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We propose a scaling hypothesis for pattern-forming systems in which modulation of the order parameter
results from the competition between a short-ranged interaction and a long-ranged interaction decaying with
some power � of the inverse distance. With L being a spatial length characterizing the modulated phase, all
thermodynamic quantities are predicted to scale like some power of L, L���,d�. The scaling dimensions ��� ,d�
only depend on the dimensionality of the system d and the exponent �. Scaling predictions are in agreement
with experiments on ultrathin ferromagnetic films and computational results. Finally, our scaling hypothesis
implies that, for some range of values ��d, inverse-symmetry-breaking transitions may appear systematically
in the considered class of frustrated systems.
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I. INTRODUCTION

The emergence of modulated phases is a general motive
in chemistry, biology, and physics.1,2 The modulated order
parameter may represent quantities as diverse as the spin
density,3–5 the charge density in any type of strongly corre-
lated classical or quantum system,2,6–8 the volume fraction of
diblock copolymers, the concentration of amphiphilic mol-
ecules and other chemical species,2,9 or dipolar bosons in an
optical lattice.10 However, modulated systems tend to show
common characteristics such as the morphology of the vari-
ous patterns and the occurrence of transitions among them,1

as in liquid crystals11 or two-dimensional melting
phenomena.12 This tendency to common behavior and the
scaling properties discovered recently in experiments on fer-
romagnetic ultrathin films13 with modulated magnetization
indicate that universal underlying principles possibly
exist.7,8,14

Here we consider a system embedded in a D-dimensional
space described by an order parameter which is a function of
d�D spatial variables. We refer to a situation in which a
modulation of the order parameter takes place due to the
competition between interactions of rather general types act-
ing at different spatial scales. Domains carrying alternating
signs of the order parameter thus appear. Calling L the linear
size of such domains, other possible characteristic spatial
scales of the domain pattern are assumed to be proportional
to L itself �see Fig. 1�. Alternatively, any other length scale
characterizing a domain pattern can be defined as L. To be
concrete, a typical pattern associated with a modulated order
parameter can be thought as made of, e.g., stripes in thin
films or lamellae in bulk materials characterized by the order
parameter alternating from one sign to the other when mov-
ing along one direction in space. L is in this case the width of
the stripes or the thickness of lamellae. Other possible ar-
rangements are bubbles or cylinders carrying one sign of the
order parameter embedded into a background of opposite
sign.2 In this case, L shall be the distance between the centers
of domains and the radius of each domain is assumed to be
proportional to L itself. Other patterns are possible—some of

them irregular2—but in the present paper all of them shall be
the result of the competition between a short-ranged interac-
tion, favoring a uniform order parameter, and a weak, but
long-ranged, frustrating interaction. We assume the long-
ranged interaction to decay with some power � of the inverse
distance. An example of such interactions is the Coulomb
interaction with �=1, generating the Coulomb frustrated
Ising ferromagnet �CFIF�.6 Similarly, the dipolar interaction
between spins, originating from magnetostatics, may pro-
duce the dipolar frustrated Ising ferromagnet �DFIF�.15 For
instance, thin films magnetized perpendicularly to the plane
can be represented with this model and an exponent �=3.

The outline of the paper is the following: in Sec. II, we
introduce the model Hamiltonian for general �� ,d� and a
coarse-grained version of it of the Landau-Ginzburg-Wilson
type. In Sec. III, we formulate a scaling hypothesis, which
consists in postulating that the spatial profile of the order
parameter is invariant under rescaling of the characteristic
length L. In Sec. IV, we discuss the consequences of this
scale-invariance hypothesis and show how the dependence
on L propagates to all the physical quantities with appropri-
ate scaling exponents; such exponents only depend on d and
�. When applied to the concrete experimental situation of
ferromagnetic ultrathin films, our scaling results agree with
experimental findings.13,16,17 In Sec. V, we show how the
Coulomb and the dipolar interaction in a slab reduce asymp-
totically to a form of the type considered here. In Sec. VI, we
provide some numerical confirmations of the validity of our
scaling analysis based on mean-field calculations and Monte
Carlo simulations. In Sec. VII, we discuss the stability of our
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FIG. 1. Sketch of different patterns with a characteristic spatial
scale L. The arrows indicate the process of rescaling them by a
factor u.
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results against a perturbing displacement field which, for in-
stance, destroys positional order by means of the Landau-
Peierls instability. Finally, in Sec. VIII, we propose the exis-
tence of a range of values �� ,d� for which anomalous re-
entrance phenomena involving inverse symmetry
breaking18–20 may occur systematically. The main features of
such processes, as they emerge from our model, are also
discussed in comparison with conventional symmetry-
breaking mechanisms.20–24

II. EFFECTIVE HAMILTONIAN

What we have in mind is a cubic lattice embedded in a
D-dimensional space. The lattice sites are occupied by Ising
variables �= �1, coupled by a short-ranged interaction of
strength J�0, which favors the same value of the variable
for nearest-neighboring sites. Considered alone, the coupling
J establishes the well-known Ising model on the lattice. In
addition, we introduce a weaker but long-ranged interaction
�of strength �� which favors opposite values of the Ising
variables between any two sites, including distant ones. The
long-ranged interaction is thus in competition with the short-
ranged �exchange� interaction. The strength of the long-
ranged interaction shall decay as some power � of the in-
verse distance between two sites. Finally, an external,
uniform field couples linearly with the Ising variables. The
external field is also in competition with the long-ranged
interaction as it favors a spatially uniform state. Experimen-
tally, the external field can be easily tuned—in a spin system,
for instance—against the long-ranged interaction to produce
transitions between different patterns until, at some critical
field, the uniform state is reached.13 The Hamiltonian de-
scribing this system reads

H = −
J

2 �
�i,j�

�i� j +
�

2 �
i�j

�i� j

�rij��
− h�

i

�i, �1�

where �i , j� means that the sum involves only nearest neigh-
bors. The remaining sum extends over all lattice sites in the
d-dimensional system. Hamiltonian �1� is suitable for
discrete-lattice calculations, e.g., mean-field calculations15 or
Monte Carlo simulations25 �see Sec. VI�. The scaling hypoth-
esis we would like to introduce is more transparent when a
coarse-grained, Landau-Ginzburg-Wilson �LGW� version of
the lattice Hamiltonian in Eq. �1� is used. Let the lattice
extend over macroscopic lengths 	 along d�D directions;
along the remaining �D−d� directions the system has a finite
thickness 
�	 and the scalar field takes uniform values.
The LGW-Hamiltonian proposed in Ref. 2 reads

