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Analysis of collective spin-wave modes at different points within the hysteresis loop
of a one-dimensional magnonic crystal comprising alternative-width nanostripes
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The Brillouin light-scattering technique has been applied to study collective spin waves in a dense array of
dipolarly coupled NigyFe, stripes of alternating widths, during the magnetization reversal process. Both the
saturated “ferromagnetic” state, where the magnetizations of wide and narrow stripes are parallel, and the
“antiferromagnetic” state, characterized by an antiparallel alignment of the static magnetization in adjacent
stripes, have been analyzed. The experimental data provide strong evidence of sustained collective excitations
in the form of Bloch waves with permitted and forbidden magnonic energy bands. The measured frequencies
as a function of the exchanged wave vector have been satisfactorily reproduced by numerical simulations
which enabled us to calculate the spatial profiles of the Bloch waves, showing that some of the modes are
preferentially localized in either the wide or the narrow stripes. We estimated the expected light-scattering
cross section for each mode at different magnetic ground states, achieving a good agreement with the measured
intensities. The alternating-width stripes system studied here represents a one-dimensional artificial magnonic
crystal with a complex base and can be considered as a model system for reprogrammable dynamical response,
where the band structure of collective spin waves can be tailored by changing the applied magnetic field.
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I. INTRODUCTION

Brillouin light scattering (BLS) has proven to be a very
powerful technique for direct measuring of the dispersion
characteristics of magnons on periodic structures.' Ordered
arrays of magnetic stripes with micrometric width served as
model systems to shed light on the properties of spin-wave
excitations in laterally confined magnetic elements. In nu-
merous previous studies, magnetic excitations spectra have
been measured in the case of noninteracting magnetic nano-
elements, i.e., with negligible dipole-dipole interaction, re-
vealing spin-wave modes standing along in-plane element
sizes.>?

Later, experimental and theoretical investigations were
performed on arrays of either closely spaced stripes sepa-
rated by air gaps*”’ or alternated stripes of two different
magnetic materials in direct contact.3-10 All these systems
are examples of one-dimensional (1D) magnonic crystals
(MCs) where dipole-dipole interaction between stripes leads
to the appearance of collective spin-wave modes propagating
through the artificial crystal with oscillating and periodic fre-
quency dispersion. Bands of allowed magnonic states are
alternated with forbidden zones or band gaps. Therefore
MCs are analogous to photonic crystals in optics'! but spin
waves at microwave frequencies, rather than light, are ex-
ploited to carry information.'? Since the wavelength of spin
excitations are much shorter than those of light in the giga-
hertz range, MCs offer better prospects for miniaturization at
these frequencies with the advantage that frequency position
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and width of the band gap are tunable by the applied mag-
netic field.

A peculiar property of magnetic systems is the possibility
of switching between several magnetic ground states by sim-
ply changing either the magnitude or the direction of the
applied magnetic field. For instance, the magnetic order may
not coincide with the geometrical one, giving rise to repro-
grammable (reconfigurable) magnetic ground state.!313
However, in all previous BLS studies of collective spin
modes in stripes arrays,*~ only the saturated state with equi-
librium magnetization pointing along the stripes length has
been considered. Thus the magnetic order for the investi-
gated system coincided with the geometrical one.

In this work, we exploit BLS to investigate the evolution
of collective spin-wave excitations on a 1D magnonic crys-
tal, characterized by a complex unit cell, during the magne-
tization reversal process, encompassing both ferromagnetic
(F) and antiferromagnetic (AF) magnetic ground states. The
spin-wave frequencies have been measured as a function of
the exchanged wave vector for a number of external field
values within the hysteresis cycle. Numerical simulations are
then performed to reproduce both the band structure and the
cross section of the collective modes.

II. EXPERIMENTAL DETAILS

The sample investigated in this study consists of a peri-
odic array of L=40 nm thick NigyFe,, nanostripes fabricated
on a silicon substrate using deep ultraviolet lithography.'®

©2010 The American Physical Society
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FIG. 1. (Color online) MOKE hysteresis loop for the sample
(full dots). The open dots refer to the minor loop along which we
performed BLS measurements, in correspondence of the four posi-
tions indicated by the stars. The lower inset shows the atomic force
microscopy image of the stripes array, together with the reference
system (the z axis is pointing out of plane), the direction of the
applied field H, and the direction of the spin-wave wave vector k in
BLS measurements.

