluid order parameter due to this effect is shown as a star in
Fig. 8 for one point in the phase diagram (at v=0.15).

E. Exact diagonalization

To support the above predictions, in particular, the exis-
tence of a supersolid phase at densities v>1/9, we carry out
an exact diagonalization (ED) study of the original kagome
lattice model (1) on finite clusters.
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FIG. 9. (Color online) Boundary conditions for the finite
kagome lattice in the presence of a magnetic flux ®.==*7/2
through the openings of the torus. The hopping over a blue bond
(dashed) is associated with a phase ¢/™? (the bonds are directed as
indicated by the arrow). Particles hopping over green bonds
(dashed-dotted) bonds acquire a phase e"™2. The red (dashed-
dotted-dotted) bond connecting site 9 and 20 winds around both
circumferences and picks up a phase —1.

ei7r/2+i7r/2 —

What are we looking for? We know from exact consider-
ations, that at very low density v<<1/9 the system is infi-
nitely compressible since filling in nonoverlapping localized
flat-band states does not incur an interaction energy cost. The
effective theory and, in particular, the mean-field results im-
ply that above the magic filling »>1/9 one obtains a com-
pressible state. Doping extra particles into interstitial sites of
the CDW state incurs a nonvanishing interaction energy cost.
This prediction is not obvious and is worth verifying with an
exact calculation.

For instance, if we were to fill the lattice with fermions
we could go up to 1/3 filling (a full flat band) of polarized
fermions before a nonvanishing inverse compressibility
would set in. It is therefore natural to ask if an exotic, fer-
mionized ground state of bosons could mimic the fermion
band filling and thus be favorable to the compressible super-
solid state. This can be checked via the calculation of the
compressibility as a function of particle doping Sv.

Another question raised by the analytical approach above
is about the fate of the CDW ordering in the doped state.
From the calculation of the density-density correlation func-
tion on small clusters we can see if the correlations at the
CDW wave vector G, = 2777(1 /3,-1/+3) are indeed enhanced
as compared to a uniform state.

We use the ALPS Lanczos application®! on clusters with a
size of 27 sites corresponding to 3 X3 unit cells of the
kagome lattice. This corresponds to maximal dimension d
=807885 of the Hilbert space. We perform the calculation
with periodic boundary conditions shifted by a phase = /2
along both x and y directions, which is equivalent to insert-
ing a quarter of a flux quantum through each of the two holes
of the torus. The twist serves to eliminate spurious zero-
energy states which wind around the torus.'> The specific
gauge choice used to implement these boundary conditions is
illustrated in Fig. 9 and explained in the caption.

The CDW order on the finite kagome lattice is extracted
from the density-density correlation function x;;=(#,7;). Spe-
cifically, we define the “staggered moment”
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1
Xglag = N—E Xij exp[iG - (r; - l'j)]- (30)
i~j

The normalization factor N, ensures that the staggered mo-
ment is 1 in the perfect close-packed CDW state illustrated in
Fig. 1.

Figure 8 presents the calculated CDW staggered moment
Xswag @s @ function of the doping v away from the magic
filling v,=1/9. We find x,,=1 at v=w, as it should be and
the moment falls off at higher filling similarly to the mean-
field result. Quantitatively however, the CDW moment from
ED is significantly larger than the mean-field moment. This
may seem unusual if we compare, for example, to the
Heisenberg antiferromagnet, where quantum fluctuations be-
yond the mean-field theory can only reduce the staggered
moment. In our case there is the competing superfluid order
parameter that facilitates the depletion of the staggered mo-
ment even at the mean-field level, however. Quantum fluc-
tuations are generally more effective at suppressing the con-
tinuous superfluid order parameter then the discrete CDW.
Therefore by depleting the competing superfluid order, quan-
tum fluctuations indirectly act to enhance the CDW order.
Indeed we see in Fig. 8, that the superfluid order, measured
by the square root of the condensate occupation number, is
significantly suppressed in the ED calculation as compared
to the mean-field result. Note, that we projected the ED re-
sults into the flat band to make connection to the mean-field
results. However, the effect of this projection is negligible, as
we explicitly show below.