L���x��,�0�T�� =
J

2

D−d�0

2�T�	 ����x���2ddx

− zJ
D−d�0
4�T�	 f���x���ddx

+
�

2

2�D−d��0

2�T�	 	 ��x����x���
�x� − x����

ddxddx�

− h
D−d�0�T�	 ��x��ddx , �2�

where x� � �x1 , . . . ,xd� is a vector in the d-dimensional space,
z is the number of nearest neighbors, and

f���x��� =
�2�x��

6
−

�4�x��
12

. �3�

All spatial lengths considered here are given in units of
the lattice constant a. The gradient term in the first line mim-
ics the short-ranged interaction; at low temperature, when
domain walls are sharp, it is inaccurate and a more suitable
expression exists.4 When one lets the long-ranged interaction
vanish �i.e., �=h=0�, for d�1 L produces macroscopic
phase separation2 with a spatially uniform order parameter
appearing below a critical finite temperature TC: �0�T��0
and ��x��=+1 or ��x��=−1, ∀x�. When ��0, we expect a
spatially nonuniform distribution of the order parameter �so-
called microphase separation, in opposition to macroscopic
phase separation8�: modulated patterns thus form with one,
or more, characteristic length scales. In this paper, we have
in mind the situation where J��, corresponding to concrete
experimental examples.4,13,15,26 Because in this case the char-
acteristic lengths of the resulting patterns, including, e.g., the
domain size and the radii of curvature of the domain walls,
are large compared to the lattice constant, the continuum
description is indeed appropriate. Note, however, that the
results we are going to derive are also confirmed by Monte
Carlo simulations performed on a discrete lattice for ratios
3J /�5 �see Sec. VI�, which suggests that their validity
is not restricted to the continuum description.

Modulated phases can also arise from competing short-
ranged interactions, as for the axial next-nearest-neighbor
Ising �ANNNI� model.27 Such modulated phases may share
some features with the Frenkel-Kontorova model,28 i.e.,
commensurate, incommensurate and devil-staircase phases
may appear.27 By varying the temperature it is possible to
induce transitions between different modulated structures.29

For specific lattice geometries and ratios of the strength of
competing interactions, the ANNNI model exhibits a so-
called disorder point:30 below a certain temperature TD two-
spin correlations decay monotonically while for T�TD they
decay in an oscillatory manner. The period of such an oscil-
lation may depend on the temperature �disorder point of the
first kind�—a feature which appears also in our model. A
similar change of behavior in spin correlations can be trig-
gered by an external field in noncollinear anisotropic spin
chains.31 The models listed above are different from the one
we consider here because there the competition occurs be-
tween short-ranged interactions of different sign or between
a short-ranged interaction and the applied field. Instead, in
Eqs. �1� and �2� the competing interactions act on entirely
different spatial scales.

The kernel G�� �x� −x���−� appearing in the coarse grained
functional must be considered as a distribution defined over a
set of test functions behaving properly for ��x�� , �x����→�. It is
locally integrable if �d. For ��d the distribution G� has
a singular behavior at x� =x��. In Appendix A, we show how
this distribution can be analytically continued to any real �
and find, for the physically well-defined kernel, the Fourier
transform
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G� =
1

�x − x���
=	 G��k��e−ik�·�x�−x���ddk . �4�

We will show that G��k��, up to logarithmic corrections for
special values of � �see Appendix A�, is an homogeneous
distribution, i.e., for any u real

G��uk�� = u�−dG��k�� . �5�

III. SCALING HYPOTHESIS

We now assume that �i� the scalar field—��x� ,L�
henceforth—is nonuniform and characterized by a typical
length scale L and �ii� ��x� ,L� is invariant with respect to a
rescaling of all lengths by some constant u

��ux�,uL� = ��x�,L� . �6�

These assumptions effectively restrict the microscopic con-
figurations which can be expressed through the scalar field
��x��; thus, the actual underlying hypothesis is that spin pro-
files fulfilling the property in Eq. �6� represent the physically
relevant configurations. Note that the ground-state spin con-
figuration of the Hamiltonian �1� falls in the class of func-
tions described by Eq. �6�, as proved rigorously for ��d and
d=1 in Refs. 14 and 32. The same authors suggest that this
property is probably true for any d.33 The latter statement is
supported by analytic calculations in which selected highly
symmetric configurations are compared and by several nu-
merical results.5,6 Our aim is to discuss some consequences
of the scaling hypothesis defined by Eq. �6�, and compare
them with experiments on magnetic films and numerical re-
sults. In Fig. 1 we sketch some examples of what we mean
by L: it can be the period of modulation in a stripelike pat-
tern �Fig. 1�a�� or the linear size of the unit cell for any
periodic pattern �see bubbles in Fig. 1�b�� or the characteris-
tic size of a black droplet in a white background �Fig. 1�c��,
etc. The effect on ��x� ,L� of rescaling all lengths by a con-
stant u is also sketched in Fig. 1. As a consequence of the
scaling hypothesis in Eq. �6�, the scalar field ��x� ,L� is in fact
a function of x� /L only. By substituting the variable y� =x� /L in
Eq. �2�, the Hamiltonian �per unit volume Vd�
D−d	d� as-
sumes the scaling form

����y��,L,T,h� = JL�J�0
2�T��J���y���

− zJL�f�0
4�T�� f���y���

+ gL�g�0
2�T��g���y���

− hL�h�0�T��h���y��� , �7�

where g=
D−d�. The four functionals read

�J���y��� = 
 L

	
�d	

−	/2L

	/2L

����y���2ddy

� f���y��� = 
 L

	
�d	

−	/2L

	/2L

f���y���ddy

�g���y�,y���� = 
 L

	
�d	 	

−	/2L

	/2L

��y����y���ddyddy�

�	 G��k��e−ik�·�y�−y���ddk

�h���y��� = 
 L

	
�d	

−	/2L

	/2L

��y��ddy �8�

and are independent of L in the thermodynamic limit
	→�, leaving the L dependence of ����y�� ,L� solely to the
prefactors of the type L�#, with a scaling dimension �# spe-
cific to each interaction. The scaling dimensions can be com-
puted explicitly

�J = − 1�− 2� �g = d − � � f = �h = 0. �9�

The value of �J=−1�−2� refers to sharp �extended� walls,
which are expected to be realized at low �high� temperatures.

Note that the scaling form of Eq. �7� is a consequence of
G��k�� being homogeneous, Eq. �5�, which is true for most
values of �. In some special cases, e.g., in the one-
dimensional lattice with Coulomb and dipolar interaction,
logarithmic corrections appear and must be considered ad
hoc.

