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Tunneling conductance of a clean normal-metal/d-wave superconductor junction is studied using the ex-
tended Blonder-Tinkham-Klapwijk formalism. We show that the conductance is significantly affected by the
interface spin-orbit coupling of the Rashba type, which is inevitably present due to the asymmetry of the
junction.
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I. INTRODUCTION

High-temperature cuprate superconductors have remained
at the forefront of experimental and theoretical research for
more than 20 years. Probing the order-parameter structure
has been the subject of a particularly large effort. One of the
most compelling pieces of evidence for the d-wave symme-
try of the order parameter comes from tunneling spectros-
copy experiments. The conductance spectrum of a junction
between a normal metal and a high-Tc superconductor exhib-
its strong dependence on the crystallographic orientation of
the interface, see Refs. 1 and 2 for a review. Its most promi-
nent feature is the zero-bias conductance peaks �ZBCPs� that
can be attributed to the quasiparticle states with zero energy
bound to the surface.3–5 Such states, called the Andreev
bound states, exist if the quasiparticles experience a sign
change in the order parameter upon reflection from the inter-
face, as was originally pointed out by Hu.3 The Andreev
bound states and the associated low-energy features in the
tunneling conductance have also been studied for other un-
conventional superconductors.1,6–9

Most of the theoretical studies of the tunneling conduc-
tance in high-Tc superconductors have used the Blonder-
Tinkham-Klapwijk �BTK� formalism,10 extended to the
d-wave case. It has been known, however, that going beyond
the BTK model produces important qualitative effects. For
instance, time-reversal symmetry can be spontaneously bro-
ken near the interface due to the formation of a subdominant
order parameter, leading to the splitting of the ZBCP even in
zero external magnetic field,11,12 while in the presence of the
interface roughness, the ZBCP exist for all interface
orientations.11 Even within the BTK framework, the tunnel-
ing conductance in the d-wave case turns out to be sensitive
to the details of the interface barrier, see, e.g., Ref. 13, where
the effects of ferromagnetic and Kondo-type scattering in the
barrier were considered.

In this paper we study the effects of the spin-orbit cou-
pling �SOC� localized near an interface between a normal
metal and a d-wave superconductor. Due to the fact that two
sides of the junction have different crystal and electronic
structure, the interface potential barrier is asymmetric, result-
ing in the SOC of the type originally proposed by Rashba in
Ref. 14 for semiconductor heterostructures. We neglect dis-
order as well as the interface roughness and calculate the
zero-temperature tunneling conductance for different crystal-
line orientations by generalizing the BTK formalism to in-

clude the Rashba interface SOC. Similar model was recently
applied in Ref. 15 to a normal metal/p-wave superconductor
junction. Throughout the paper we use the units in which
�=1.

II. TUNNELING JUNCTION WITH THE INTERFACE SOC

We consider the tunneling junction shown in Fig. 1. The
interface is located at x=0 and is characterized microscopi-
cally by a potential barrier which we describe by the follow-
ing model:

U�x� = �U0 + U1n · ��̂ � k̂����x� . �1�

Here n� x̂ is the unit vector along the interface normal, U0
and U1 are the strengths of the spin-independent and the
Rashba SOC contributions, respectively, �̂ are the Pauli ma-

trices and k̂=−i�. The band dispersions are assumed to be
parabolic, with the same effective masses m and the Fermi
energies kF

2 /2m on both sides.
The quasiparticle wave function has four components,

corresponding to the electron-hole and spin degrees of free-
dom, and can be found from the Bogoliubov-de Gennes
�BdG� equations.16 Assuming two-dimensional geometry, the
SOC term is diagonal in spin, and the BdG equations can be
decoupled into two independent pairs of two-component
equations as follows:

FIG. 1. �Color online� Schematic illustration of the quasiparticle
reflection and transmission processes at the interface. Also shown is
the d-wave order-parameter profile and the angle � of the crystal-
line orientation with respect to x axis.
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H���r� = E��r� , �2�

where �=� for different spin orientations,

H� = �	̂ + U��x� �
�k̂,r�

�
†�k̂,r� − 	̂ − U��x�
� , �3�

	̂= k̂2 /2m−�F and U��x�= �U0−�U1k̂y���x�. The gap func-

tion is given by 
�k̂ ,r�=
�k̂���x�, where ��x� is the step
function. The spin index in the off-diagonal elements of H�

amounts to an unimportant phase factor and can be dropped
when calculating the tunneling conductance. We note that the
values of the gap can be different for the transmitted elec-
tronlike and holelike quasiparticles due to the anisotropy of
the d-wave order parameter. We have


