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Antiferromagnetic spin-% chains in (NO)Cu(NO3)3: A microscopic study
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We report on the microscopic model of the recently synthesized one-dimensional quantum magnet
(NO)Cu(NO3)3. Applying density-functional-theory band-structure calculations, we obtain a leading antiferro-
magnetic exchange coupling /=200 K, which runs via NO; groups forming spin chains along the b direction.
Much weaker couplings J' =2 K link the chains into layers in a nonfrustrated manner. Our calculations do not
support the earlier conjecture on an anisotropic frustrated square lattice physics in (NO)Cu(NOj3)s. In contrast,
the model of uniform spin chains leads to a remarkably good fit of the experimental magnetic susceptibility
data, although the low-temperature features of the intrinsic magnetic susceptibility measured by electron spin
resonance might call for extension of the model. We outline possible experiments to observe the suggested
long-range magnetic ordering in (NO)Cu(NO3); and briefly compare this compound to other spin—% uniform-

chain systems.
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Quantum magnets give an exciting opportunity to observe
unusual ground states and to establish unexpected connec-
tions between theoretical models and real systems."? Quan-
tum spin chains are in the focus of numerous recent studies
and show peculiar excitation spectra® along with the promis-
ing effect of the ballistic heat transport.* Among the spin-
chain models, the properties of the uniform spin chain are
now well understood theoretically and extensively verified
experimentally via versatile investigations for a range of
model compounds.®3~7 The crucial present-day task is to ex-
tend these results to other systems with different dimension-
ality, different lattice topologies, and, consequently, different
physics. One of the possible approaches to this challenging
problem is to explore compounds with unusual chemical fea-
tures that can lead to peculiar crystal structures and spin
lattices. Yet, the deduction of the correct spin model for a
complex crystal structure will often require a microscopic
study to provide quantitative estimates of the individual ex-
change couplings.

The (NO)Cu(NO;); compound® is one of the recent ex-
amples for a low-dimensional magnet with a special chemi-
cal feature, the nitrosonium [NO]J* cation that forms a mixed
salt with the magnetic spin-% Cu*?. The peculiar crystal
structure (Fig. 1) is formed by chains of isolated CuO,
plaquettes running along the b direction. One type of the
triangular [NO5]" nitrate anions links the plaquettes within a
chain, thus connecting to two neighboring plaquettes. The
nitrate groups of the second type are connected to one
plaquette only. The chains stack along the a and ¢ directions
whereas the [NO]* cations are found between the chains. The
crystal symmetry is monoclinic (space group P2,/m).

An experimental study® of (NO)Cu(NO;); evidenced low-
dimensional spin correlations and proposed a two-
dimensional Nersesyan-Tsvelik model'® which is better
known as an anisotropic frustrated square lattice.!! Based on
phenomenological arguments, in particular, (i) the almost
temperature-independent values of the g factor and (ii) the
lack of sharp anomalies in the specific heat, the absence of
long-range ordering (LRO) at least down to 2 K is proposed.’
At the same time, the experimental magnetic susceptibility
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evidences that the leading magnetic exchange coupling J
(along the structural chains, Fig. 1) exceeds 150 K. To rec-
oncile the large coupling with the absence of LRO, the au-
thors of Ref. 9 suggest that the interchain couplings J' and J,
in the (NO)Cu(NOj;); structure show an exactly 2:1 ratio
(see Fig. 1), thus leading to strong frustration that inhibits
LRO.

Since individual exchange couplings are not directly mea-
surable, it is generally difficult to judge whether a specific
system is magnetically frustrated or not. For instance, such
discussion for the spin—% diamond chain system azurite
Cu;(CO5),(OH), (Ref. 12) is still not settled: while inelastic
neutron-scattering data favor nonfrustrated magnetism,'
band-structure calculations suggest a frustrated model,'*!
whereas thermodynamical data can be satisfactorily de-
scribed by both models.'>!® Even more illustrative is the
recent evidence!” of a nonfrustrated spin model in
(CuCl)LaNb,0, initially proposed to imply magnetism of
the frustrated square lattice.'®

Moreover, the conjecture on the exact J,:J'=1:2 ratio in
(NO)Cu(NO;); is based on two nontrivial assumptions: (i)
the J, and J’' couplings are running exclusively via NO
groups; (ii) the energies of these couplings are proportional
to the number of bridging NO units (two for J' and one for
J,).? Regarding the complexity of exchange interactions in
general, such assumptions should be supported by a micro-
scopic verification. Band-structure calculations are known as
a reliable and accurate tool to investigate magnetism on the
microscopic level.'>?? In particular, this method has been
successfully applied to frustrated square lattice systems>? and
to a variety of Cu*? compounds.”?%2* Therefore, we perform
band-structure calculations and evaluate individual exchange
couplings in (NO)Cu(NOs);. We find that the simple count-
ing of the bridging [NO]J* groups is an inappropriate ap-
proach because it does not regard the different geometry of
the superexchange pathways.”> Our calculations describe
(NO)Cu(NO;); as an essentially one-dimensional (1D) and
nonfrustrated system. This conflicting finding calls for recon-
sideration of the available experimental data.