When there are two or more competing order parameters
looms the danger of phase separation. To rule out this sce-
nario we shall compute the compressibility « from the ED
results using

Uk(N)=Ey(N+ 1) =2Ey(N) + Es(N-1),  (31)

where Ey(N) is the ground-state energy of N particles. An
instability to phase separation would be signaled by appear-
ance of negative compressibility. From the physics of the flat
band below the critical doping v.=1/9 we expect the system
to be infinitely compressible, or «~'=0, in this regime. The
CDW state itself at »=1/9 is incompressible due to the en-
ergy gap of order U to addition of one extra particle on an
interstitial site. The danger of phase separation lies when we
add a finite density of extra particles to the CDW. However
the results shown in Fig. 10 imply a state with positive and
finite compressibility. Moreover we see a similar trend in
both the mean-field and ED results, both showing an increase
in compressibility with increasing density away from the
critical density v.=1/9. This gives further support to the
mean-field picture over both phase separation and the more
exotic possibility in which the bosons are fermionized and
thereby gain high or infinite compressibility up to filling
v=1/3. The nonzero compressibility at dv=0 is a finite-size
effect due to the discreteness in the change in density as we
increase particle number on the small lattice.

Finally, we use the ED results to asses the validity of the
projection to the lowest band. We calculate the contribution
of the kinetic energy to the chemical potential,
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FIG. 10. The compressibility as a function of the density
ov=v—1v,. The mean-field compressibility is given by the solid line
while the dots indicate the results of numerical exact diagonaliza-
tion. The nonvanishing compressibility of the CDW state at v=v,
(6v=0) is due to finite size of the cluster. Compressibility at
v>v, is due to the condensate fraction. The fact that the mean-field
compressibility is higher than the exact diagonalization result is
consistent with the higher condensate density found in the mean-
field theory.

Miin = Exin(N + 1) = Eyiy(N), (32)

where E,;,(N) denotes the expectation value of the kinetic
energy in the ground state with N particles. To quantify the
overlap with higher bands we take a simple trial state for a
single quasiparticle |¢)=cos(9)|0)+sin(3)|1), where |0/1)
denote arbitrary states in the lowest and the first excited
band, respectively. With a finite-size band gap A=0.2¢ due
to the twisted boundary conditions we can relate the ampli-
tude in the first band to the measured kinetic chemical po-
tential

=2t
sin2(9) ~ “kT (33)

The results are given in Table I and we see that for all values
of U and ON the weight is in the range of a few percent.

IV. EXPERIMENTAL REALIZATIONS

We shall consider two types of systems that can exhibit
the physics of bosons in flat bands discussed above. The first
class of systems, briefly mentioned in Sec. I, is ultracold
bosons in optical lattices. The other class includes frustrated
antiferromagnets in a large magnetic field. Below we discuss
the considerations relevant for the realization of the flat
bands in these systems and to the experimental detection of
the emergent phases.

TABLE I. Amplitudes of single-particle states in higher bands
extracted from the kinetic energy in the exact diagonalization study
(see text). The low occupation of the higher bands justifies the
effective Hamiltonians derived by projection on the flat lowest
band.

ON U=0.1t U=0.3t U=0.5t
1 0.2% 1.6% 3.7%
2 0.4% 3.0% 6.7%
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A. Cold atoms

Optical lattice potentials, formed by standing waves of
laser light, provide the natural tool to realize interesting
Hamiltonians of interacting lattice bosons.?*3* In particular,
there have been several suggestions on how to produce a
lattice potential with kagome geometry. A direct implemen-
tation, proposed by Damski et al.'* requires nine pairs of
counterpropagating laser beams. Making use of spin-
dependent lattice potentials it is possible to reduce the num-
ber of counterpropagating beams to three.'* This method also
allows to construct an effective sawtooth geometry.® Very
recently optical lattice potentials were produced by an en-
tirely different scheme by Bakr et al.3® In the new scheme
the optical potential is projected as a hologram on the ultra-
cold atomic gas, allowing to easily produce any desired lat-
tice geometry.