IV. SCALING RESULTS

One possible way of obtaining results from the scaling
functional in Eq. �7� is using a variational approach. The
variational equation


����y��,L�

��y��

= 0 �10�

produces the equilibrium profile �̄L,T,h�y��, which, in virtue of
our scaling hypothesis, Eq. �6�, should be almost indepen-
dent of L. By this we mean that for any two values L and L�
the relative difference between the corresponding profiles
�̄L,T,h�y�� and �̄L�,T,h�y�� should be much smaller than the rela-
tive difference between L and L�. This is, e.g., the case for
the mean-field profiles plotted in Figs. 4�a� and 4�b� and
discussed in Sec. VI. The dependence of the solution, �̄, on
�L ,T ,h� is only parametric and results from the dependence
of the functional � on such parameters. Inserting �̄L,T,h�y��
into the Hamiltonian Eq. �7� leads to a Landau free-energy
functional ��L ,T ,h�. If the weak dependence of �̄L,T,h�y�� on
L is neglected, then ��L ,T ,h� depends on L only through the
prefactors with scaling dimensions given by Eq. �9� and
therefore scaling results can be immediately obtained. Typi-
cally, the solutions of the variational Eq. �10� are highly sym-
metric spin profiles which—in general—are not a realistic
representation of experimental patterns. However, in Sec.
VII we provide arguments that our scaling results are not
affected by fluctuations. Moreover, both experiments13 and
Monte Carlo simulations presented in Sec. VI confirm those
results for accessible observables related to L and selected
values of � and d. In the following, we list some scaling
results.
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1. We define the average characteristic length, L̄�T�, as the
solution of the equation ���L ,T ,h� /�L=0. From Eq. �7�,
L̄�T� scales as

L̄ � 
 J

g
��L̄

, with �L̄ =
1

d − � − �J
. �11�

Note that, in general, walls are very thin at low temperatures
where we expect �J=−1. At higher temperatures walls
broaden and �J crosses over to the value −2. This produces a
crossover of the exponent �L̄ when the temperature is raised.
Thus, in the limiting case considered in this paper, J�g, the
scaling Eq. �11� predicts a decrease of the equilibrium modu-
lation length with increasing temperature.15 Particularly
striking is the crossover �and the corresponding decrease of

L̄�T�� for the two-dimensional thin DFIF model, which has

effectively �=3, d=2, and 
� L̄ �see Sec. V�. This is a well-
studied model5,34 and has an experimental counterpart.13,35

For �J=−1 �T0�, we have �L̄=�, which suggests an ex-
ponential dependence on J /g at low temperatures. Detailed
calculations indeed confirm that the period of modulation of
a pattern that minimizes the energy in Eq. �1� diverges ex-
ponentially with J /g.4,8 This property holds true, e.g., for
stripe, checkerboard,5 and bubble36 configurations in line
with the scaling result of Eq. �11�. At higher temperatures,

the scaling exponent of L̄ approaches just one, showing that

L̄ scales linearly with J /g.15 For J�g, this implies that the
modulation length decreases by several orders of magnitude
with increasing temperature.13,15,34,35

Another important consequence of Eq. �11� is that a posi-
tive scaling dimension �L̄ is required in order for the modu-

lation length to be physically plausible, i.e., L̄�1, in the
limit J�g. This suggests a possible bound for the existence
of a modulated state. Indeed, we show in Appendix B that in
the limit J�g a modulated state is only stable for values of
� such that

� � d − �J. �12�

In Ref. 14 a rigorous stability line for any value of the ratio
J /g was derived for d=1 and T=0. For J�g, this rigorous
stability line converges toward the limit established by Eq.
�12� for �J=−1 �scaling exponent at T=0�. It is worth noting
that Eq. �12� allows for a curious phenomenon: As �J crosses
over from −1 to −2 when the temperature is raised, a range
of values of � exists for which a modulated phase might
become stable at finite temperatures while being forbidden in
the ground state. Something analogous occurs in the ANNNI
model where an antiferromagnetic long-range-ordered phase
can intervene between the ferromagnetic and the paramag-
netic phase when the temperature is increased for specific
lattice geometries and strengths of the competing
interactions.18,29,30,19

From the fact that �h appearing in Eq. �7� is zero one may

be led to conclude that L̄ is independent of h. In fact, this is
not exactly true because h affects �̄�y� ,L ,T ,h�. For the par-
ticular case of d=2 and �=3, ground-state analytic compu-
tations show that in a wide range of fields the characteristic

length L̄ is indeed only weakly dependent on h.13,36 How-

ever, close to the transition to the uniform state, L̄ develops a
singularity, which is evidently not captured by Eq. �11�. Ex-
perimental data obtained away from the singularity also con-

firm that L̄ is almost independent of h.37

2. In the absence of magnetic fields, the modulated state
realized at equilibrium has the important property that re-
gions with positive and negative sign of the order parameter
are perfectly balanced so that the asymmetry

Ā�T,h� � 
 1

	
�d	

−	/2

	/2

�̄�x�,T,h,L�ddx �13�

vanishes exactly at h=0. Ā�T ,h� is the total polarization of
the modulated system �divided by the volume of the system
and by �0�T��. Starting from a modulated phase in h=0, for
general d and �, when a small positive field is switched on
the average volume occupied by domains with �̄�x���0 will
increase at the expense of the volume of domains with
�̄�x��0. In small fields, this unbalance can be accomplished
by favoring microscopic configurations in which the domain
walls are slightly shifted without varying their number �pro-
portional to 1 /L� nor their shape. Formally, such changes
only affect the field-dependent and the long-range-interaction
terms of the functional in Eq. �7�. Consequently, the total
change of the functional �at least of the L-dependent part�
writes


� =
1

2

gL�g�0

2�T�� �2�g

�A2 �
A=0

�A2 − hL�h�0�T�A . �14�

Minimizing with respect to A, we obtain

Ā�h � 0,T� �
h

�0�T�L̄�T,h��g

�15�

or, for the corresponding susceptibility

�A�h = 0,T� �� �Ā

�h
�

h=0
�

1

�0�T�L̄�T,h��g

. �16�

Equations �15� and �16� contain a scaling prediction for mea-

surable quantities. When Ā is plotted in a coordinate space

�Ā ,T ,h� its values lie on a two-dimensional surface. How-
ever, according to Eq. �15�, such values should collapse onto

one single curve if Ā is plotted versus h / ��0L̄�g�. This data
collapsing and the corresponding scaling exponent
�g=d−� have been verified experimentally in Ref. 13 for

ultrathin magnetic Fe films on Cu ��=3, d=2, and 
� L̄�. In
Sec. VI, we will present Monte Carlo results that confirm the
validity of the scaling relation of Eq. �16� for d=1 and three
different values of �.

