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This paper treats the dipolar interactions of a two-dimensional system of discs upon which a triangle of spins
is mounted. We obtain the leading term of the multipole expansion of the interaction energy of discs on which
is mounted a regular n-gon of spins. A definition of the toroidal magnetic moment Ti of the ith plaquette is
proposed such that the magnetostatic interaction between plaquettes i and j is proportional to TiTj. The system
for n=3 is shown to undergo a sequence of interesting phase transitions as the temperature is lowered. We are
mainly concerned with the “solid” phase in which bond-orientational order but not positional order is long
ranged. As the temperature is lowered in the solid phase, the first phase transition involving the orientation or
toroidal magnetism of the discs is into a “gauge toroid” phase in which the product of a magnetic toroidal
parameter and an orientation variable �for the discs� orders but due to a local gauge symmetry these variables
themselves do not individually order. Finally, in the lowest temperature phase the gauge symmetry is broken
and toroidal order and orientational order both develop. In the “gauge toroidal” phase time-reversal invariance
is broken and in the lowest temperature phase inversion symmetry is also broken. In none of these phases is
there long-range order in any Fourier component of the average spin. Symmetry considerations are used to
construct the magnetoelectric free energy and thereby to deduce which coefficients of the linear magnetoelec-
tric tensor are allowed to be nonzero. In none of the phases does symmetry permit a spontaneous polarization.
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I. INTRODUCTION

The theoretical analysis of toroidal ordering in electric1–3

and magnetic1,4–6 systems has recently been investigated.
Examples of such states in which plaquettes of spins assume
a chiral configuration have been known for some time.7

More recently several studies of toroidal ordering due to di-
polar interactions within nanodots8 and in other zero dimen-
sional �small� systems,9–11 have appeared. However, in ex-
tended systems, it is widely believed that toroidal magnetic
order should always be subservient to the primary order pa-
rameter, a Fourier component of the average spin. Here we
address the possibility of defining a toroidal order parameter
for a system in which it is the primary magnetic order pa-
rameter. The major problem is to identify a situation in
which there is ferrotoroidicity but there is no nonzero Fourier
component of average spin. In this paper we consider a two-
dimensional system of toroidal spin plaquettes, such as those
shown in Fig. 1, which exhibits the desired behavior. An
advantage of considering a system of toroidal units is that
one avoids the subtleties of defining toroidicity in extended
continuous systems.4 It is easy to understand that the struc-
tures shown in Fig. 1 are toroidal. It is less obvious to give
an analytic characterization of toroidicity. In Refs. 1–4 the
toroidal moment G is defined as

G =
1

2V
� �r � ��r��dr , �1�

where ��r� is the dipole moment density at r and V is the
volume of the system. Ederer and Spaldin4 discussed that

this definition has an origin dependence similar to that for
the ferroelectric moment and show to how to overcome this
difficulty. However, in spite of the general agreement within
the references cited, the definition of Eq. �1�, does not seem
to be the most natural one for dipolar vortex systems. For
instance, in Ref. 9 a hypertoroidal moment, h is defined to be

h =
1

4V
� �r � �r � ��r���dr . �2�

For the family of structures shown in Fig. 1 the toroidal
moment G is of order nrp, where r is the radius of the circle
on which the spins are mounted and p is their dipole mo-
ment. For these structures the hypertoroidal moment h is
zero. As we shall see, the dipole-dipole interaction between
plaquettes is proportional to the product of toroidal
“strengths” T, providing T is defined12 so as to be of order
�rn−1.

II. MODEL

We consider a system of microscopic circular discs �con-
fined to lie in the x-y plane� which contain three spins in a
triangular configuration as in the center panel of Fig. 1. Each
spin has a large single-ion anisotropy so that it is aligned
either parallel or antiparallel to its local axis fixed in the
plane of the disc, as shown in Fig. 2. The intraplaquette
dipolar interactions are strong enough so that at temperatures
of interest the spins in each plaquette come to thermal equi-
librium in one of the two degenerate ground states as shown
in Fig. 1. The magnetic dipole moment of each spin is mim-
icked by a pair of opposite charges ��Q�, as shown in Fig. 2.
If r is the distance of the charges from the center of the
plaquette, then the magnitude of the dipole moment is p
=2Qr sin �. The orientation of the disc is defined by the

n = 4n = 2 n = 3

FIG. 1. Toroidal plaquettes with 2, 3, or 4 moments.
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angle � between the x direction and the dashed line fixed on
the plaquette.