Each period consists of two stripes with different widths,
w,=330 nm and w, =900 nm, alternating in the array, as
shown in the atomic force microscopy image presented in the
inset of Fig. 1. The edge-to-edge spacing between stripes is
A=70 nm and the structure period is a=w,+w,,+2A
=1370 nm, corresponding to a Brillouin zone boundary of
m/a=2.3%10* rad/cm. The total length of the stripes is 4
mm so that negligible demagnetizing field is expected when
they are longitudinally magnetized.

BLS spectra of the magnetic excitations were recorded by
using a Sandercock (3+3)-pass tandem Fabry-Perot interfer-
ometer in the backscattering configuration. 200 mW of laser
light (wavelength A=532 nm) from a solid-state laser were
focused through a camera objective (f-number 2 and 50 mm
focal distance) onto the sample surface. This leads to an
illuminated area of about 30X 30 um?. A reversible mag-
netic field H, was applied in the sample plane along the
stripes length (y direction) and perpendicular to the incidence
plane of light (Voigt geometry). Measurements were per-
formed for different values of the incidence angle of light
(), corresponding to different values of the transferred wave
vector k=(4/\)sin(6) along the x direction (as shown in the
inset of Fig. 1).

III. EXPERIMENTAL RESULTS AND QUALITATIVE
DISCUSSION

A. Magnetization curve

The magnetization reversal mechanism for the sample un-
der investigation has been extensively studied in Ref. 16.
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Here we briefly recall the main features of the magnetization
curve (Fig. 1) measured by magneto-optic Kerr effect in the
longitudinal configuration with the external field H, applied
along the stripes length (y direction). This corresponds to the
stripes easy magnetization direction. The M-H loop is char-
acterized by a double step process due to the distinct mag-
netization reversal of the nanostripes with different
width.'-!® As the field is reduced from positive saturation
(Region I, F state) and reversed, a drop in magnetization,
associated with the magnetization reversal of the family of
wider nanostripes, occurs between about —40 and —90 Oe
(Region II). This magnetization drop is proportional to the
volume fraction of stripes which reverse their magnetization
direction (w,,/w,+w,,, i.e., 75% for our stripes array) and is
in good agreement with the experimental result. Then a pla-
teau is observed until the external field reaches about
—140 Oe (Region III, AF state) where a second jump is seen
which can be attributed to the reversal of magnetization in
the narrower stripes (Region IV). This second jump is less
sharp because intermediate states can be stabilized by dipolar
interaction as far as clusters of stripes are switching and also
because of the unavoidable presence of structural imperfec-
tions. Eventually, a reversed saturated state is attained for
H,<-220 Oe (Region V).

Note that in Fig. 1 we also show a measured minor hys-
teresis loop where it is seen that, coming from positive satu-
ration, it is possible to attain the AF state for H,=—130 Oe
and this ground state remains stable if one comes back to
zero field. This procedure has been exploited to prepare the
system in the AF ground state at remanence.