3. At some threshold value, generally dependent on T, the
external field �fourth term in Eq. �7�� produces a transition
between the modulated phase—characterized by some

L̄—and the uniform state.1,3,13,34 In fact, the external-field
energy, favoring a uniform state, is in competition with the
long-range interaction, which favors modulated patterns. At
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zero field, modulated configurations have a lower energy and

equilibrium patterns with Ā=0 are realized. However, a finite

field lowers the energy of other patterns with Ā�0 or that of

the uniform state �Ā= �1�. Whether a modulated pattern or
the uniform state is realized at equilibrium depends on the
balance between the energy of the long-ranged interaction,

which scales as �0
2L̄d−�, and the energy of the external field,

which scales as �0L̄0. Accordingly, we suggest that the tran-
sition field, ht, at which a crossover from a modulated to the
uniform phase occurs, should scale as

ht � �0�T�L̄�T,h��g−�h � �0�T�L̄�T,h��g. �17�

This equation states that, while the phase transition lines in
the h-T plane might have some curvature �typically they
have a domelike shape34�, they are straight lines when ht is

plotted as a function of �0L̄�g. This linear dependence and
the corresponding scaling exponent �g=d−� have been veri-
fied experimentally in ultrathin magnetic films.13 One re-
markable feature of the system investigated in Ref. 13 is that
d=2 and �=3 so that the scaling dimension �g is negative,

leading to ht��0 / L̄. As in the magnetically ordered phase

�away from the Curie temperature, TC� L̄ is typically decreas-
ing much more strongly than �0 for increasing T, having
�g0 implies that the transition lines in the h-T plane have
the shape of a funnel �see Fig. 2�b�� instead of resembling a
dome �Fig. 2�a��. This funnel shape, predicted by our scaling
hypothesis and verified experimentally,13 is anomalous with
respect to the traditional phase diagrams of modulated sys-
tems and allows for inverse symmetry breaking �ISB�. Keep-
ing in mind that the uniform phase has more symmetry ele-
ments than the modulated phase, a path in the h-T plane
through which the system passes from a modulated to the
uniform phase with increasing T corresponds to a symmetry
breaking �SB� process �circle in Figs. 2�a� and 2�b��. This is
the ordinary scenario in thermodynamic phase transitions.
Instead, when transition lines between a uniform and a
modulated phase display a funnel shape in the h-T plane,
paths associated with ISB processes are also possible �cross
in Fig. 2�b��. Some more comments on this important point
will be given in Sec. VIII.

4. An elastic constant used to characterize modulated mat-
ter is the compression modulus B�T� �Refs. 4 and 38� �also

called Young modulus39�. It typically measures the energy
cost associated with deviations from the equilibrium modu-

lation length L̄�T� and is defined as

B�T� ��L̄2�2��L,T�
�L2 �

L̄�T�
. �18�

B has also a scaling behavior, namely, it has the same scaling

dimension with respect to L̄ as ht:

B � g�0�T�2L̄�T��g. �19�

We are not aware of any direct measurement of B on
systems which can be modeled with the Hamiltonian �1�.
However, assuming the scaling Eq. �19� to be true, the tem-
perature dependence of B can be deduced from the knowl-

edge of �0�T� and L̄�T�. The latter quantities can be accessed
experimentally, e.g., by analyzing the domain patterns in ul-
trathin Fe films on Cu�001� �Ref. 16� ��=3 and d=2 giving

�g=−1� so that it is possible to derive Bexp= ��0
exp�2�L̄exp�−1

indirectly, see Fig. 3. Each data point corresponds to the
value of Bexp derived from one image. Within its error, the
sequence of points clearly shows an enhancement of Bexp

with increasing temperature �in agreement with the mean-
field calculation in Sec. VI�. From individual fits of the ex-

perimental �0
exp�T� and L̄exp�T� we can derive a smooth curve

for Bexp�T� in the same way, the solid line in Fig. 3. The
decrease in B�T� close to the experimental TC predicted in
this way is not supported by individual data points and must
therefore remain speculative at this stage. In the experiments
a transition from a less symmetric labyrinthine pattern to a
more symmetric stripe pattern �gray area in Fig. 3� is ob-
served for increasing temperature. The fact that Bexp also

h
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uniform

uniform
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uniform
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h

(a) (b)
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FIG. 2. Schematic phase diagrams in the h-T plane for �a� posi-
tive and �b� negative values of the scaling exponent �g as discussed
in the text. In the hatched area a modulated phase is expected and
the dashed arrows indicate possible paths referred to in the text.
Circles mark regular SB transitions, the cross in �b� marks ISB.
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FIG. 3. Bexp�T� obtained for an ultra-thin Fe film on Cu�001� by

using �0
exp and L̄exp as determined from scanning electron micros-

copy with polarization analysis �SEMPA� images in the scaling Eq.
�19�. The solid line results from individual fits to �0

exp�T� and

L̄exp�T�, respectively, and is a guide to the eye. The temperature
range with stripe domains is shaded. The two insets show represen-
tative SEMPA images of the labyrinthine and the stripe patterns.
The length of the white bar is 10 �m, the thickness of the film 1.95
ML.

SCALING HYPOTHESIS FOR MODULATED SYSTEMS PHYSICAL REVIEW B 82, 184409 �2010�

184409-5



increases with increasing T in the same region suggests the
existence of some relationship between the two phenomena.
A quantitative statement regarding such a relationship would
require a deeper theoretical and experimental characteriza-
tion of the specific system, which is beyond the scope of this
paper.

V. MAPPING OF TWO PHYSICAL INTERACTIONS
INTO G�

In this section we show that the Coulomb and dipolar
interactions take, asymptotically, the same form as
G��x� −x���, Eq. �4�, when the order parameter ��x�� is a func-
tion of two variables only. The system we consider consists
of a slab embedded in the real space �D=3�, extending to
macroscopic dimensions in the �x1 ,x2� plane and with finite
but variable thickness 
 in the remaining direction. Along the
latter direction, perpendicular to the plane of the slab, the
scalar field ��x�� is assumed to be uniform; as a consequence,
the problem is effectively two-dimensional �d=2�. For this
geometry, the dipolar �coupling constant �� and Coulomb
�coupling constant Q� interaction energies take the following
forms for any thickness 
:

G����� =
1

�
2	
0

�

cos�k� · ���
1 − e−
�k��

�k��
d2k , �20�

GQ���� =
2

�
2	
0

�

cos�k� · ���
 e−
�k�� + 
�k�� − 1

�k��3
�d2k

�� �x� −x�� being a vector in the plane of the slab. Here we
label the physical quantities corresponding to the dipolar and
Coulomb interactions with the relative coupling constants �
and Q, rather than with � �including the kernels G of the
interactions�. Using the results of Appendix A, we are able to
evaluate some limiting cases




L
→ � G�

��k�� �
1


2�k��
⇔ G�

����� �
1


2����
,




L
→ 0 G�

0 �k�� � − �k�� ⇔ G�
0 ���� �

1

����3
,




L
→ � GQ

��k�� �
1


�k��2
⇔ GQ

����� � −
1



ln������ ,




L
→ 0 GQ

0 �k�� �
1

�k��
⇔ GQ

0 ���� �
1

����
, �21�

where L is the characteristic length introduced before. Two
important statements are contained in Eqs. �21�: �i� in both
limits, thin �
 /L→0� and thick �
 /L→�� slabs, the kernels
of the Coulomb and dipolar interactions behave like G�����
for large ���� and �ii� the effective � can be varied by changing
the thickness 
.