The scalar-relativistic density-functional-theory (DFT)
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FIG. 1. (Color online) Crystal structure (top and bottom) and the
spin model (middle) of (NO)Cu(NOs);. The neighboring CuOy
plaquettes are connected via NOj triangles and form chains along b
(top). The chains are well separated by [NO]* cations (bottom). In
the top panel, the nearly overlapping NOj triangles lie in different
planes and remain disconnected (see also the bottom panel).

calculations were performed using the full-potential
FPL09.00-33 code.?®?” For the local-density approximation
(LDA), the Perdew-Wang parametrization® of the exchange-
correlation potential was chosen. LDA calculations were
done on a converged mesh of 1920 k points (588 points in
the irreducible wedge).

LDA is known to fail describing the insulating properties
of cuprates. Nevertheless, it provides reliable information on
the relevant orbitals and leading antiferromagnetic (AFM)
exchange couplings. Among others, magnetic excitations
have the smallest energy, and essentials of magnetism are
concealed in the close vicinity of the Fermi level €. A sharp
peak of NO states appearing at 1 eV above e is a peculiar
feature of (NO)Cu(NOs); related to the antibonding 7 states
of the [NO]* cation (two nearly degenerate orbitals for each
NO group). In other respects, the valence band of
(NO)Cu(NO;); comprises features typical for cuprates: it has
a width of about 5 eV and consists predominantly of Cu 3d
and O 2p states (Fig. 2). The well-separated density of states
for the antibonding Cu-O bands at ez has two distinct
maxima (Van Hove singularities), characteristic of a 1D be-
havior. Assuming the simplest nearest-neighbor chain sce-
nario, the width W of the antibonding band readily yields the
leading hopping term t=W/4=180 meV.

To account for all the possible exchange couplings in
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FIG. 2. (Color online) Top: the valence band of (NO)Cu(NO3)s.
The Fermi level e is at zero energy. Bottom left: the band structure
of the two-band dpo complex at g and the fit using the Wannier
functions technique. Bottom right: the orbital-resolved density of
states for the antibonding band.

(NO)Cu(NO3)3, we consider the valence bands in more de-
tail. The two-band complex at € is formed by o overlapping
Cu 3d,2_,2 and O 2p,, orbitals (Fig. 2, bottom right). The
strong hybridization of these orbitals allows to treat them
within an effective one-orbital model. The band structure
(Fig. 2, bottom left) exhibits the predominant dispersion
along X-S and Y-T'. This corresponds to the crystallographic
b direction and supports the proposed 1D scenario. To evalu-
ate the hopping terms, we fit the valence bands using Wan-
nier functions (WFs) (Ref. 29) based on Cu 3d,>_,» states
(Fig. 3).3° The perfect fit to the LDA band structure (Fig. 2,
bottom) justifies the WF procedure. This way, we obtain ¢
=150 meV for the leading nearest-neighbor intrachain hop-
ping and a small nonfrustrated interchain hopping ¢’
=17 meV (Fig. 1, middle). Other hoppings are below 10
meV. In particular, the previously proposed 7, (see Fig. 1)
appeared to be as small as 2 meV, disfavoring the model with
the frustrated interchain couplings. The couplings J and J’
form layers whereas the leading hopping in the perpendicular
direction is |, =6 meV.

FIG. 3. (Color online) Fragment of the Heisenberg chain. The
Wannier function for the Cu 3d,2_,> orbital is shown.
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In contrast to the apparent insulating behavior of
(NO)Cu(NO;); evidenced by the blue color of the crystals,’
LDA yields a metallic ground state. This shortcoming of
LDA originates from the well-known underestimate of strong
electronic correlations, intrinsic for the 3d° configuration of
the magnetic Cu*? ions. To restore the insulating ground
state, we add the missing part of correlations in two ways: (i)
by mapping the LDA band structure onto a Hubbard model;
(ii) by treating the correlations in a mean-field way via
the local spin-density approximation plus U approach
(LSDA+U) with the around-mean-field double-counting-
correction scheme.