B. BLS incidence-angle-resolved measurements

To study the characteristics of collective modes of the
whole array their frequency was measured as a function of
the exchanged wave vector k, along the direction perpendicu-
lar to the stripes (x direction). Figure 2 shows representative
sequences of BLS spectra as a function of the incidence
angle, for four different values of the external field, namely,
H,=+130 Oe, +0 Oe (this means zero field reached from
+130 Oe), —130 Oe, and -0 Oe (this means zero field
reached from —130 Oe). Note that, as inferred from the hys-
teresis loop shape, for the two former field values the mag-
netizations of both wide and narrow stripes are parallel (F
state) while for the two latter values of the applied field the
two families of stripes are antiparallel to each other (AF
state), as sketched in the auxiliary diagrams of Figs. 1-3. For
all the field values one sees that there are peaks which first
increase their frequency and then decrease, and there are
peaks with the opposite frequency variation. The oscillation
amplitude (frequency width of the magnonic band) is more
pronounced for the lowest frequency mode and decreases for
the highest modes. This is in agreement with the prediction
based on the modes’ dipole (stray) fields outside stripes'® and
suggests that what we observe in Fig. 3 is the dispersion of
collective Bloch waves, already seen in other studies.®™ In-
deed, the periodicity in the k space for the dispersive modes
matches the width of the first Brillouin zone (27/a=4.6
X 10* rad/cm) for this 1D magnonic crystal (note that here
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FIG. 2. (Color online) Experimental BLS spectra for k values
and different applied fields. In the spectra of the left panels
(H,=+130 and +0 Oe) the stripes are coaligned while in those of
right panels (H,=—130 and —0 Oe) the magnetization in neighbor-
ing stripes is antiparallel. The notations +0 Oe and —0 Oe indicate
that the zero field is reached from +130 Oe and —-130 Oe,
respectively.

the periodicity in both the real and the reciprocal space does
not change passing from F to AF state, different from what
was observed in the case of arrays of stripes with identical
width'3). It is noteworthy that the intensity of the peaks
changes with the angle of incidence, as seen in Fig. 2. More-
over, there is quite a strong difference in the peak intensity
for the two sets of spectra recorded at +0 or —0 Oe, which
only differ in the relative orientation of the two families of
stripes. For example, the peak at 6.7 GHz which is observed
at #=16° for H,=—0 Oe is completely absent in the corre-
sponding spectrum at H,=+0 Oe. This represents a clear
evidence of the collective nature of the detected modes since
it is clear that if the stripes were noninteracting, the spectra
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FIG. 3. (Color online) Sequence of measured (points) and
calculated (lines) dispersion curves for different applied fields.
(a): H,=+130 Oe; (b): H,=+0 Oe; (c) H,=-130 Oe, and
(d) H,=—0 Oe. Full dots (bold lines) indicate the peak with the
largest intensity in experimental (calculated) spectra. The shadowed
areas correspond to the first two forbidden band gaps.

recorded in absence of the external field have to be the same
for either parallel or antiparallel orientation of the magneti-
zation in adjacent stripes.

IV. QUANTITATIVE INTERPRETATION OF THE DATA
A. Theoretical approach

To achieve a quantitative interpretation of the frequency
and the intensity of collective excitations in the stripes array,
we use the theory developed in Ref. 7, which assumes a long
periodic magnetic order on the array. Based on Floquet
(Bloch) theorem, dynamic magnetization for a collective
Bloch wave can be written as

i, (x,z)exp(ikpx). (1a)

Here kg is the Bloch wave number for the mode, x is the
mode propagation direction in the array plane, and z is the
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out-of-plane coordinate. The periodic Bloch function
i, (x,2) =1y (x+a.2), (1b)

where a is the arrays periodicity, describes the mode profile
in the reduced zone scheme.*!%20

The equations in Refs. 4 and 19 allow treatment of
present cases of both coalignment (FM state) and antialign-
ment (AF state) of static magnetization in neighboring
stripes. Indeed, the dynamic magnetization for the array
obeys the Landau-Lifschitz magnetic torque equation, which
for our system can be cast in the form

—iom(x,z) == {[M(x) +m(x,2) | X [H+h(x,2)]}, (2)

where w is the precession frequency. vy is the gyromagnetic
coefficient, and M is the equilibrium magnetization, with |M|
equal to the film saturation magnetization M. The equilib-
rium magnetization depends on the position along the array
periodicity x. It may be either coaligned with the axis y
which is along the stripes or antialigned to it. The same
applies to the internal static magnetic field H which is also
applied in the array plane along the stripes. For instance, for
the positive saturation for all stripes the projection of the
static magnetization on the axis y,

M,(x)=M, (3a)

and the static-field projection is H,=H,. For the experimental
situation H,=—130 Oe, one has

H,=-130 Oe

and

M (x inside wider stripes) =— M,
{ it pes) (3b)

M,(x inside narrower stripes) =M.