The phase space of this model is specified as follows.
Each plaquette is characterized by its center-of-mass position
R inside a two-dimensional box in the x-y plane with respect
to which the plaquette has mirror symmetry. The ith
plaquette can assume an orientation specified by �i and its
spins dominantly occupy one of the two ground states as
shown in Fig. 2. The dominant interactions between circular
plaquettes A and B are of two types. The first is an orienta-
tionally independent interaction which for concreteness we
take to be the Lennard-Jones potential,

WAB = 4��	�

R

12

− 	�

R

6� , �3�

where � and � are constants,13 and R is the separation be-
tween the centers of the two plaquettes. The second contri-
bution is the magnetostatic dipole-dipole interactions be-
tween spins on plaquettes A and B, which we will evaluate
below. Probably it is reasonable to assume that the discs
cannot flip over. However, this motion can effectively be
realized if all three spins reverse their directions. Since this
transformation involves occupying excited spin states, the
time to achieve thermodynamic equilibrium may become
quite long at low temperatures. However, our discussion will
assume the system has reached thermodynamic equilibrium.

Because the system is two dimensional, the plaquettes
cannot develop long-range positional order characteristic of a
three-dimensional solid.14 Instead the system can develop
various behaviors intermediate between a conventional solid
and an isotropic liquid. As shown in Ref. 15, the system
exhibits a “solid” phase in which bond-orientational order is
truly long range but position correlations exhibit power-law
decay. The solid melts either directly or indirectly �via a
hexatic phase� into an isotropic liquid phase. Henceforth we
ignore the possible existence of the hexatic phase and we
focus on the transition as the temperature is lowered through
the value TI at which the solid phase appears. We assume
that kTI is much larger than the energy of the magnetic in-
teractions between plaquettes. Even in the solid phase, there
is no true long-range positional order. Then, as shown in the
Appendix, the spin correlation function, such as the posi-
tional correlation function, cannot display long-range order.
In contrast, because there is long-range bond-orientational

order, lowering the temperature can lead to phase transitions
due to the interplaquette dipolar interactions. It is the pur-
pose of this paper to analyze the symmetry of the resulting
ordered phases. In a likely scenario we find that the solid
undergoes two further phase transitions as the temperature is
lowered. At the first transition �at T�TII� we find that time-
reversal symmetry is broken and at the second �at T�TIII�
spatial-inversion symmetry is also broken. Since the under-
lying system does not have long-range positional ordering,
the spin correlation function itself is never long ranged. To
substantiate this picture it is necessary to analyze the inter-
plaquette interactions and thereby verify that they lead to
Ising-type transitions.

III. INTERPLAQUETTE INTERACTION

We now obtain the interaction energy VAB of plaquette A
whose center is at the origin and plaquette B whose center is
at R. Since it is only slightly more complicated to consider
plaquettes with an arbitrary number, n, of dipoles �see Fig.
1�, we will evaluate VAB for general n although later on we
only use the results for n=3. Initially we will assume that R
lies in the x-y plane. We calculate VAB to leading order in the
multipole expansion of the electrostatic energy �which is pro-
portional to the desired magnetic dipole-dipole energy� be-
tween the charges �QA on plaquette A and charges �QB on
plaquette B. We express the charge distribution 	A��� at ra-
dius rA for plaquette A for �A=0 as

	A��� = QA�
�� − �A� − 
�� + �A� + 
�� − �A − 2�/n�

− 
�� + �A − 2�/n� + 
�� − �A − 4�/n�

− 
�� + �A − 4�/n� + ¯ + 
�� − �A − 2�n − 1��/n�

− 
�� + �A − 2�n − 1��/n�� . �4�

We write

	A��� = 
m=1

�

Cm sin�mn�� , �5�

where

C1 = nQA�sin�n�A� − sin�− n�A��/� → 2n2Q�A/�

= n2pA/��rA� , �6�

where we used pA=2QArA sin��A�→2QArA�A. Now allow-
ing �A and �B to be nonzero, we have