The mapping stated above allows extrapolating the scal-
ing results, deduced for the functional Eq. �2�, to systems

interacting via Coulomb or dipolar interaction within a slab
geometry. In Table I we summarize some scaling results
computed with the suitable � and for d=2 specific to this
case. The appropriate values for � can be read out from the ��
dependence on the right-hand side of the Eqs. �21�. Note that
the thin �
 /L→0� CFIF and the thick �
 /L→�� DFIF have
the same effective �=1. The scaling exponent �L̄ is given in
Eq. �11�, the two values of �J corresponding to zero and high
temperature, respectively. �g=d−�, appearing in Eqs.
�15�–�17� and �19�, is, instead, independent of T. As pointed
out already in Sec. IV, for the thin DFIF �L̄→� when T
approaches zero while �L̄=1 at high temperatures. This fact

implies that L̄�T� varies over several orders of magnitude for
realistic values of J and g.

VI. NUMERICAL CHECKS OF THE SCALING
HYPOTHESIS

In this section we present some numerical checks of the
scaling hypothesis that we performed for different values of
� using the mean-field approximation, for a two-dimensional
system, and the Monte-Carlo method for a spin chain.

A. Mean-field calculation for a striped pattern in d=2

In the following, we present some mean-field results ob-
tained for the systems introduced in Sec. V. Thus in this
paragraph we always deal with d=2. The mean-field ap-
proximation consists in solving the variational equation


L���x��,�0�T��

��0��x���

= 0. �22�

The solution �0�T��̄L,T,h�x�� is then used to compute other
physical quantities. In the present case, the functional to be
minimized is the one in Eq. �2� with the exact kernels of Eqs.
�20� for the Coulomb and dipolar interactions in place of
1 / �x� −x����. � is equal to Q and � for the Coulomb and dipo-
lar interactions, respectively �the definition of Q and � is
given in footnote 26�. We used the Bragg-Williams form for
the entropy in place of f���x���, given in Eq. �3�, to obtain
accurate results at low T. In the present calculation we set
h=0. The variational problem defined by Eq. �22� differs
from the one defined in Eq. �10� because in the former the
functional L is minimized with respect to the total scalar

TABLE I. In the first column the effective � is given for the
CFIF and DFIF at limiting thicknesses: 0 ��� stands for 
 /L→0
�
 /L→��. The corresponding scaling exponents �L̄ and �g are
given in the other columns. �J=−1 at T=0 and �J=−2 at high T.

�

�
L̄

�J=−1
�

L̄

�J=−2
�g

1
3−�

1
4−� 2−�

DFIF ��� 1 1
2

1
3 1

DFIF �0� 3 � 1 −1

CFIF ��� 0 1
3

1
4 2

CFIF �0� 1 1
2

1
3 1
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field �0��x��. We further restricted the configurations ��x�� to
a monodimensional modulation along x1, i.e., a striped pat-
tern. We computed the order parameter, �0, and its profile,
�̄L,T,0�x1�, which minimize the functional in Eq. �2� for a
striped structure of arbitrary modulation period L �solution of

Eq. �22��. The equilibrium period of modulation, L̄, can then
be computed as the value which minimizes L�L ,T ,0�
=L��̄L,T,h�x1� ,L ,T ,0�. This allowed us to verify numerically
the scaling exponents �L̄ reported in the first two columns of
Table I for T=0 ��J=−1� and at the mean-field Curie tem-

perature ��J=−2�. Within the numerical accuracy we found
complete agreement. The curves in Fig. 4�a� show some pro-
files �̄L,T,0�x1� that are solutions of the variational equation

L���x1� ,�0�T�� /
��0��x1��=0 but do not minimize—in
general—the functional L�L ,T ,0� with respect to L �for a
striped structure in the thin DFIF�. The black curve corre-

sponds to the equilibrium L̄�T�. The same profiles are plotted
in Fig. 4�b� as a function of y1=x1 /L, instead of x1 �Fig.
4�a��. Indeed, from Fig. 4�b�, the shape of �̄L,T,0�y1� turns out
to be almost independent of L. This fact confirms that the
scaling invariance proposed in Eq. �6� is a plausible a priori
assumption. Figure 4�c� shows the numerical B�T� �black
curve�, calculated using the definition of Eq. �18� within the

mean-field approximation for the striped thin DFIF �
� L̄�.
The displayed behavior virtually coincides with the scaling
prediction �light curve�, obtained dividing the calculated

�0
2�T� by the calculated L̄�T�, in line with the corresponding

scaling exponent in Table I; the values of �0 and L̄ at differ-
ent temperatures are produced by the same calculation as B.
The numerical instability observed at low T in Fig. 4�c� is
directly related to the fact that domain walls become sharper
and sharper as T→0; consequently, the continuum approach
used to perform the present calculation becomes inappropri-
ate �an analogous mean-field calculation within a discrete-
lattice approach is reported in Ref. 15�. Note how the anoma-
lous growth of Bexp�T� shown in Fig. 3, obtained from
experiments on ultrathin Fe films, is well reproduced by our
mean-field calculation. The same numerical check was per-
formed for all the other cases reported in Table I. Figure 4�d�
shows the almost perfect coincidence between the numerical
B�T�, computed directly from Eq. �18�, and the scaling pre-

diction, Eq. �19�, for the thick DFIF �
� L̄�. In the inset, the
same quantities are compared for the CFIF both in the thin

�
� L̄� and thick �
� L̄� limit finding the same excellent
agreement. Remarkably, B�T� decreases smoothly with tem-
perature and does not show any anomaly in all cases apart
from the thin DFIF.