In both cases in the gaps between stripes M, (x)=0 (this is
how the gaps are defined in this model).

As M and H are along y, the small linear dynamic mag-
netization component m has two components: one in the
array plane (m,) and one perpendicular to the array plane
(m.). This spatially inhomogeneous precessing magnetization
gives rise to an effective field h which in our case of free
oscillations consists of an effective exchange field

h,.=aV’m, (4)

exc

where « the exchange constant and of a dynamic dipole field
h, which is described by the magnetostatic equations. Solu-
tion of the magnetostatic equations is expressed in terms of a
Green’s function of dipole field,

hdk(x,z):J Glx—x'z-z")m(x' .2 )dx'dz’ . (5)
S

The integral is taken over the area S of cross section of the
array in the x-z plane. Expressions for the components of the
Green’s function in the form which is the most suitable for

numerical calculations can be obtained from the result in
Ref. 21,
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(6b)

where é=x—x' and {=z-7'.

The physical meaning of the expressions above is the
stray field of a magnetic stripe located at the position (x’,z").
The stripe is infinitely long along y, infinitely thin along x,
and has a thickness Az along z. The field is averaged over the
width Az of the cross section of a similar infinitely thin and
infinitely long stripe located at (x,z) [stripe edges have co-
ordinates (x,z—Az/2) and (x,z+Az/2)]. This Green’s func-
tion is derived from the Green’s function of the dipole field
produced by a pointlike magnetic dipole G, g(r,r’)

1o 9 1 LR
==4r a8 o’ where «,B are x,y,z. The derivation is
straightforward and consists in integration of the original
Green’s function over y’, z’, and z in the respective limits.

The formulation [Eq. (6)] is very convenient as in numeri-
cal calculations instead of taking the limit Az—0O one
chooses Az equal to the discretization step along the array
normal (axis z) and takes the values of the functions in the
square brackets as approximations to the Green’s-function
components. Note that the expressions [Eq. (6)] are singular
at (¢=0,¢=0). However the singularity is of a weak logarith-
mic type and can be eliminated by taking an improper double
integral from —Ax'/2 to Ax’/2 and from —Ax/2 to Ax/2.
The easiest way to take this integral is evaluating it numeri-
cally, by using standard methods of evaluation of improper
integrals. This integration results in a field of an infinitely
long rod of a rectangular cross section Ax X Ay at a distance
V& +s? from its axis. The field is averaged over a rectangular
cross section with the same area. In this formulation calcu-
lation of the total dipole field of dynamic magnetization is
reduced to summation of fields produced by such rods.

Equations (2)-(6) form a homogeneous system of inte-
grodifferential equations,

iom = wyF(x) m + wMF(x)aI:m + wy,

0 1‘
-1 0
XF(x)G(x-x',z—-7) ® Fx"Y)m(x',z')=0. (7)

mX

m, 1> F('x) =My(-x)/Mss wH(x)= yHy('x)7 Wy
=yM,, L=313z*+#/dx* is a differential operator which fol-
lows from Eq. (4), G is the Green’s function [Egs. (5) and
(6)], and ® denotes the convolution operation.

One sees that the collective-mode eigenfrequency w plays
the role of the eigenvalue of the operator on the right-hand

Here m=
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side of Eq. (7). The vector eigenfunctions of the operator are
then respective eigenprofiles of dynamic magnetization. The
solution for Eq. (7) is given by Eq. (1). On substitution of
this solution into Eq. (7) one obtains an equation for

IﬁkB(x,z). The new eigenfunctions are IﬁkB(x,z), L takes the

form &?/dz%+ &/ x>~k and instead of G one has

©

> Glx—x' - na)exp[— iky(x — x' — na)lexp(- |na/l,).

n=—00

(8)

While deriving Eq. (8) we took advantage of translational
symmetry of the solution along x [Eq. (1b)]. This approach
corresponds to the standard formulation of dispersion in pe-
riodic media in the reduced zone scheme,*!*2 where the
area of definition for the integrodifferential operator reduces
just to one structure period which makes it suitable for nu-
merical treatment.