� � 
�k�� = 
0 cos�2�  2�� , �4�

where � is the angle between the crystalline orientation and
x axis, k�=kF��cos � , sin ��, and 
+ and 
− are the effec-
tive pair potentials of electron and hole components, respec-
tively. In the spirit of the BTK approach, self-consistency of
the order parameter is neglected.

We assume that electrons are injected from the normal
metal with the excitation energy E�0 and spin �, at an
angle � from the interface normal. The incident electrons are
either normally reflected as electrons or Andreev reflected as
holes.17 The momentum parallel to the interface is conserved
in the tunneling process and the solution of Eq. �2� has the
form ��r�=eikyy��x�, where

�N�x� = �1

0
�eikF cos �x + a��0

1
�eikF cos �x + b��1

0
�e−ikF cos �x

�5�

on the normal side and

�S�x� = c��u+ei�+

v+
�eikF cos �x + d��v−ei�−

u−
�e−ikF cos �x �6�

on the superconducting side. Here a� and b� are the ampli-
tudes of the Andreev and normal reflection, respectively, and
c� and d� are the transmission amplitudes. The quasiparticle
amplitudes in the superconducting region are given by

u� =
1
�2
�1 +

��

E
, v� =

1
�2
�1 −

��

E
, �7�

where ��=�E2− 	
�	2, with the phase factors
ei�� =
� / 	
�	. Note that, according to Eq. �4�, ��=0 or �.

All the reflection and transmission amplitudes in Eqs. �5�
and �6� can be found from the boundary conditions that fol-
low from Eq. �1�,

�S�0+� = �N�0−� ,

�S��0
+� − �N� �0−� = 2m�U0 − �U1kF sin ���N�0−� .

In particular, for the reflection amplitudes we obtain

a��E,�� =
4�+e−i�+

�2 + Z�
2��− + 2�+

,

b��E,�� =
�− 2iZ� − Z�

2��−

�2 + Z�
2��− + 2�+

, �8�

where ��=1��+�−ei�, �=�−−�+ �ei�=+1 or −1,
depending on � and ��,

�� =
v�

u�

=
	
�	

E + ��

=
E − ��

	
�	
,

Z� =
Z0 − �Z1 sin �

cos �
, Z0 =

2mU0

kF
, Z1 = 2mU1.

The dimensionless parameters Z0 and Z1 characterize the
strengths of the purely potential and SO scattering, respec-
tively.

Using the BTK formalism,10 the normalized differential
tunneling conductance is given by G�E�=GS�E� /GN, where

GS�E� = 

�
�

−�/2

�/2

d� cos �G��E,�� �9�

with the angle and spin resolved conductance given by

G��E,�� = 1 + 	a��E,��	2 − 	b��E,��	2

=
1 + 	�+	2 + Z�

2�1 − 	�+�−	2�/4
	1 + Z�

2�1 − �+�−ei��/4	2
�10�

and

GN = 

�
�

−�/2

�/2

d� cos �
1

1 + Z�
2 /4

�11�

is the conductance for a normal-metal/normal-metal junction
with the interface potential given by Eq. �1�. We can see that
the tunneling conductance depends on the incident spin ori-
entation: G+�E ,���G−�E ,��. In the absence of the interface
SOC, i.e., at Z1=0, Eq. �10� reduces to the known results
�see, e.g., Eq. �23� of Ref. 5�.