B. Monte Carlo calculation for a one-dimensional system

In order to provide a further numerical check of the scal-
ing hypothesis we performed Monte Carlo simulations with a
standard Metropolis algorithm. The simulated system con-
sists of N Ising variables �i= �1 aligned along a chain and
ruled by the discrete Hamiltonian of Eq. �1�. For computing
the susceptibility we have used the variance of the magneti-
zation which, in this particular case, is expressed as

��T� =
1

NT
�
i,j

��i� j� �23�

since the mean value of the magnetization is zero. In spite of
the lack of a magnetically ordered phase for d=1, we expect
that the computed susceptibility behaves like �A�T�, Eq. �16�,
as long as the correlation length is significantly larger than
the characteristic period of modulation and the number of
domain walls is nearly constant. Under these assumptions, a
series of alternating domains is formed and the fluctuation of
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FIG. 4. �Color online� Mean-field results. �a� Profile of the order
parameter in a thin DFIF �
=1, � /J=0.08� for different values of L

�0.7L̄, L̄, and 1.3L̄�. �b� Profiles from �a� as a function of x1 /L. �c�
Numerical B�T� for the thin DFIF �black curve, 
=1, � /J=0.08�
together with the scaling result �light blue line�. �d� Numerical and
scaling curves B�T� for the thick DFIF �
=200, � /J=0.08, main
plot� and the thin �
=1� and thick �
=200� CFIF �Q /J=0.0001, top
and bottom insets, respectively�. At low temperatures domain walls
get sharper and sharper thus numerical results become unstable �see
the text�. In �d� the numerical curves and the scaling result are
almost indistinguishable. Light orange circles on the vertical axis
indicate the values of B at T=0 obtained analytically.
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the magnetization is mainly due to the domain-wall displace-
ments. This is equivalent to saying that domain-wall nucle-
ation practically does not occur. By counting the number of
domain walls during the susceptibility measurement we
could confirm that the nucleation of new domain walls is a
very rare event over the time spanned in our simulations and
for the system sizes, N, we used. For the specific case
�d=1�, the scaling behavior we want to check is

��T� � L̄�−1. �24�

Experimentally,13 the scaling behavior was tested at fixed

�=3, d=2, and for small h by recording L̄—while varying
the temperature—and checking that �A is a linear function of

1 / L̄�T��g. In Monte Carlo simulations, we chose a different

route. L̄ can be defined from the position of the highest peak
in the structure factor.25 When the system is heated at a slow
constant rate ��T /MCS=10−5, time measured in MC steps�
starting from different configurations at T=0, a set of meta-

stable states with a well defined L̄�T� is produced. In this

context, the meaning of L̄�T� is thus different from the rest of
the paper: it represents a time average for metastable states

rather than an equilibrium period of modulation. In Fig. 5, L̄
is reported for �=1.5; different symbols correspond to dif-
ferent initial configurations. Periodic patterns of alternating
domains with positive and negative magnetization were cho-
sen as initial states �solid dots in Fig. 5 indicate the size of

those domains, L̄�0��. The different curves meet at T /�
0.5, indicating that the period of modulation equilibrates
only at higher temperatures. This behavior reminds some
features of glassy transitions predicted to occur in analogous
frustrated systems.40

The set of metastable states with different L̄ generated at
low temperature following this procedure can be used to
verify the scaling law in Eq. �24�, see Fig. 6. The upper panel
of Fig. 6 reports the susceptibility as a function of tempera-
ture, obtained for different initial configurations, for �=1.5

and 2.5. As for L̄�T� �Fig. 5�, different initial configurations
give different values of the susceptibility at a given tempera-
ture �for clearness, we do not indicate � obtained for differ-
ent initial configurations with different symbols�. In the bot-
tom panel of Fig. 6, the susceptibility data of the upper panel

are plotted as a function of L̄�T�, including values for �=2.
The log-log scale reveals that the power-law behavior ex-
pected from scaling is indeed well-obeyed in the considered
range of temperatures. The solid lines represent the scaling
prediction, Eq. �24�, with an adjusted multiplicative constant
to fit the vertical shift. We remark that the scaling law just
confirmed turns out to be fulfilled even when the system is

locked in metastable states, where the value of L̄ strongly
deviates from its equilibrium average.

VII. STABILITY AGAINST FLUCTUATIONS

The variational approach introduced in the previous Secs.
IV and VI produces a nonvanishing—typically highly
symmetric—equilibrium profile �̄L̄,T,0�x�� of the order param-
eter at any TTC, such as the monodimensional order rep-
resented by a striped structure. This result implies the exis-
tence of positional long-range order. Yet one-dimensional
modulated order described by �̄L̄,T,0�x1�—such as the one
represented by stripes—is strictly speaking forbidden in the
thermodynamic limit by the Landau-Peierls instability.4 It is
therefore reasonable to ask whether those fluctuations which

L
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FIG. 5. �Color online� Monte Carlo simulations for a spin chain

�d=1� with �=1.5. L̄�T�, obtained form the position of the peak of
the structure factor, as a function of T. Different symbols corre-
spond to different initial configurations of a perfectly periodic pat-

tern with period L̄�0�=5–50 �solid dots on the T=0 axis�.
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FIG. 6. �Color online� Monte Carlo simulations. Susceptibility,
��T�, for spin chains �d=1� with different �. Above, ��T� is plotted
versus T for �=1.5 �squares� and 2.5 �triangles�. Below, ��T� is

plotted versus L̄�T� in a log-log scale for �=1.5 �squares�, 2
�circles�, and 2.5 �triangles�; solid lines correspond to the scaling

predictions ��T�=C�L̄�T���−1, Eq. �24�, with C adjusted parameter.
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destroy the positional monodimensional order at finite
temperatures—not included in the variational approach—
might also affect the results following from the scaling hy-
pothesis, Eq. �6�. In the following, we test the stability of our
scaling hypothesis against small �elastic� deviations from the
strict monodimensional order in a two-dimensional system
�in-plane coordinates x1 ,x2�. Suppose that the variational
mean-field equations have found an equilibrium stripe profile
�̄L̄,T,0�x1� corresponding to a certain equilibrium stripe width

L̄ �to simplify the notation, here we drop the dependence on
all the parameters but x1 in �̄�. Let us slightly modify this
one-dimensional profile �̄�x1� along the direction of modula-
tion, x1, and along the direction perpendicular to it, x2, into
�̄�x1−�k1,k2

cos�k1x1�cos�k2x2��. This replacement establishes
an elementary excitation displacing domain walls along the
x1 coordinate and bending them along the x2 direction and
accounts for the experimental fact that, e.g., stripes are never
perfectly straight in real systems at finite temperatures.41

These are the excitations that prevent one-dimensional posi-
tional long-range order in d=2 and ultimately invalidate
the mean-field approach in this respect.2–4 One can show
that the perturbed functional ���̄�x1−�k1,k2

cos�k1x1�
�cos�k2y2�� , L̄ ,T ,0�, expanded up to the order �k1,k2

2 , writes

as the sum of the original one ���̄�x1� , L̄ ,T ,0� plus correc-
tions arising from the short-ranged and long-ranged interac-
tions