While deriving Eq. (8) we also phenomenologically intro-
duced the coherence length [, for collective modes.”!? (It is
convenient to express the coherence length in a number of
lattice constants.) This parameter is completely phenomeno-
logical and is justified in the following way. In our experi-
ence the theory usually overestimates the frequency width of
the magnonic zones or real manonic crystals (see Fig. 6 in
Ref. 5). The equations above do not contain any fitting pa-
rameter to adjust the width of the magnonic zones while
keeping all the other characteristics of the collective-mode
dispersion the same. On the other hand, numerically the de-
crease in the zone width can be obtained by truncating the
series in Eq. (8) before the series properly converges. There-
fore one may suppose that the discrepancy is an artifact of
numerical calculation and arises from the well-known prop-
erty of bad convergence of the dipole sums. However, it is
not the case of Eq. (8): truncation of this particular sum at
n=*10 and n=*50 gives results which overlap with
graphical accuracy.

Therefore we believe that experimentally measured dis-
persion is always smaller than calculated because of imper-
fectness of the real magnonic crystals. Some deviation from
perfect periodicity, such as slightly varying stripe widths,
slight variation in the stripe positions on the lattice, and
rounded up stripe edges may reduce dipole coupling of very
distant neighbors. The introduced parameter /. accounts for
this reduced dipole coupling by effectively truncating the
series in Eq. (8) earlier.

As in our previous works, in this work the eigenvalue-
eigenfunction problem is solved numerically. Representing
the structure period in the form of the two-dimensional (2D)
stack of the rods transforms the operator [Egs. (7)] into a
matrix. The eigenvector/eigenvalue problem for the matrix is
solved using the complex QR algorithm.?? This is made for a
number of Bloch wave numbers ky across the first two Bril-
louin zones for the magnonic crystal.

We divide the structure period into 64 rods along x (Ax
=21 nm) and 9 rods along the thickness z (Az=4.4 nm).
This ensures error in frequency below 200 MHz, which is
better than the experimental accuracy. (Increasing Ax by 2
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times reduces the frequency for the fundamental mode by
300 MHz.) A decrease in Ax by two times changes the fre-
quency by just 10 MHz. Importantly, in both cases the dis-
persion curve is moved up or down as a whole but its slope
which determines the width of the fundamental magnonic
band does not vary with graphical accuracy.

B. Comparison between measured and calculated
dispersion curves

The curves reported in Fig. 3 are the result of our calcu-
lation of the dispersion curves (w vs k) for the collective
excitations on the stripes array. We first performed a best fit
of the experimental data for H,=+130 Oe to the curves cal-
culated assuming that magnetization in all stripes on the ar-
ray is aligned with the applied magnetic field and that the
stripes are magnetically saturated. From this procedure, we
extracted the following material parameters for the collective
excitations:’ saturation magnetization 47M =7800 G, gyro-
magnetic coefficient y=27X2.8 rad/us, and collective-
mode coherence length equal to 4.5 structure periods."”
These values of parameters were also used in the numerical
calculations for the other field values [Figs. 3(b)-3(d)]
achieving a good agreement with the experimental data at
any field value.

In order to analyze in more details the dispersion curves
of Fig. 3, it is very useful to illustrate the spatial profiles of
the different modes. These are obtained as the eigenfunctions
of the same integrodifferential operation used to calculate the
modes eigenfrequencies (see above).

C. Illustration of the calculated mode profiles

In Fig. 4 we show the mean value for both components of
vector ﬁikB(x,z) over z as a function of x, for the four differ-
ent values of the external field H, used in the experiment:
+130, 40, =130, and -0 Oe (the meaning of +0 and -0 Oe
is the same as in the previous section). The discrete modes
are labeled according to the integer index n=0,1,2,...