Another challenging aspect of the experimental imple-
mentation is how to obtain frustrated hopping of the bosons
on the lattice. Usual quantum-mechanical tunneling of
bosons between the wells naturally gives rise to a negative
hopping matrix element, which does not lead to frustration.
However, several clever schemes have been proposed to in-
vert the hopping matrix element and thus produce the desired
frustration. One scheme proposed by Eckardt er al’’
achieves this by introducing a fast time-periodic lattice ac-
celeration. With proper design of the time-dependent accel-
eration, the resulting Floquet Hamiltonian has an inverted
sign of the hopping. The general idea of tuning of the effec-
tive hopping with dynamical modulation®3° was success-
fully demonstrated in experiment.*’

A second scheme to invert the hopping is tailored to
implementations of the lattice with spin-dependent optical
potentials. The phase of the tunneling matrix elements can
then be tuned by controlling the phase of a laser field that
induces transitions between the two relevant spin states.*

A third and completely different route for achieving the
frustrated hopping relies on a mapping between the low-
energy dynamics of a target Hamiltonian A and the dynamics
in the highest energy manifold of —H.*! In our case H is the
desired Hamiltonian, which describes repulsively interacting
bosons with frustrated hopping and we are interested in the
low-energy dynamics on the lowest band (i.e., the flat band).
While this is hard to produce, it is rather straightforward to
realize —H, the unfrustrated model with attractive interac-
tions. If this system can be initialized with all particles in the
flat upper band, then the ensuing dynamics will be identical
to the low-energy dynamics of the frustrated model H. Decay
of particles from the flat band to the lowest band is exponen-
tially suppressed in the large parameter fw,/t where fiw, is
the gap to higher Bloch bands.

Given an experimental realization of the model (1) of
frustrated bosons on the kagome or sawtooth lattice, the
ground-state and low-energy properties can be measured
with standard probes. Here we concentrate on the time of
flight expansion image which gives information on the
ground-state correlations. We note that the excitation spec-
trum can be studied using Bragg spectroscopy*” or lattice
modulation spectroscopy.*>+*

The time of flight image lends direct access to the ground-
state momentum distribution {n,)=(b{b\) and the noise cor-
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relations in the image reflect the momentum space correla-
tions: G(k,k")={mm)—{(m)n).*> As we show below,
these two observables complement each other to give de-
tailed information on the emergent ground state of the frus-
trated bosons.

We start by considering the momentum distribution in the
pure CDW state on the kagome lattice at ¥=1/9. The delo-
calization of bosons inside hexagons gives rise to distinct
structure in (n,), albeit no sharp delta-function features in
absence of long-range superfluid order. To obtain the struc-
ture we rewrite the momentum distribution in a real-space
representation

1 .
<”k> - EE ezk(xi—xj)<bl}‘bj>’ (34)
ij

where M is the number of kagome lattice points. Now using
the facts that b; annihilates the CDW state unless j belongs to
one of the occupied hexagons and that the off-diagonal cor-
relations are nonzero only within a single hexagon we can
rewrite Eq. (34) as

1 .
(m)cpw = HE > M (pTh )
R

. !
1 aa

1 . ,
— az ezk-(ra—ru/)(_ 1)a+a , (35)

where R; are the centers of the occupied hexagons, « labels
the site of a hexagon, and the vectors r, give the locations of
the hexagon points relative to its center. Plugging in these
vectors finally gives the simple expression

8 ) kx kx \”/gkx ?
(nk>CDW=Zsm 2| cosl g ) eos =, ,

which is plotted in Fig. 11(a). It is interesting to note that this
function has zeros on the reciprocal-lattice vectors of the
kagome lattice (more precisely those of the underlying trian-
gular Bravais lattice). The maxima of the function are lo-
cated on the reciprocal lattice of the emergent CDW structure
but not on those that also belong to the reciprocal of the
original lattice where (n,)=0. Note that the calculated mo-
mentum distribution does not decay at large wave vectors k.
This is because we took lattice wave functions to be strictly
confined to lattice points. In reality the momentum distribu-
tion will have a decaying envelope, reflecting they are com-
posed of local wave functions with finite extent