�� = �k1,k2

2 J

8

	�0

2�k1
2 + k2

2�	 ��x1
�̄�x1��2dx1

+ �k1,k2

2 �

4

2�	�0

2	 	 �̄�x1��̄�x1��	 q2eiq�x1−x1��

��G����q + k1�2 + k2
2� + G����q − k1�2 + k2

2�

− 2G��q��dqdx1dx1�. �25�

The fluctuation correction, Eq. �25�, can be evaluated, up to
the order k1

nk2
m, n+m=4 using the equipartition theorem4

��k1,k2

2 � �
T

	2g�0
2�F1���q�−2k1

2 + F2���q�−4k2
4�

�26�

�F1��� and F2��� being some constants� and summing over
�k1 ,k2�. Equation �26� describes the spectrum of fluctuations

for q�2� / L̄. As �̄�x1� is periodic with period L̄ by defini-

tion, the integral �¯dq is nonvanishing only for q�2� / L̄,
thus one can essentially identify q with any Fourier compo-
nent of the profile �̄�x1�. The sum over �k1 ,k2� takes into
account all fluctuations with wavelength larger than the natu-

ral cut-off L̄, namely, �k1 ,k2�1 / L̄. After treating the fluc-
tuation corrections with this procedure, one recovers an ef-
fective monodimensional functional in which the
contribution of both the short-ranged and the long-ranged
interactions have, to leading order, the same scaling behavior
as the functional in Eq. �7�, albeit with modified coupling
constants

J � J�1 + O
T

J
��

g � g�1 + O
T

J
�� .

�27�

This allows us to conclude that the scaling results are not
affected by the presence of this kind of fluctuations at finite
temperature. In particular, we expect �g and the scaling di-

mension with L̄ of any quantity not to be changed by such
small perturbations.

A further argument validating the concept of a stable equi-
librium modulation length is a kind of Ginzburg-Landau cri-

terion measuring ��L− L̄�2� / L̄2. Using the scaling functional
of Eq. �7� in the vicinity of the putative equilibrium stripe
width

��L,T� = ��L̄,T� + �L − L̄�2� �2��L,T,0�
�L2 �

L̄

�28�

the scaling property

� �2��L,T�
�L2 �

L̄

� g�0
2�T�L̄�g−2 �29�

and the equipartition theorem, we obtain

��L − L̄�2�

L̄2
�

TL̄−�g

Vdg�0
2�T�

. �30�

The latter expression diverges only in the vicinity of TC,

because of the vanishing �0�T� �remember that L̄ obtained
from the variational approach is finite for T�TC �Ref. 15��.
Accordingly, L̄ remains a well-defined quantity almost over
the entire temperature range where �0�T� is finite. In the
vicinity of TC, for �=3 and d=2, the mean-field

approximation17 predicts L̄�T�= L̄�TC�+L1�1−T /TC�2 and
�0�T���1−T /TC�� with �=1 /2. In ultrathin Fe films on
Cu�001�, when approaching the paramagnetic phase from

lower temperatures, L̄�T� is found to obey the mean-field
behavior reported above; remarkably, in the same tempera-
ture range �0�T� does not show the mean-field critical expo-
nent, i.e., ��1 /2 �see Fig. 2c in Ref. 13�.

In summary, the Landau-Peierls instability destroys long-
range positional stripe order but the loss of order proceeds in
such a way that the modulation length and its relationship
with other observables remain meaningful also at finite tem-
peratures. This last statement is supported by Monte Carlo
results for spin chains presented in Sec. VI and previously.25

VIII. CONCLUSIONS

We have presented a scaling procedure that is generally
applicable to any pattern-forming system. This procedure al-
lows rewriting the Hamiltonian �2� as a functional of scaling-
invariant scalar fields with coupling constants rescaled by
appropriate powers of some emerging characteristic spatial
scale L. In virtue of this scaling hypothesis, the temperature

dependence of L̄ �expectation value of L� propagates in a
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nontrivial but predictable way to any observable. The conse-

quences of this scaling relations can be dramatic because L̄
may vary by several orders of magnitude, as in the thin
DFIF. Our theoretical predictions are confirmed by a number
of experimental and computational results �see Secs. IV and
VI�.

One implication of the scaling analysis is the existence of
a class of systems, defined by the inequality

d  � � d − �J �31�

showing some anomalous physical behaviors. The thin DFIF
and an equivalent model of Coulomb-frustrated phase
separation8 belong to this class. In the range of values of �
defined by the inequality in Eq. �31� two remarkable effects
may occur.

First, as the modulation length decreases with increasing
temperature, the compression modulus B may increase with
temperature according to Eq. �19�. The class of matter de-
fined by the inequality in Eq. �31� exhibits a state of poten-
tially anomalous compression modulus in which, e.g., it be-
comes more difficult for the system to accommodate disorder
involving deviations from the equilibrium modulation length
when the temperature is increased; the system becomes less
responsive to fluctuations at higher temperatures. This be-
havior is at odds with what normally happens. In fact, tradi-
tional elastic constants are, in the harmonic approximation,
temperature independent and the small correction due to an-
harmonic contributions typically soften them with increasing
temperature.42 For the thin DFIF, we tentatively associated
this hardening of the compression modulus, B, with the re-
entrance of stripe order during pattern transformations.16 Al-
though we do not know how B relates to the patterns, we
suggest that our results indicate the need of refining the vari-
ous scenarios for topological phase transitions12 to take into
account the role of anomalous behavior of elastic constants.

Second, the scaling hypothesis, Eq. �6�, predicts that lines
marking the transition between two different phases on the
h-T plane have the shape of a funnel rather than of a dome
�like in traditional phase diagrams�. This anomalous topol-
ogy has an important consequence. The vast majority of
phase transitions in condensed matter, particle physics, and
cosmology proceeds by a mechanism known as symmetry
breaking �SB�.20–23 As pointed out in Sec. IV and sketched in
Fig. 2, only SB transitions are compatible with a domelike
phase diagram:1–4,8,12,43,44 the phase outside the dome �high T
or high h� has full rotational and translational symmetry
while the region enclosed by the dome boundaries corre-
sponds to a phase with less symmetry elements. Thus, the
degree of symmetry of two different phases involved in a
transition can only be reduced by lowering the temperature.
This rule, governing the ordinary scenario of thermodynamic
phase transitions, can be violated when a phase diagram dis-
plays a funnel shape and inverse symmetry breaking �ISB�
transformations may also occur20,21 �see Fig. 2�b��. Such
transitions, though rarely, have been indeed observed in con-
densed matter physics.16,19,45–47 The experimental phase dia-
gram of ultrathin Fe films on Cu�001�, a model system for
thin DFIF ��=3 and d=2�, shows the funnel shape predicted
by our scaling hypothesis.13 Along some specific paths on the

h-T plane a SB transition from a uniform pattern to a striped
phase—which breaks both the full rotational and transla-
tional symmetry—is observed upon lowering the tempera-
ture; when the temperature is further lowered, the following
ISB processes are also encountered: �i� a stripe-to-bubble
phase transition, which restores the rotational symmetry and
�ii� a bubble-to-uniform phase transition, which restores the
full translational symmetry. These experimental observations
strongly support our scaling hypothesis.