Adopting the mapping procedure, we transfer the leading
hoppings onto a Hubbard model with the effective on-site
Coulomb repulsion U,y Here, the low-energy excitations
can be described by a Heisenberg model since the << U,
condition and the half-filling regime are both well justified
for undoped cuprates.’’ Assuming a typical value of
Uyp=4.5 eV,**323 we readily obtain the AFM part of
the exchange integrals using the expression of second-order
perturbation theory JfFM=4ti2/ U This way, we find
JAM=230 K and J'A™=3 K. The frustrating coupling
J?F M=0.04 K is negligible. The interlayer coupling is
J, =04 K.

As an alternative approach, we apply the LSDA+U
scheme to evaluate J and J’ since long-range terms are neg-
ligible as demonstrated above. The similarity of
(NO)Cu(NOs); to other Cu*? oxides allows to adopt the typi-
cal values of the Coulomb repulsion and exchange param-
eters U,=6.5+1 eV and J,=1 eV, respectively.* This pa-
rameter set yields accurate estimates of individual exchange
couplings for related Cu*> compounds.’*¥>33  For
(NO)Cu(NO3);3, we obtain the insulating ground state (band
gap E,=1.7 eV) with exchange couplings /=200%50 K
and J’ below 1 K. Therefore, the model and the LSDA+U
approaches consistently describe (NO)Cu(NO;); as a 1D
system with the leading exchange coupling of about 200 K
and the interchain coupling below 3 K.

The interchain coupling J' likely runs via the NO groups,
as evidenced by small tails of 7 NO molecular orbitals in
the Cu-based WFs (Fig. 3). Nevertheless, the hoppings de-
pend on the mutual orientation of the WFs, hence a simple
counting of the bridging NO units neglects a basic ingredient
of the superexchange mechanism. In contrast, our extensive
DFT calculations suggest J,<<J' and do not support the ear-
lier conjecture on the exact J'/J,=2:1 ratio.” In conflict with
Ref. 9, we find that (NO)Cu(NOs); is an essentially nonfrus-
trated 1D spin system. It is rather similar to other 1D Cu*?
compounds with CuO, plaquettes separated by nonmagnetic
groups. The J value of 150-250 K is typical for the Cu-O-
O-Cu superexchange, e.g., in the uniform-spin-chain com-
pounds M,Cu(PO,), (M=Sr and Ba).?*

In the following, we reconsider the experimental data for
(NO)Cu(NO3); in light of the nonfrustrated 1D spin model
suggested by the DFT calculations. We first discuss magnetic
susceptibility. The susceptibility curves were computed via
quantum Monte Carlo (QMC) method using the loop® and
worm algorithms, implemented in the ALPS simulation
package.’® We performed simulations for finite lattices with
periodic boundary conditions. The typical lattice size was
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FIG. 4. (Color online) Magnetic susceptibility (x) of

(NO)Cu(NO3); compared to different spin models: the uniform spin
chain, coupled uniform chains, the uniform chain with Ising aniso-
tropy [Eq. (1)], and the uniform chain with staggered anisotropy
[Eq. (2), A=0], see text for details. Experimental data are the scaled
ESR intensities from Ref. 9.

N=60-100 for 1D models and N=1500-2000 for the model
of coupled spin chains. Calculations for lattices of different
size showed negligible finite-size effects for the temperature
range considered. Regarding the experimental data, we first
discuss the temperature dependence of the electron spin reso-
nance (ESR) intensity that can be taken as a direct measure
of x.

The ESR data show a broad maximum at 7% =100 K.
In the uniform-spin-chain model, 7%, ~0.64J,>" hence
J=156 K. This value is in good agreement with our DFT
estimate of 150-250 K. However, the uniform-chain fit over-
estimates the susceptibility below 80 K (Fig. 4). To improve
the fit in the low-temperature region, several extensions/
modifications of the uniform-chain model are suggested.

First, the interchain coupling J' reduces quantum fluctua-
tions, thus leading to a lower magnetic susceptibility at low
temperatures. Indeed, we found a good fit of the experimen-
tal data down to 30 K with J'/J=0.4, J=150 K, and
g=2.13 (dashed line in Fig. 4). The value of J’ is, however,
far too large compared to the DFT estimate of J'/J=0.01.

At present, DFT calculations can provide reliable numeri-
cal estimates only for the case of isotropic (Heisenberg) cou-
plings. Therefore, anisotropic effects should be considered
“on top” of the isotropic, DFT-based model. Various simula-
tion techniques (e.g., QMC) are capable of including the an-
isotropy, thereby offering a possibility of a direct comparison
to experiments.