VAB = �
0

2�

d�1�
0

2�

d�2	A��1 − �A�	B��2 − �B�R−1, �7�

where

R2 = R2 + 2R�rB cos��2 − � − rA cos��1 − �� + rA
2 + rB

2

− 2rArB cos��1 − �2� . �8�

Then, keeping only the m=1 term in Eq. �5�, we have

2

x

y

++

+

O χ 1

3

FIG. 2. An n=3 plaquette with three spins in one of their dipolar
ground states. Each magnetic dipole is represented by a pair of
charges �Q whose positions are fixed by the angle �.
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VAB =
n4pApB

�2rArB
�

0

2�

d�1 sin�n��1 − �A��

��
0

2�

d�2 sin�n��2 − �B��R−1. �9�

The multipole expansion follows from

R−1 = 
j,k,l,m=0

�
Dj,k,l,m

R
	2rA

R
cos��1 − �
 j

�	2rB

R
cos��2 − �
k

�	2rArB

R2 cos��1 − �2�
l	 rA
2 + rB

2

R2 
m

. �10�

If we only keep C1 in the Fourier expansion of the 	���, then
the leading terms in �r /R� occur for j+ l=n, k+ l=n, and m
=0, so that VAB�R−�2n+1�. Terms involving Cm for m�1 lead
to contributions which are higher order in r /R.

We now analyze the general form of VAB. The result must
be invariant under both �A→�A+2� /n and �B→�B
+2� /n. In addition, VAB is invariant under a global rotation
of all three angles �, �A, and �B� by the same amount.
Accordingly, we have

VAB = 
k,l=−1

1

Ckl exp��in�k� − �A� + l� − �B���� . �11�

Finally, terms with either or both k=0 and l=0 do not occur
because they describe averaging the charge distribution uni-
formly over �A or �B, an operation that yields a charge neu-
tral object. Also, from Eqs. �7� and �10�, we see that VAB is
invariant under changing the signs of all three angles. So

VAB = A cos�n��A − �B�� + B cos�n�2 − �A − �B�� .

�12�

The coefficients A and B can be determined by evaluating
VAB for two simple cases.

We first focus on the term which contains the dependence
on . This term depends on −�A and −�B and is peri-
odic in 2� /n in each of these variables. Thus the
-dependent term with R dependence R−�2n+1� comes from
j=k=n and l=m=0 in Eq. �10�. To evaluate this term we
need Dn,n,0,0 which is the coefficient of �xy�n in the power
series for �1+x−y�−1/2 which leads to

Dn,n,0,0 =
�4n − 1�!�− 1�n

24n−1�2n − 1�!�n!�2 . �13�

We also need

I1 = �
0

2�

d�1 sin�n�1 − n�A�cosn��1 − �

= �
0

2�

d�1
ein�1 − e−in�1

2i

ein��1+�A−� + ¯ + e−in��1+�A−�

2n

�14�

and a similar integral over �2. Here we dropped terms which
integrate to zero. Thus

I1 =
2�

2�n+1�i
�e−in��A−� − ein��A−�� �15�

so that the -dependent term in VAB, which we denote

VAB��, is


VAB�� = C�− �n+1 pApB�rArB�n−1

R2n+1 cos�2n − n�A − n�B�

� B cos�2n − n�A − n�B� , �16�

where

C =
�4n − 1�!n4

�n!�2�2n − 1�!24n−2 . �17�

To determine the contribution to VAB which is indepen-
dent of , it is convenient to consider VAB when the
plaquettes are both parallel to the x-y plane, but their centers
are subject to a three-dimensional displacement R which we
represent in the spherical polar coordinates R, �, and .
Note that VAB can be written as in terms of charges qAi at
relative position rAi on plaquette A and similarly for
plaquette B as

VAB = 
i,j

qAiqBj

�R + rBj − rAi�
. �18�

Therefore VAB obeys Laplace’s equation,

�R
2 VAB = 0 �19�

when the orientation of each plaquette is held constant. Ac-
cordingly, the solution for VAB �which we know has radial
dependence R−�2n+1�� is of the form

VAB�R,�,� = R−�2n+1� 
m=−2n

2n

CmY2n
m ��,� . �20�

As we have seen

VAB�R,� = �/2,� = A cos�n��A − �B��

+ B cos�n�2 − �A − �B�� . �21�

This result indicates that only C�2n and C0 are nonzero. Ex-
plicitly Eqs. �20� and �21� imply that