To obtain the approximate momentum distribution in the
supersolid phase at filling v>1/9 we apply the prescription
(34) to the mean-field wave function

W[5, 00 =11 [sin(9//2) + €' cos(z?j/2)W;f]|O>.
J

Here j runs over unit cells, or all hexagons in the kagome
lattice and W/ creates the resonating state localized on hexa-
gon j [Eq. (20)]. As shown in Sec. Il D, 9; and ¢; form a
three-unit-cell periodic structure which amounts to a super-
fluid order parameter at the K and K’ points of the original
Brillouin zone in addition to the CDW order. Because of the
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FIG. 11. (Color online) Predictions for time of flight experiments, including momentum distribution and noise correlations for the
different phases of the kagome system. (a) The momentum distribution (n;;) in the CDW state at v=v,. The smooth structure stems from the
off-diagonal correlations inside hexagons. Destructive interference due to the resonating hexagon wave function leads to vanishing of (1)
on the reciprocal-lattice vectors of the original kagome lattice (marked by yellow crosses). The (yellow) hexagon marks the boundaries of
the first Brillouin zone. (b) In the supersolid state at ¥> v,, sharp delta-function peaks appear in (ny) in addition to the smooth background
contribution of the CDW. These condensate peaks appear at the K and K’ points and points related to them by the CDW wave vector.
However, points in the reciprocal lattice of the original kagome lattice remain exact zeros of the momentum distribution. In panel (c) we
show the noise correlations for the CDW state as a function of the relative momentum dk=k-k’ for fixed zero average momentum. The
delta peaks on the reciprocal vectors of the CDW lattice (peaks away from the yellow crosses that indicate the underlying kagome lattice)

indicate the nontrivial ordering in an emergent lattice structure.

off-diagonal long-range order, delta-function peaks appear in
(my) on top of the smooth structure caused by the hexagon
CDW. Figure 11(b) shows the condensate peaks which ap-
pear at the K,K' points of the kagome Brillouin zone and at
other points connected to them by the wave vectors of the
CDW. However, the form factor controlling the relative
strength of the different peaks is nontrivial and most inter-
estingly implies that some peaks have zero weight. Specifi-
cally, the reciprocal-lattice vectors of the kagome lattice re-
main zeros of (n,) although they are also connected to the K
and K’ points by CDW wave vectors. The zeros are the result
of destructive interference from the staggered phases of the
resonating hexagon states.

The noise correlations in the CDW state are computed,
similarly to the momentum distribution, by expressing them
in terms of the real-space lattice operators (see Ref. 45)

Gk k') = D, etix)+k’ (xy-x;)
iji'j’

X (5ji’<bi+bj’> + <bjbj’><b:‘r’bj>)' (36)

The fact that (b/b ;) is nonzero, in the pure CDW state, only
if i and j belong to the same occupied hexagon, allows us to
write G(k,Kk’) in terms of the sites of a single hexagon

G(k.k') = 85 of (K, k) + S5, of*(K, k),

1
6 a0’ =1
where Sk=k-k’ and K=(k+k’)/2, Q denote the
reciprocal-lattice vectors of the original kagome lattice, and
G are the wave vectors of the CDW order.

Note the sharp peaks in the noise correlations, which ap-
pear when k—Kk' is equal to a reciprocal-lattice vector of the

6
f(K ék) = E (_ 1)a+a'eiK~(ra—rar)+i6k-(ra+rar/2)

emergent CDW structure. This is different from a Mott insu-
lating state, where lattice symmetry is not broken and there-
fore peaks are observed when k—Kk' is equal to a reciprocal-
lattice vector of the optical lattice potential.*® The noise
correlations thus provide a clear signature of the CDW order.