The symmetric (Ising/XY) anisotropy?®

H=J2[S1S5+ S!S+ (1 +A)S;S7] (1)
(ij) ' ‘

has pronounced effect on the low-temperature part of
the susceptibility curve. In particular, the Ising anisotropy
(A>0) opens a spin gap and reduces the low-temperature
susceptibility. Thus, we are able to fit the data down to 20 K
with J=95 K, A=1, and g=2.07 (solid line in Fig. 4).
Since experimental data for other Cu™ compounds suggest
A=0.2 (Refs. 39 and 40), the fitted value of A=1 looks
rather overestimated.
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Other anisotropy effects are the g-tensor anisotropy and
the antisymmetric Dzyaloshinskii-Moriya (DM) exchange.
Owing to the P2,/m symmetry of the (NO)Cu(NOj3); struc-
ture, the neighboring Cu atoms are imaged with the 2, screw
axis, leading to the possible staggered anisotropy of the g
tensor (according to Ref. 9, there is a sizable difference be-
tween the g-tensor components: g;=2.06 and g, =2.36). The
mirror planes are perpendicular to the b axis and run between
the neighboring Cu atoms, thus confining the DM vector to
be perpendicular to the b axis (i.e., to lie within the ac
plane). Further on, the 2, screw axis induces opposite DM
vectors on the neighboring bonds and leads to their staggered
configuration. Following the general framework developed
in Ref. 41, we describe the uniform chain with staggered
anisotropy using the Hamiltonian

H=J2[S;S;+ S!S} + (1 + A)S;s7]
Cij)

- huz S;C - hsE (_ 1)151:’ (2)

where the first term is the bilinear exchange with the sym-

metric anisotropy A [i.e., A from Eq. (1) modified by the
staggered anisotropy]. The effective uniform (h,) and stag-
gered (h,) fields depend on the applied external field (H) and
on the staggered anisotropy.

The general effect of the staggered anisotropy is the open-
ing of a spin gap and thus a reduction in the low-temperature
susceptibility for certain directions of the applied field.*! At

fixed A, the gap mainly depends on /. For simplicity, we fix

A=0 and fit the data down to 25 K with h,/J=0.15,
J=160 K, and g=2.06. The uniform component of the
field can be varied in a wide range, thus leaving freedom
for H and the staggered anisotropy parameters.*” Since
hy=H sin § and tan a=[D|/J (Ref. 41), we find H/J=0.13
that definitely exceeds the typical field value of 0.3 T in an
X-band ESR experiment. The |D| value is effective and im-
plicitly contains the staggered anisotropy of the g tensor
which is presently unknown.

We conclude that none of the anisotropy parameters can
be taken as a sole reason for the reduced susceptibility at low
temperatures. However, the combination of different
anisotropies slightly improves the situation and brings the

numbers closer to our expectations: A=0.5 and h,/J=0.06
(dashed line in Fig. 5). Nevertheless, the presence of such a
strong exchange anisotropy has to be challenged experimen-
tally.

Weak dimerization might be an alternative to the ex-
change anisotropy. Since exchange couplings are highly
sensitive to details of the crystal structure, a weak structural
change will readily open the gap and reduce the susceptibil-
ity owing to the alternation of the exchange couplings
along the chain. Experimental data are well fitted by an al-
ternating J—J" model®” with J=176 K, the alternation ratio
J"/J=0.87, and g=2.10 (solid line in Fig. 5). Although the
available structural data do not suggest the dimerization, we
are not aware of any structural studies below 160 K. More-
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FIG. 5. (Color online) Same as Fig. 4 for the uniform spin chain,
the anisotropic spin chain [Eq. (2), A=0.5, h,/J=0.06], and the
alternating spin chain. The inset shows bulk susceptibility (Ref. 9)
and the fit with Eq. (3). See text for details.

over, the nontrivial temperature dependence of the ESR
linewidth? might also be related to a structural change.

Trying to get further support for one of the above (rather
speculative) scenarios, we consider other experimental data.
Specific heat was reported in a narrow temperature range
only (1.8-10 K).? It shows a minimum around 5 K with an
increase toward lower temperatures interpreted as a Schottky
anomaly (although the characteristic maximum was not ob-
served) and a typical increase toward higher temperatures
due to the phonon contribution which is cubic in 7. Since
J=150 K, the magnetic specific heat will show a maximum
around 70 K,3” hence the experimental data in this tempera-
ture range (along with the proper nonmagnetic reference to
estimate the phonon contribution) could be helpful. Regard-
ing the Schottky anomaly, no indication of its intrinsic origin
has been given.’