The effect of the Andreev bound states is most pro-
nounced in the low-transparency limit, i.e., when the inter-
face barrier is so high that one can put Z�→�. In this case,
GN becomes small but G��E ,�� remains independent of the
barrier height if �+�−ei�=1. The last equation can be written
in the form 
+ / �E−�+�=
− / �E+�−�, which has a zero-
energy solution at �=� /4 for all incident angles due to the
fact that 
−=−
+ �Ref. 3�. Therefore, the normalized tunnel-
ing conductance at E=0 diverges, giving rise to a sharp
ZBCP. In contrast, at �=0 there are no zero-energy bound
states near the interface and the tunneling probes the density
of the quasiparticle states N�E� in the bulk. In the d-wave
case, at low energies the main contribution to the density of
states comes from the vicinity of the gap nodes, yielding
N�E��E �Ref. 18�. This leads to a strong suppression of the
tunneling conductance at low bias. We shall see below that
the last conclusion surprizingly changes if the interface SOC
is taken into account.
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III. RESULTS AND DISCUSSION

We use expressions �9� and �11� to calculate the normal-
ized tunneling conductance for different values of the inter-
face SOC at �=0 and �=� /4. For the potential barrier
height we consider three cases: Z0=0 �high transparency�,
Z0=1 �medium transparency�, and Z0=5 �low transparency�.
The conductance is plotted as a function of the dimensionless
excitation energy E /
0.

Figures 2 and 3 show the tunneling conductance for
�=0 and �=� /4, respectively, in the high- and medium-
transparency cases. We note that if Z0=Z1=0, then there is

only Andreev reflection and G�E� is nearly independent on
�, monotonically decreasing from 2 as E increases. This
changes in the presence of the interface SOC, when a maxi-
mum appears in G�E� in the subgap region at �=0, as shown
in the top panel of Fig. 2.

Another significant feature of our results is that in the
high-transparency case the effects of the SOC on the zero-
bias conductance are opposite for the two interface orienta-
tions: At �=0 G�0� is suppressed as Z1 increases while at
�=� /4 G�0� is enhanced, as shown in the top panels of Figs.
2 and 3, respectively. To explain this we use the analytical
expression for the zero-bias conductance at Z0=0,

G�0� =
�x1

2 + 1��x1
2 − 3�arctan x1 + �x1

2 + 3�x1

�x2
2 + 1�arctan x2 − x2

x2
3

x1
5 ,

where x1=�Z1
2�1+ei�� /4−1 and x2=�Z1

2 /4−1. At Z1=0, we
find G�0�=2. At �=0 ��=� /4�, we have ei�=1 �ei�=−1�,
and the above expression is a decreasing �increasing� func-
tion of Z1.

In the medium-transparency case the interface SOC pro-
duces some enhancement of the tunneling conductivity,
which is more pronounced in the �=0 case. Let us now
discuss the case of a low-transparency barrier, which is
shown in Fig. 4. At �=� /4, the interface SOC suppresses
the height of the ZBCP. At �=0, there is no ZBCP, but the
tunneling conductance at a small bias is enhanced by the
SOC, reaching values on the order of 1 �in contrast, the peak
at E=
0 is suppressed�. To explain this enhancement we
note that for Z1 smaller than Z0 we have Z�Z0�1. Then
GS�0��Z0

−4 while GN�Z0
−2, therefore, G�0��Z0

−2→0, simi-
larly to the zero SOC case, see, e.g., Ref. 4. However, if
Z1�Z0, then for some incident angles one has 	Z�	�1. It is
the contribution from those angles that dominates the inte-

FIG. 2. The dimensionless tunneling conductance for �=0 and
different strengths of the interface SOC at Z0=0 �top panel� and
Z0=1 �bottom panel�.

FIG. 3. The dimensionless tunneling conductance for �=� /4
and different strengths of the interface SOC at Z0=0 �top panel� and
Z0=1 �bottom panel�.

FIG. 4. The dimensionless tunneling conductance in the low-
transparency case, for different strengths of the interface SOC, at
�=0 �top panel� and �=� /4 �bottom panel�.
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grals in Eqs. �9� and �11�, giving rise to GS�0� , GN�Z1
−1,

therefore G�0��1.

IV. SUMMARY

To summarize, we have calculated the tunneling conduc-
tance of a junction between a normal metal and a d-wave
superconductor. Unlike the previous works, we take into ac-
count the SOC localized near the interface, which requires a
modification of the BTK formalism. We have shown that the
interface SOC gives rise to several qualitative changes in the
tunneling spectra. The most prominent changes are as fol-

lows: in the case of a high-transparency junction, the normal-
ized tunneling conductance at a small bias E�
0 is sup-
pressed by the SOC for �=0 and enhanced for �=� /4. In
the low-transparency junction, the trends are reversed, in par-
ticular, the zero-bias conductance at �=0 is enhanced by the
SOC.
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