VAB�R,�,� = A
P2n�cos ��

P2n�0�
cos�n��A − �B��

+ B sin2n���cos�n�2 − �A − �B�� ,

�22�

where Pn�x� is the nth Legendre polynomial with P2n�0�
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= �−�n�2n!�2−2n / �n!�2. Proceeding as above, we determine A
by evaluating

VAB�R,0,0� =
n4pApB

�2rArB
�

0

2�

d�1 sin�n��1 − �A��

� �
0

2�

d�2 sin�n��2 − �B��R−1, �23�

where

R−1 =
1

R
�1 +

1

R2 �rA
2 + rB

2 − 2rArB cos��2 − �1���−1/2

=
1

R


k,l=0

�

Dk,l	−
rArB

R2 cos��2 − �1�
k	 rA
2 + rB

2

R2 
l

.

�24�

The term with the lowest power of �1 /R� has k=n and l=0
with

Dn,0 = �− 1�n �2n − 1�!
2�n−1��n − 1�!n!

. �25�

Omitting terms which integrate to zero, we have

VAB�R,0,0� =
n4pApB

�2rArB
�

0

2�

d�1 sin�n��1 − �A��

� �
0

2�

d�2 sin�n��2 − �B��

�
Dn,0�− rArB�n

R2n+1 cosn��2 − �1�

= −
n4pApB�rArB�n−1�2n − 1�!
4�2R2n+12n−1�n − 1�!n!

�
0

2�

d�1�
0

2�

d�2

� �ein��1−�A� − e−in��1−�A���ein��2−�B�

− e−in��2−�B��
1

2n �ein��2−�1� + ¯ + e−in��2−�1��

= 2
pApB�rArB�n−1�2n − 1�!n4

R2n+122n−1n!�n − 1�!
cos�n��A − �B�� .

�26�

Thus the term in VAB which is independent of  is


VAB�R,0,0� = C�
pApBrA

n−1rB
n−1

R2n+1 cos�n��A − �B��

� A
P2n�1�
P2n�0�

cos�n��A − �B�� , �27�

where

C� = 2
�2n�!�n2�

22n��n − 1�!�2 . �28�

To summarize, the interaction between two plaquettes �in
parallel planes� is given by Eq. �22�, with

A = 2�− �n	 �2n�!
22n��n − 1�!�2
2 pArA

n−1pBrB
n−1

R2n+1 ,

B = �− 1�n+1 �4n − 1�!n4

�n!�2�2n − 1�!24n−2

pArA
n−1pBrB

n−1

R2n+1 . �29�

At least as far as the dipolar interaction between
plaquettes is concerned, it seems appropriate to define the
“toroidicity” T so that the interaction energy between
plaquettes i and j is proportional to TiTj /R2n+1 which incor-
porates all the structural parameters of the plaquette �except
n�. Thus we propose for this interaction that

Ti � piri
�n−1�, �30�

without specifying the tensor properties of Ti.
The result for n=4 is consistent with the numerical results

of Prosandeev and Bellaiche8 for VAB for dipolar interactions
between dipolar vortex structures on nanodots which exhibit
the R−9 dependence. Their system can be mimicked by a
system of plaquettes with n=4. However, the electric field
given in their Eq. �10� is not the gradient of a potential. One
consequence of this error is that the sign of the tangential
components of the electric field shown in their Fig. 11 is
incorrect. The ratio of the energies, r, shown in Fig. 13 is
obtained numerically �independent of Eq. �10�� and yields
r�50. According to our results this ratio should be

r � −
VAB�R,�/2,0;�A = �B = 0�
VAB�R,0,0;�A = �B = 0�

= −
A + B

A/P2n�0�

=
225 225/32 − 1225/32

�1225/32�/�35/128�
= 50. �31�

where we used �for n=4� P8�0�=35 /128, A=1225 /32, and
B=−225 225 /32. Thus our analytic results agree perfectly
with the numerical results of Ref. 8 for n=4.