First a general comment on the mode profiles. Physically
the collective modes represent coupled standing-wave reso-
nances of the so-called Damon-Eshbach (DE) type waves in
a continuous magnetic film.?? This wave has a surface char-
acter and the waves propagating in different directions are
localized at the opposite film surfaces (the out-of-plane wave
number k, is imaginary). In the confined geometry of the
stripe this effect of surface localization results in the fact that
the wave is not completely standing. There is some circula-
tion of amplitude around the perimeter of the stripe cross
section. This is clearly seen from 2D profiles of the phase of
the complex amplitude of dynamic magnetization. The closer
to the stripe upper (z=40 nm) or lower (z=0) surfaces the
larger is the portion of the travelling wave in the total energy.
However, overall this portion is small and most of the reso-
nance energy is contained in the standing wave.?* Let us now
proceed to the main discussion. We start with a comment on
the behavior of the lowest frequency mode (n=0). First one
notices that when the stripes are in the F state (H,=+130 and
+0 Oe) the sign of both the in-plane and the out-of-plane
components of the dynamical magnetization are the same in
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FIG. 4. (Color online) Calculated mode profiles for the three
lowest modes (n=0, n=1, and n=2) at the same field values of the
previous two figures. Solid lines: in-plane component of the dy-
namic magnetization ;- ,; dashed lines: out-of-plane component
Mg, The values averaged over the structure thickness L, i.e.,
along z, are shown.

both wide and narrow stripes. This means that the magneti-
zation precession is in phase in the two families of stripes.
However, at H,=—130 and -0 Oe, when one has to deal
with the AF state, the sign of the out-of-plane component in
narrow and wide stripes is opposite. This is due to the fact
that in this case the sense of precession of magnetization in
narrow stripes is opposite to those in wide stripes. (This situ-
ation is similar to the exchange coupled bilayer films, see
Fig. 2 in Ref. 25). For instance at H,=—130 Oe, for the
lowest frequency mode (n=0) the in-plane components n’ika
of my for the wider and the narrower stripes are in phase but
the out-of-plane components ﬁisz are in the antiphase. For
the first higher order mode (n=1) the situation is opposite:
the out-of-plane components my,, are in phase and the in-
plane components 7, o are in antiphase. Now, since 71, -
> My, (due to a strong ellipticity of precession magnetiza-
tion in Permalloy) one may consider the lowest mode
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(n=0) as an analogue of the fundamental acoustic mode for
the doublet, and the first higher order one (n=1) as its fun-
damental optic mode, whose amplitude of precession is con-
siderably larger in the narrower stripes than in the wider
ones. (Note however that at H,=+130, +0, and =0 Oe the
fundamental optic mode coincides with the n=2 mode.)

This may be explained by the fact that, given the consid-
erable width difference between the stripes, the lowest reso-
nant eigenfrequency for uncoupled narrow stripes is higher
than for uncoupled wide ones. Therefore, when the stripes
are interacting one may expect that the lower frequency
(acoustic) mode of the doublet formed from the fundamental
modes for uncoupled stripes of both types (fundamental dou-
blet) will be characterized by a larger amplitude of preces-
sion in the wider stripes, and the upper frequency (optic)
mode by a larger amplitude (i.e., by larger localization of the
amplitude of oscillation) in the narrower stripes. We checked
this idea by making calculations for different values of the
interstripe distance A. It was found that with increase in A
the dipole coupling decreases and the acoustic (optic) mode
for the doublet gradually transforms into the fundamental
mode for uncoupled wide (narrow) stripes, which confirms
this idea.

Considerable amplitude localization in narrow stripes is
clearly seen in Fig. 4 for the fundamental optic mode (recall
that it corresponds to n=1 at H,=—130 and n=2 at the other
field values). Instead, for the fundamental acoustic mode (n
=0) the amplitude localization in wide stripes is less pro-
nounced since it is clear that the impact of the larger stripes
onto magnetic dynamics in the narrower ones is much more
pronounced than the impact of the narrower ones onto the
wider ones.

Remarkably, the considerable localization of the ampli-
tude of the optic mode in narrower stripes explains the im-
portant difference in frequencies for this mode for H,=
+130 and —130 Oe. In the former case this mode is posi-
tioned between 7 and 8 GHz, and in the latter case it is
situated between 6 and 7 GHz. The reason for this downshift
can be found in the fact that for H,=+130 Oe the magneti-
zation of narrow stripes is coaligned with the applied field
while for H,=—130 Oe it is antiparallel to the applied mag-
netic field so that the frequency for the optic collective mode
drops significantly. As a consequence of the above downshift
of the n=1 mode, it is seen in Fig. 3 that the amplitude of
the main forbidden band gap is significantly reduced at H,
=-130 Oe.