In conclusion, our scaling hypothesis predicts that the
functional in Eq. �2� is compatible with both SB and ISB
processes. Note that the functional discussed in this paper is
fundamentally different from the one described by recent
models introduced to explain ISB anomalies in condensed
matter physics.19,45 In particle physics and cosmology, a
model of ISB based on a multicomponent scalar field has
been proposed in the context of unresolved fundamental
problems such as the CP violation during baryogenesis, the
inflation of the universe or the formation of cosmological
defects.20,48–52 Here, instead, we always deal with a single
component scalar field. Another remarkable difference with
respect to current models of ISB lies on the fact that whether
the Hamiltonian in Eq. �1� can produce SB or ISB processes
just depends on d and �, not on the particular choice of the
coupling constants or on some ad hoc assumptions. We can
state therefore that, when competing interactions are in-
volved, SB and ISB must be treated on equal footing: there
is, in principle, no a priori predominance of SB processes.
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APPENDIX A: FOURIER TRANSFORM OF THE
KERNEL G�

Integrals of the type

	
Rd

1

�r���
��r��dV �A1�

are well defined within the theory of distributions.53,54 The
set of test functions describing the scalar field ��r�� is sup-
posed to be well behaved for �r��→�. The distribution 1 / �r���
is locally integrable for �d. It can be continued analyti-
cally to ��d provided the test functions �and a sufficiently
large number of their derivatives� are taken to be vanishing
at r�=0.53 This can be performed by appropriate subtraction.53

For instance, in the range d��d+1 we can replace
��x����x��� / �x� −x���� by − 1

2 ���x��−��x����2 / �x� −x����. This corre-
sponds to eliminating the �unphysical� singularity of the ker-
nel G���x� −x���� at x� =x��. Notice that the following results do
not depend on how exactly the test functions are made to be
vanishing �introduction of a cutoff, range of the cutoff,34

etc.�. In the range d−1
2 �d there exists an analytic Fourier

transform

1

�2��d	 1

�r���
eik�·r�dV , �A2�

which amounts to53
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G��k�� =
1

2��d/2

�
d − �

2
�

�
�

2
� �k���−d, �A3�

�with � being the Euler gamma function�. The question
arises about the Fourier transform of the �subtracted� distri-
bution outside the range of validity of Eq. �A3�. As shown,
e.g., in Refs. 53 and 54, one can continue the right-hand side
of Eq. �A3� to any value of � to obtain the Fourier transform
of the subtracted distribution provided the analytical continu-
ation is well defined. However, the right-hand side of Eq.
�A3� is ill-defined for �=−2l and �=d+2l, l�N0. For these
values the Gamma functions entering Eq. �A3� have poles.
Thus, for these special values of �—some being physically
relevant, as pointed out in the paper—the Fourier transform
must be evaluated ad hoc. One can immediately recognize
that54

G−2l�k�� = �− ��l
�k�� . �A4�

Both G� and G−2l are homogeneous distributions.
The case �=d+2l is more cumbersome and the outcome

depends on the exact definition53,54 of the distribution 1 / �r���.
We compute Gd+2l�k�� in spherical coordinates �dV
�rd−1drd�, d� being the infinitesimal solid angle in d�2
dimensions�. Performing the integral over the angular vari-
ables leads to

Gd+2l�k� =

�
2l + 1

2
�

2d−1��d+1�/2�
2l + d

2
�	

cos�kr�
r2l+1 dr . �A5�

We treat the radial integral, extending from 0 to �, as a
distribution and the integral

	 �	 cos�kr�
r2l+1 dr���k�dk �A6�

is evaluated through repeated integration by parts. The parts
integrated out are forced to vanish by assuming that the test
functions ��r� and a sufficient number of their derivatives
vanish at r=0 so that we can write

	 cos�kr�
r2l+1 dr =

�− 1�l

�2l�!
k2l	 cos kr

r
dr

=
�− 1�l

�2l�!
k2l	 ln�r�sin�kr�kdr =

�− 1�l

�2l�!
k2l�− ln k� .

�A7�

Summarizing, we get

Gd+2l�k�� =
2�− 1�l

�d/22d+2l�
2l + d

2
�l!

�k��2l�− ln�k��� , �A8�

which can be continued to d�1. This distribution contains a
logarithmic part and is therefore not exactly homogeneous.
Notice that some authors53,54 add an extra term ��k��2l in Eq.
�A8�, depending on their definition of the distribution
1 / �r��d+2l. By eliminating the parts integrated out we do not
obtain such a term.

APPENDIX B: STABILITY OF THE MODULATED PHASE

For the stability analysis we need to compute the com-
pression modulus B�T� rigorously, i.e., beyond the varia-
tional approach. A rigorous thermodynamic treatment of the
functional ����y�� ,L ,T ,h� defines the functional ��L ,T ,h� by
means of the generalized Hellmann-Feynman theorem,55

which equates the derivative of the ��L ,T ,h� with respect to
the parameter L with the functional average over all configu-
rations ��y�� of the derivative of ����y�� ,T ,L ,h� with respect
to L

���L,T�
�L

� � �

�L
�����y��,L,T,h���

��y��
, �B1�

� ¯ ���y�� �

	 D��y�� ¯ e−Vd�����y��,L,T,h��/T

	 D��y��e−Vd�����y��,L,T,h��/T
�B2�

�with kB=1�. The characteristic length L̄ is defined as the
solution of the equation ���L ,T ,h� /�L=0. The compression
modulus B�T�, see Eq. �18�, is computed accordingly

B�T� = L̄2�� �2

�L2����y��,L,T,h��
��y��
�

L̄

−
1

T
L̄2��
 �

�L
����y��,L,T,h��2�

��y��
�

L̄

. �B3�

The scaling analysis, applied to Eq. �B3�, leads to

B�T� � L̄2J�O��g/J��2−d+��/�d−�−�J�+1�

−
J

T
O��g/J��2−2d+2��/�d−�−�J�+2�� . �B4�

The positivity of B is a necessary condition for the stability
of the modulated state. In the limit g /J→0, positivity of B
requires the exponent of the first term to be smaller than the
exponent of the second �always negative� term, i.e., Eq. �12�,
�−d−�J.
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