In the present paper we are concerned with n=3
plaquettes, for which

VAB�R,�/2,� =
TATB

R7 	−
225

32
cos�3�A − 3�B�

+
10 395

32
cos�6 − 3�A − 3�B�
 , �32�

where we introduce the toroidal “strength” via Ti
= �3 /2�piri

2, where pi=2Qiri�i.
It is important to note a local symmetry. With the interac-

tions so far postulated, the Hamiltonian is invariant under the
local transformation

Qi → − Qi, �i → �i + � . �33�

This is a nontrivial symmetry that indicates that the two con-
figurations shown in Fig. 3 have the same energy at leading
order in the multipole expansion. Note that changing the sign
of Qi is equivalent to changing the sign of the spin and
consequently also of the toroidal moment Ti. As a result of
this local gauge symmetry it follows from Elitzur’s
theorem16 that even though there is long-range order in the
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variable Q sin�3��, there is no long-range order in either Q
or sin�3��.

IV. PHASE TRANSITIONS OF THIS MODEL

Here we give a detailed analysis of the phase transitions
within this model. We assume that the magnetic anisotropy
energy that aligns the spins along a fixed direction in each
plaquette and the isotropic interactions of Eq. �3� between
plaquettes are dominant. These assumed interactions do not
depend on the orientation of either of the interacting
plaquettes. �With this assumption Elitzur’s theorem applies.�
Accordingly, as the temperature is lowered, this two-
dimensional system will undergo a phase transition at a tem-
perature TI into a solid phase with long-range bond-
orientational order, but no long-range positional order.15 It is
obvious that in this phase both spatial-inversion and time-
reversal symmetries are maintained.

As one further reduces the temperature, the interplaquette
dipolar interactions come into play and can cause order to
develop consistent with the local gauge symmetry. To see
what sort of order develops we introduce the appropriate
gauge-invariant variables

Xi = Ti cos�3�i�, Yi = Ti sin�3�i� . �34�

Because bond-orientational order is maintained, we can treat
each molecule as being surrounded by a hexagon of neigh-
boring plaquettes and the orientation of this hexagon of
neighbors is maintained over the entire system. Accordingly,
we can define � as being measured relative to the direction
between the central plaquette and one of its neighbors. So we
may take 6� / �2�� to be an integer for all nearest neighbor
interactions. We do not consider further neighbor interactions
in view of how rapidly the interplaquette interaction falls off

with separation. For simplicity we work as if we have a
two-dimensional triangular lattice. Thus we analyze the
model with orientationally dependent interactions

VAB =
10 170TATB

32R7 	cos�3�A�cos�3�B�

−
10 620TATB

32R7 sin�3�A�sin�3�B�
 . �35�

So we have a two-dimensional anisotropic rotor model
which is in the same universality class as the two-
dimensional Ising model. Such models have been widely
studied.17,18 To analyze the phase transitions within this
model we invoke mean-field theory, within which the Lan-
dau free energy, F, in terms of the Fourier transforms of Xi
and Yi assumes the form �temporarily assuming a triangular
lattice of lattice constant a and with all Ti=T�,19

F =
1

2
q

��ckT + ��q��X�q�X��q���

+ �ckT + ��q��Y�q�Y��q���� �36�

at quadratic order, where c is a constant of order unity, and
��q� and ��q� are the Fourier transforms of the potential,

��q� = 2A��cos�aqx� + 2 cos�aqx/2�cos��3aqy/2�� ,

��q� = 2B��cos�aqx� + 2 cos�aqx/2�cos��3aqy/2�� ,

�37�

where

A� =
10 170T2

32R7 , B� = −
10 620T2

32R7 . �38�

As the temperature is lowered the system will develop long-
range order at zero wave vector in the variable Y
�T sin�3��, but not, because of the local gauge symmetry,

3

+
+

+O

1

2 3

+
+

+O

1

2 3

O

1

3
2

+

+
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+
+

+O

1

2

FIG. 3. Top: two interacting plaquettes �both with �=� /2 and
Q=+1�. Bottom: same as the top configuration except that the right-
hand plaquette is rotated through an angle ��=� and sign of the
charge is now Q=−1. These two configurations have the same in-
teraction energy truncated at order R−7. This is the gauge invariance
of Eq. �33�.
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+

FIG. 4. Long-range order with unbroken gauge symmetry. Note
that the topmost plaquette is in the gauge-transformed state accord-
ing to Eq. �33�. Here we illustrate the case when the order param-
eter Q sin�3�� is negative.
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in either the toroidal order parameter T or the orientational
order parameter sin�3�� separately. This type of order in
what we will refer to as the “gauge toroid” phase, is illus-
trated in Fig. 4. This transition occurs at a temperature of
order kTII=6�B���2000T2 /R7.