Finally, it is worth noticing that the frequency of this
mode (as well as for all the other modes) for H,=+0 and
—0 Oe is practically the same. This evidences that the con-
tribution of the out-of-plane component of dynamic magne-
tization to the collective dipole field of the array is negligible
due to large ellipticity of precession. Thus the in-plane com-
ponent of dynamic magnetization, only, is responsible for
formation of the collective dynamics.

As a final remark about the measured mode frequencies,
for the case of AF magnetic ground state (H,=—130 and
—0 Oe), there are some extra points in Fig. 3 at low fre-
quency, below the n=0 mode. We attribute their presence
and the increased scattering of the experimental data to the
magnetic disorder on the array during the reversal process. A
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detailed study of the effect of disorder during reversal will be
the object of a separate forthcoming work.

D. Comparison between measured and calculated
BLS cross section

One interesting experimental evidence which can be ob-
served in the sequences of spectra of Fig. 2 is that the rela-
tive intensity of the detected peaks is strongly dependent on
both the ground state of the magnetization and the exchanged
wave-vector value. In Fig. 3 we reported as full points the
frequency of the most intense peak in each spectrum. We
then took advantage from the calculated mode profiles illus-
trated in the previous section to estimate the expected inten-
sity of the BLS peaks thanks to the simple model of BLS
response proposed by Stashkevich ef al. in the Appendix of
Ref. 26. According to this model, one has to consider two
effects which are relevant for determining the intensity of
each BLS peak: the conservation of the wave vector and the
magneto-optical interaction. (We do not include the contri-
bution from the density of magnon states which is related to
the steepness of the dispersion slope?’ into this simple cal-
culation.)

The conservation of the wave vector implies that the BLS
intensity of each eigenmode collected at some transferred
wave number k is proportional to the squared modulus of the
Fourier component with the same value of Fourier wave
number of the complete eigenprofile of dynamic magnetiza-
tion (Fourier-component consideration). It follows that al-
lowing kg to take values outside the first Brillouin zone per-
mits an easy calculation of both the mode dispersion and the
amplitude of the respective Fourier component of the dy-
namic magnetization.”’ In fact, the Fourier component for a
transferred wave vector k=kp equals to the mean value of
ﬁkB(x,z) along x over one structure period. For simplicity we
neglect the decay of the light intensity across the element
thickness (along z). Then the BLS response for a mode is
proportional to the mean value of the vector ﬁkB(x,z) both
across the sample width and the structure period. The
Fourier-component contribution of the n=0 acoustic mode is
the largest in the first BZ while the n=1 mode dominates in
the second BZ, etc. This tendency of a prevailing nth mode
in the nth—1 BZ is clearly observed in the experiment when
one studies the F state (H,=+130 and +0 Oe), as seen in the
upper panels of Fig. 3. However, a similar analysis of the
data for the AF state (H,=—130 and -0 Oe) reveals a differ-
ent behavior. Before explaining this difference let us con-
sider the magneto-optical grounds of BLS process (magneto-
optical consideration). In fact, at normal incidence (k=0) the
in-plane component of dynamic magnetization does not con-
tribute to the BLS cross section at all [see Eq. (2) in Ref. 28].
This means that the BLS intensity depends on the out-of-
plane component of dynamic magnetization Mg s solely. As
one can see from Fig. 4, the ellipticity of precession ¢,
= |n~1ka/ n’ikBZ is about 5 and 3 for n=0 and n=2, respectively.
Therefore one may expect a dramatic change in intensity
with the incidence angle, when magnetization vector pre-
cesses in different senses in stripes of different type. It is a
straightforward procedure to calculate the relative intensities
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FIG. 5. (Color online) Comparison between experimental BLS
spectra at k=0 and calculated BLS intensity for the four field values
used in previous figures. The calculated intensity of each peak is
represented by a red bar (placed in the position of the calculated
mode frequency) whose height corresponds to the calculated cross
section for the corresponding mode.

using the expressions in Ref. 26. The only parameter needed
is the complex permittivity of the material at optical frequen-
cies. We assume that for Permalloy (NigoFe,) it is the same
as for Nickel: e=—5+12i (refractive index: n=2+3i).