The form factor which controls the relative strength of the
peaks at different reciprocal-lattice vectors, depends on both
the relative momentum Sk and the average momentum K.
The dependence on the average momentum is determined by
the intersite coherence within a unit cell of the CDW, infor-
mation that is already available in (n). It is therefore useful
to fix K, as done in Fig. 11(c), in order to isolate the depen-
dence of the form factor on Jk and thereby obtain informa-
tion on the density profile within a unit cell.

B. Quantum magnets

Due to the analogy between bosons and quantum spins,
the question of Bose condensation in flat bands has a lot in
common with the problem of frustrated quantum magnets.'™
The frustrated geometry gives rise to an extensive degen-
eracy that inhibits formation of broken spin symmetry, just as
the flat bands inhibit Bose condensation.

In fact, there is a direct mapping between antiferromag-
nets, which are nearly fully polarized by an external mag-
netic field, and the model (1) of weakly interacting lattice
bosons. A spin flip in the otherwise polarized state behaves
as a bosonic excitation, known as a magnon.*”*® The mag-
non hops between nearest-neighbor sites with a positive ma-
trix element due to the antiferromagnetic exchange whereas
single-ion anisotropy terms OC(S;"‘)2 in magnets with spin
S=1 translate to on site interactions between magnons.

Decreasing the magnetic field is like tuning the chemical
potential of the magnons and can lead to Bose
condensation.**-3! At very high magnetic fields compared to
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the Curie Weiss temperature of the antiferromagnet, the spins
are fully polarized and magnons are gapped. However, below
a critical field the gap closes and the magnons are expected
to condense giving rise to long-range spin correlations in the
spin axes perpendicular to the magnetic field. Such a transi-
tion has been observed recently in the spin-ladder system
(Hpip),CuBr,.>? In the spin ladder the magnon band has a
unique minimum energy. The approach developed in this pa-
per becomes useful when the lattice geometry is sufficiently
frustrated to induce a flat magnon dispersion,'! which inhib-
its straightforward magnon condensation.

An interesting system from this viewpoint is the organic
material m-MPYNN-BF,,'>'® which forms a kagome struc-
ture of effective spin-1 degrees of freedom. Fortunately it
also has a low Curie-Weiss temperature (Ocw =3 K), which
allows to completely polarize the spins with reasonable mag-
netic fields. Indeed, NMR spin-relaxation measurements in-
dicate the presence of a spin gap above a field h,~4 T.>3
The close-packed hexagon lattice should show up as a mag-
netization plateau at 8/9 of full polarization at magnetic
fields slightly below the saturation field. Our results pertain
to the nature of the ground state with magnetization below
8/9 per spin.

The detailed ordering structure can, in principle, be ob-
tained from elastic neutron-scattering experiments which
measure the spin-correlation function. In particular, the x-y
component of the static structure factor <S+S;) can be
mapped directly to the momentum distribution of the bosons
discussed above and shown in Fig. 11(b) (see Appendix B for
the details of the spin-boson mapping). The z component of
the spin structure factor can be directly mapped to the Fou-
rier transform of the density correlations. It will show peaks
at the CDW wave vectors modulated by a form factor which
depends on the density profile within a unit cell. In that sense
neutron scattering will give information similar to the noise
correlations in time of light images of ultracold atoms at a
fixed value of the center of mass momentum (see Fig. 11).

Finally, we note that in order to apply the results of our
study to m-MPYNN-BF,, it may be necessary to take into
account the structural distortion that occurs below
T,~ 130 K. This distortion leads to anisotropy of the mag-
netic exchange along different directions of the kagome
lattice.>* As long as the anisotropy is weak compared to the
effective magnon interactions then the use of the effective
Hamiltonian restricted to the lowest band is still justified,
albeit with spatially anisotropic interactions.

V. CONCLUSIONS AND OUTLOOK

We have developed a general scheme to derive low-
energy effective Hamiltonians for bosons on the flat Bloch
bands of frustrated lattices. The essential idea is to project
the Hamiltonian on the flat band by formulating the interac-
tion term using a complete basis of localized Wannier states
of the flat band. The resulting model contains both diagonal
interaction terms and off-diagonal (assisted) hopping terms,
all proportional to the interaction parameter in the original
model. Most importantly, the effective model is in most
cases no longer highly frustrated and therefore amenable to
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analysis by mean-field theory and other standard theoretical
methods. Such analysis is directly useful in the description of
ultracold atoms in optical lattices with highly frustrated hop-
ping and of frustrated quantum magnets in high magnetic
fields, where magnons behave as dilute bosons.