We now discuss whether time-reversal �T� symmetry or
spatial-inversion �P� symmetry is broken in the gauge toroid
phase. As a preliminary, note that the single-particle density
matrix assigns the probabilities p /2, p /2, and 1− p to the
states S, S�, and S�, respectively. To within an overall rota-
tion, S is the state of the topmost plaquette in Fig. 4, S� is the
state of a plaquette in the bottom row of Fig. 4, and S� is the
completely disordered state. The interpretation of this density
matrix is shown in Fig. 5, where we see that time-reversal
symmetry is broken but inversion symmetry is maintained.
�If the dipole were electric dipoles, then inversion symmetry
would be broken.�

The existence of the gauge toroid phase is a consequence
of the local gauge symmetry which in turn is a result of our
assumption that the interaction between plaquettes is inde-
pendent of their orientations. Of course, this assumption is
not consistent with the threefold symmetry implied by the
existence of the spins. Accordingly, we now take proper ac-
count of this threefold symmetry by introducing small bulges
in the plaquettes at the locations of the three spins. This will
give rise to an interplaquette interaction which breaks the
local gauge symmetry. For simplicity we take this gauge
symmetry-breaking interaction to be of the form

V� = v cos�6� − 3�A − 3�B� . �39�

Now we again set 6� / �2�� to be an integer and we only
need to consider interactions involving sin�3��, so effec-
tively

V� = − v sin�3�A�sin�3�B� . �40�

Now what happens depends on the sign of v. If v is positive,
then we have a ferroarrangement of plaquettes, so that all
plaquettes are in the same state �either as those in the bottom
row of Fig. 4 or as that in the top row of Fig. 4�. Because
toroidicity and orientation are strongly coupled, this state is
ferrotoroidal. If v is negative, then we have an antiferroar-

rangement of plaquettes into the so-called “root-3” structure
discussed recently in connection with charge ordering in lu-
tetium ferrite.20 In this state we have antiferrotoroidicity.
Here we are mainly interested in displaying a ferrostate, so
we take v to be positive. This final ordering transition which
breaks local gauge symmetry will occur at a temperature of
order kTIII=6v, which we assume to be much smaller than
kTII. This transition is also in the same universality class as
the two-dimensional Ising model. At this transition spatial-
inversion symmetry is broken. The symmetry of the various
phases for v of Eq. �40� positive is summarized in Fig. 6.

In Ref. 5 toroidicity has been discussed in connection
with the magnetoelectric effect. However, instead of using
the symmetry of the crystal �see Ref. 21�, they used the sym-
metry of free space to obtain a simplified relation between
the toroidicity and the linear magnetoelectric tensor. Here we
invoke the symmetry of the two-dimensional system to write
the magnetoelectric free energy as a function of the electric
field E and the magnetic field H as

FME = Tz���HxEy − HyEx� + �HzEz + ��HxEx + HyEy�� ,

�41�

where �, �, and � are constants whose values are not fixed
by symmetry and we define the toroidicity vector such that
its z component is Tz= � �3 /2�pr2, where its sign is taken to
be the sign of the circulation of the spins about the positive z
axis. Note that under a rotation about z or a mirror reflection
about the x-y plane, since spin is a pseudovector, Tz trans-
forms like a vector. We may check that the form of Eq. �41�
is consistent with the symmetry of the system, keeping in
mind that spin and the magnetic field are both pseudovectors
but T and the electric field are real vectors. Accordingly,
both Tz and the factor in the large brackets are odd under the
mirror z→−z. Also all the terms are invariant under a rota-
tion about the z axis. Then