The results of our calculations are shown by the bold lines
in Fig. 3. Each bold curve indicates the mode with the most
intense BLS response for a particular transferred wave num-
ber k. Moreover, in Fig. 5 we compare the calculated inten-
sities for the first four modes with the experimental spectra
for the most relevant and simple case of normal incidence
(k=0).

As stated above, one sees that the theory correctly pre-
dicts that for k=0 and the F ground state (H,=+130 and
+0 Oe in Figs. 3 and 5) the largest BLS response is for the
n=0 fundamental acoustic mode while for the AF state the
intensity of the same mode for k=0 is considerably smaller
than those of higher order modes. In fact, from Fig. 4 one
sees that the z component of the net dynamic magnetic mo-
ment is considerably smaller for the fundamental acoustic
mode than for the fundamental optical mode, resulting in a
lower intensity for the former mode (n=0) with respect to
the latter (n=1 for H,=—130 Oe and n=2 for H,=—0 Oe).
However, as follows from the theory in Ref. 26, with in-
crease in the incidence angle the contribution from the large
in-plane component 7, should increase and the fundamen-
tal mode should become visible. This is confirmed by our
calculations and is clearly seen in our experimental data
(Figs. 2 and 3).

184408-7



TACCHLI et al.

In the centre of the second BZ (k=27/a), where magne-
tization profiles are the same as for kz=0, both the “Fourier-
component” and the “magneto-optic” considerations lead to
a dominating cross section for the mode with the antisym-
metric profile, which also has different numbers n for differ-
ent H, values: n=1 for H,=+130, -0, and +0 Oe but n=2
for H,=—130 Oe (see Fig. 4).

Two important deductions can be drawn from the above
consideration. (i) The small intensity for the fundamental
acoustic mode (n=0) for the AF state for the normal inci-
dence is the clear signature of the strong dynamical dipole
coupling between stripes since only phase locking of dy-
namic magnetization in the narrower stripes to the one in the
wider stripes may produce the small intensity seen for this
mode in the AF state. (ii) The difference in intensities for the
fundamental and the first higher order mode can be used to
probe the ground state of an array of dynamically dipole
coupled elements. The best illustration for this conclusion
comes from direct comparison of the data for H,=+0 and
-0 Oe in Fig. 5.

V. CONCLUSION

We have experimentally studied collective spin-wave ex-
citations of a dense periodic array of dipolarly coupled mag-
netic stripes of alternating width. This is a prototype of a
one-dimensional magnonic crystal, where the ground state
and the consequent dynamic response are field controlled. In
the saturated F state the Brillouin light scattering response in
Voigt geometry had the form of a number of discrete peaks.
Periodical variation in peaks frequencies as a function of the
exchanged wave vector k suggested strong dipole coupling
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of the stripes and formation of travelling collective excita-
tions on the arrays. As usually, the largest BLS intensity for
small k values was observed for the fundamental mode of the
collective excitations

Upon reversing the applied magnetic field, an AF state,
characterized by an antiparallel alignment of the static mag-
netization in the adjacent stripes, was formed due to the dif-
ferent coercivity of the NigyFe,, stripes having different
width. In contrast to the F state, in the AF state and in the
small-angle incidence conditions the response for the higher
order fundamental optic mode dominated in the BLS inten-
sity spectra. Our numerical simulations showed that the de-
creased amplitude for the fundamental acoustic mode is a
clear signature of the strong dynamic dipole coupling on the
array inside the hysteresis loops. This shows that collective
spin-wave excitations can be used as a probing tool of mag-
netic order periodicity inside the hysteresis cycle. Further-
more, it was found that the forbidden band gaps can substan-
tially modified by changing the magnetic ground state and
the intensity of the applied field.
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