Using the projection scheme, we investigated the Bose
Hubbard model on the frustrated sawtooth and kagome lat-
tices. In both cases it is possible to construct exact many-
body ground states composed of nonoverlapping configura-
tions of localized states, which lie entirely in the flat
band'®!7 (see Fig. 2). The existence of a large number of
such configurations prevents any ordering at zero
temperature. Above the critical lattice filling v,., at which
the localized states form a closely packed density wave,
the exact construction fails and our approach is useful in
identifying the emergent ground-state and low-energy
excitations.

In the one-dimensional sawtooth lattice we show that the
CDW is immediately destroyed by proliferation of domain
walls upon increasing the density from the magic filling
v.=1/4. Universal properties, e.g., the power-law peaks in
the static structure factor, at filling v=1/4+ 6v are described
by the long-wavelength theory of the commensurate-
incommensurate transition.

In the kagome lattice, the CDW remains stable upon in-
creasing the density from v.=1/9. The added bosons hop
between interstitial sites of the CDW and form a condensate
at the K and K’ points of the Brillouin zone of the kagome
lattice. We considered the signatures of this phase in a real-
ization with ultracold atoms in optical lattices. The predicted
time of flight image is shown in Fig. 11(b) and displays the
sharp peaks indicating the presence of a condensate at the
right wave vector. Most strikingly however, as a result of
destructive interference from the localized hexagon wave
functions, we find zeros of the momentum distribution on the
reciprocal-lattice vectors of the original kagome lattice.

A general feature of Bose condensates in flat bands of
frustrated lattices is that condensation is entirely interaction
driven. It is a result of the emergent dynamics induced inside
the flat band by the weak interactions, which is directly cap-
tured in the projection scheme. In particular, both the con-
densation energy and superfluid stiffness are proportional to
the Hubbard interaction U and not to the kinetic energy as in
usual condensates. In a similar way, due to effective interac-
tions generated in the low-energy model, charge-density-
wave states and supersolids are stabilized even in absence of
long-range interactions in the microscopic model.

It would be interesting to apply the ideas developed in this
paper to frustrated antiferromagnets such as the organic salt
m-MPYNN-BF,. Such analysis should include coupling to
the anisotropic lattice distortion. Furthermore, nearest-
neighbor magnon interactions, which are naturally generated
by the antiferromagnetic magnetic exchange, are expected to
give rise to more magnetization plateaux. An intriguing ques-
tion then is how the supersolid phase we find connects with
the plateaux at lower magnetization? Using the projection
method to investigate the compressible phases, which con-
nect between lower plateaux, and perhaps finally with the
spin-gapped phase at zero field, offers a distinct viewpoint on
the problem of frustrated quantum magnets.
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APPENDIX A: DETAILS OF THE PROJECTION
TO THE FLAT BAND

The explicit expressions for the Wannier functions of the
flat band of the sawtooth lattice can be written in terms of
complete elliptic integrals of the first and second kind, K(m)
and E(m), respectively.

Specifically, the amplitudes used in the derivation of the
effective Hamiltonian (10) are given by

wal0) = - —=K(2/3). (A1)
3V

wald) = — —=[3E(2/3) + 2K(2/3)], (A2)
3V
21

w,(0) = \/;7—7[315(2/3) —K(2/3)], (A3)
21

wy(a) = \/;;[31((2/3) ~5E(2/3)]. (A4)

The resulting interaction constants are of the form

FlIU = 8W%(O)W%(Cl) + SWi(O)wi(a) + 4Wj(0) ~0.112,
(AS)

I*™/U = 4w (a)wg(0) + 4w (0)wy(a) + 4w (a)w,(0)
~-0.025, (A6)

I?/U =~ 4wi(a)w(0) + 8w (0)wy(a) = —0.011, (A7)

UIU = wi(0) + 2wg(a)* + 2w} (0) + 2w} (a) = 0.40.
(A8)

Figure 12 shows the spatial dependence of the Wannier
functions of both the lower flat band and the upper band.
Note the strong localization of the Wannier function of the
flat band. A zoom-in on the short-range structure of this func-
tion on-site and on nearest neighbors shows that it is shows
that it is almost identical to the strictly localized V states of
the sawtooth lattice.