In contrast to the specific heat, the raw magnetic suscep-
tibility data are very instructive. Owing to the huge impurity
contribution, the susceptibility maximum around 100 K is
hardly visible. This situation is very typical for spin-chain
systems, since 1D magnets are highly sensitive to impurities
(a single defect breaks the chain).* Following previous
studies,** we fit the data using the expression

X(T) = xo + Cimp/T+ Xehain(T), (3)

where X, accounts for core diamagnetism and Van Vleck
paramagnetism, Ci,,,/T is the Curie law to fit the impurity
contribution, and X.ui,(7) is the susceptibility of the uniform
spin chain.’” We find a remarkably good fit down to 2 K with
Xo=7.7X 107> emu/mol, Cimp=0.015 emu K/mol (4% of
spin-% impurities), J=150 K, and g=2.12. Since the same
model poorly fits the intrinsic susceptibility from ESR below
80 K (see Fig. 4), we are left with two options: (i) the im-
purity contribution is not properly described with the Curie
law (then, the origin of this unusual “impurity” contribution
is worth to unravel) or (ii) the ESR bears a systematic error
that causes the underestimate of y at low temperatures (prob-
ably, due to the separation of the intrinsic and impurity sig-
nals in the spectra). To resolve this puzzling issue, additional
experimental studies, such as susceptibility measurements on
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single crystals or nuclear magnetic resonance, are highly de-
sirable.

Finally, we would like to comment on the possible LRO
in (NO)Cu(NOs);. Although Ref. 9 claims the absence of the
LRO down to 2 K, we suggest a different estimate of
Ty<5 K since the upturn of the specific heat (Schottky
anomaly) may conceal the expected weak transition anomaly
below 5 K. The weakness of the anomaly is a natural conse-
quence of Ty<<J, which results in a significantly small
amount of entropy released at T). Further on, ESR intensities
diverge below 10 K and might also indicate the onset
of LRO. Our upper estimate of Ty=5 K corresponds to
Ty/J=0.03. We will show that such a low T is typical for a
1D system and should not be taken as a sole evidence of
magnetic frustration.

In (NO)Cu(NOs;);, uniform spin chains with J=150 K
are coupled by J'/J/=0.01 and J,/J=0.0025. Unfortu-
nately, the case of spatially anisotropic interchain couplings
has not been considered theoretically, yet. Assuming the
same interchain coupling J'/J=0.01 along the two direc-
tions, we arrive at Ty/J=0.021 (Ref. 44) which is already
below our upper estimate of 0.03.*> With proper accounting
for the spatial anisotropy, 7 should be even lower because it
is largely determined by the lowest interchain coupling J, as
the main obstacle for LRO. We conclude that the lack of
clear observation of LRO in (NO)Cu(NOs); results from the
pronounced one-dimensionality of the system. The low Ty
does not evidence the strong frustration. Moreover, the DFT-
based model approach accounts for all isotropic exchange
couplings and does not show the frustration.

The low Ty in (NO)Cu(NOs); can be compared to other
spin-% uniform-chain magnets. Weak interchain couplings of
J'/J=0.01 were previously observed in Sr,CuO; (Refs. 7
and 46) and Sr,Cu(PO,), (Refs. 24 and 47). In these
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compounds, the magnetic ordering temperatures are
Ty/J=2x1073 and 5X 1074, respectively, thus an ordering
temperature of (NO)Cu(NOj3); should be quite low and may
even lie below 2 K (~1072)).

In summary, DFT calculations suggest a consistent de-
scription of (NO)Cu(NOj); as a uniform-spin-chain system
with weak and nonfrustrated interchain couplings. The mag-
netic ordering temperature 7y,/J is predicted to be below
0.03, indicating that LRO could not be observed in previous
experiments. To find experimental signatures of the LRO,
low-temperature studies and sensitive experimental tech-
niques (such as muon spin relaxation) should be applied.
Regarding the behavior above 7y, the bulk magnetic-
susceptibility data follow the uniform-chain model, whereas
the intrinsic magnetic susceptibility measured by ESR shows
lower y below 80 K. We note that other spin-chain systems
also reveal puzzling behavior at low temperatures. For ex-
ample, Ref. 48 reports a complex ESR spectrum of
(6MAP)CuCl; which was previously known as a uniform-
spin-chain compound. To explain the experimental spectrum,
the authors of Ref. 48 had to consider a spin chain with
several inequivalent exchange couplings, although the struc-
tural data did not show any signatures of the distortion. It is
possible that numerous systems, assigned to the uniform-
chain model from bulk magnetic-susceptibility measure-
ments, are more complex than they appear. Further studies
should shed light to this problem.
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