−
�2F

�Hx � Ey
=

�Mx

�Ey
=

�Py

�Hx
= − �Tz,

−
�2F

�Hy � Ex
=

�My

�Ex
=

�Px

�Hy
= �Tz,

−
�2F

�Hz � Ez
=

�Mz

�Ez
=

�Pz

�Hz
= − �Tz,

1

O

1

2 3

3
2

++

+

+

+
+

FIG. 5. The ordered component of the density matrix incorpo-
rating states S and S�. This state is not time reversal invariant but is
inversion symmetric because spins being pseudo vectors do not
change their orientations under inversion.

nonmagnetic

III TII TI

P T
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gauge
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TPΘPsymmetry
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T

FIG. 6. Symmetry of the various phases. Here the symmetries
are T=time-reversal symmetry, P=spatial-inversion symmetry, and
�=continuous-rotational symmetry.
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−
�2F

�Hx � Ex
=

�Mx

�Ex
=

�Px

�Hx
= − �Tz,

−
�2F

�Hy � Ey
=

�My

�Ey
=

�Py

�Hy
= − �Tz. �42�

These elements of the linear magnetoelectric tensor are only
nonzero in the ferrotoroidal phase where Tz is nonzero. The
combination of the threefold axis and the x-y reflection plane
guarantee that the spontaneous polarization is zero in all
these phases. �If the discs were asymmetric with respect to
this mirror, then a spontaneous polarization along z would be
allowed in the ferrotoroidal phase.22�

V. DISCUSSION AND CONCLUSION

The nonmagnetic solid to gauge toroid transition at TII
was analyzed assuming no gauge breaking interactions. We
argue that the introduction of the small gauge breaking inter-
action will not qualitatively modify the phase diagram of
Fig. 6 because it will take a finite interaction to orientation-
ally order the plaquettes. Similarly, including higher-order
terms in the multipole expansion will not alter our conclu-
sions as long as z�r /R�1. Whatever their origin, the small
gauge breaking interactions will lead to a lower-temperature
transition at TIII into a ferrotoroidal phase in which both to-
roidal and orientational order appear. One possible difficulty
in constructing the system of discs analyzed in this paper is
that it may be difficult to achieve equilibrium statistics
within the manifold of the dipolar spin ground states. But
perhaps it is not crucial that the gap between the two spin
ground states and the qualitatively different excited spin
states be very large. It would, of course, be extremely inter-
esting to observe the linear magnetoelectric effect in a sys-
tem such as this.
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APPENDIX: SPIN CORRELATIONS

Here we discuss briefly the fact that the spin correlation
function for the two-dimensional system of plaquettes is not
long ranged. While it is true that one has local ordering of
spins, that does not imply that one has a nonzero spin order
parameter, �. In this respect this system is somewhat like a
spin glass,23 where �S�r�� can be nonzero, but limr→� C�r�
��S�0� ·S�r��=�2=0. Accordingly, we now analyze C�r�.
Let 	�r� be the pair-correlation function for the center of
mass of the plaquettes. For the purpose of this discussion we
will assume perfect orientational ordering of the plaquettes.
In that case for each plaquette the locations of spins relative
to the center of the plaquette will be denoted �1, �2, and �3,
as in Fig. 2. We will also assume perfect spin ordering within
each plaquette so that the spins �which have unit length� are
aligned as in Fig. 2. Then for this assumed structure the
spin-spin correlation function is

�S��0� · S��r�� = 	�r� −
1

2
	�r + �2 − �1� −

1

2
	�r + �3 − �1� ,

�A1�

where we assume spin no. 1 of a plaquette to be at the origin.
At large r, 	�r� approaches the average density 	0 because
the solid structure is not long ranged. So we set 	�r�=	0
+
	�r�. Then

�S��0� · S��r�� = 
	�r� −
1

2

	�r + �2 − �1� −

1

2

	�r + �3 − �1� .

�A2�

Clearly, we cannot have infinite range spin correlations in a
state for which 
	 is not infinite ranged. This conclusion
depends on the fact that the incipient spin order is not ferro-
magnetic. So, although one can have ferromagnetic liquids24

and amorphous ferromagnets,25 one cannot have liquids or
amorphous systems which have infinite-range antiferromag-
net correlations. Papers with “Amorphous Antiferromagnets”
in their title, e.g., Ref. 26 either do not have infinite-range
antiferromagnetic correlations or have infinite-range position
correlations. They are only called “antiferromagnets” be-
cause their interactions are antiferromagnetic.
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