Figure 13 shows the spatial behavior of the flat band Wan-
nier functions of the kagome lattice as defined in Eq. (22).
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flat band
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5 z/a 10 15

FIG. 12. (Color online) Wannier functions (probability distribu-
tion) as a function of position on the sawtooth lattice with
t'/t=V2. The excited band has an oscillatory slowly decaying tail
while the flat-band Wannier functions decay with a localization
length &=1log(2.15)a. The inset shows that locally, the Wannier
function of the flat band is almost identical to the strictly localized
V states indicated by the filled circles.

Due to the touching band, they do not fall of exponentially
but decay algebraically, cf. Fig. 13(b).”’

Coefficients in Hamiltonian (23) result from the overlap
of Wannier functions at different sites. The explicit expres-
sions for the first few terms are given by

UIU = 6wj =~ 0.144, (A9)
FIU = wg + 4wiwl + 2wiwi = 0.028, (A10)
FPIU = 2wiw, = 0.009, B =F/2, (A11)
BYIU = 2wiw, = 0.003, I =F2, (A12)

where the amplitudes w, are defined in Fig. 13.

(a) e

—wax —Ws®

[ ) ° .
wo W1 —wW3 W4

FIG. 13. (Color online) Wannier function for the flat band in the
kagome lattice. (a) Wave-function amplitudes shown on the two-
dimensional lattice, where the size of the dots represents the weight
and the color (shading) the denotes the sign + or — of the wave
function. The definitions of the weights w;...ws are indicated. (b)
Algebraic decay of the Wannier function as ~1/|r| along the high-
symmetry direction marked by the dashed line in (a).
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APPENDIX B: SPIN-BOSON MAPPING

In this appendix we describe details of the mapping from
a spin-S system to a bosonic Hamiltonian. We consider the
following general spin Hamiltonian:

H=J2 [S]S] +8;ST+ \SiS5]+ 2 [D(S5)* - hs7]
@) i
(B1)

which includes anisotropic magnetic exchange interactions
as well as a single-ion anisotropy D. The latter is relevant for
S§>1/2 where two magnons can reside on the same site; we
concentrate on this regime in the following. This Hamil-
tonian has been studied extensively at small magnetic field &
and §=1.5°

Here, we focus on the large field limit. The fact that spins
are nearly polarized in the z direction suggests to construct a
bosonic representation of the small fluctuations (magnons)
about the fully polarized state using the Holstein-Primakoff
expansion.® To quadratic order in the magnon occupation
the mapping between the spins and bosons is

— bib.
St~ \,'ZS<1 - ')bi,
4S8
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L
S;=~bj\N2S| 1 - ,
48

Si=(S—b/b). (B2)

Expressing Hamiltonian (B1) using the Holstein-Primakoff
bosons and keeping terms to leading order in 1/S we finally
obtain the bosonic Hamiltonian

H=JSX [bjb;+H.c.1+ X prgeb; + D, 07
<ij) i i

-7 %(ﬁibjbj +H.c) + N9, [+ O(1/8%). (B3)
(ij)

Here, f/,:bj'b,- denotes the density operator. The effective
chemical potential for the magnons here is given by
Meir=SD+2z\JS+h. The Bose-Hubbard model (1), which
was considered in this paper, is only the first line of Eq. (B3).
The second line includes additional nearest-neighbor interac-
tions and assisted hopping terms which stem from the anti-
ferromagnetic exchange interactions. Note however, that
both terms in the second line are vanishing in the exact CDW
state and can be projected into the flat band along the same
lines as the simple on-site interaction «D.
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