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A heat-transport equation incorporating nonlocal and nonlinear contributions of the heat flux is derived in
the framework of weakly nonlocal nonequilibrium thermodynamics. The motivation for these terms arises from
applications to nanosystems, where strong gradients are found, due to the small distance over which changes
in temperature and heat flux take place. This equation generalizes to the nonlinear domain previous equations
used in the context of phonon hydrodynamics. Compatibility with second law of thermodynamics is investi-
gated and a comparison with the thermomass model of heat transport is carried out. The analogy between the
equations describing the heat flow problem and the hydrodynamic equations is shown and the stability of the
heat flow is analyzed in a special case.
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I. INTRODUCTION

In the last decades, one-dimensional nanostructures �such
as wires, rods, belts, and tubes� have drawn significant atten-
tion owing to their potential application in nanoelectronics,
photonics, and energy-conversion devices.1–5 The continuous
reduction in the sizes in these devices brings up new ques-
tions concerning the analysis of heat transport. Several ex-
periments or simulations on heat transport along these de-
vices have obtained results that differ significantly from
those predicted by the classical Fourier law.4,6–9 In fact, as it
has been widely demonstrated, nanosystems exhibit a strong
size dependence of their electronic and optical properties.10,11

Indeed, due to the small sizes of the systems, the gradients of
the heat flux will be important �and therefore, their influence
through nonlocal terms must be incorporated� as well as tem-
perature gradients, acting as thermodynamic forces, whose
nonlinear effects will be not negligible. It is, therefore, im-
portant to examine more deeply the influence of nonlocal and
nonlinear effects, and generalized heat transport equations
must be looked for.

From a microscopic point of view, a simple model illus-
trating relaxational and nonlocal effects in heat transport is
the phonon gas hydrodynamics.12 In such a framework, the
solution of the linearized Boltzmann equation leads to the
well-known Guyer-Krumhansl equation13–15

�Rq̇i + qi = − ��,i + l2�qi,kk
+ 2qk,ki

� , �1�

with qi, i= �1,2 ,3�, as the components of the heat flux, � as
the absolute nonequilibrium temperature, l2= �9 /5���N as the
mean-free path of phonons, and �=� /cv as the thermal dif-
fusivity, being � the bulk thermal conductivity and cv the
specific heat at constant volume. Moreover, �R and �N mean
the relaxation times related to resistive and normal phonon
scatterings,15,16 respectively. The upper dot on qi stands for
the material time derivative, whose convective part will be
discussed in Sec. IV.

Equation �1�, whose macroscopic derivation can be ob-
tained in the framework of weakly nonlocal nonequilibrium
thermodynamics,1,17 does not include nonlinear effects, since
it has been derived under the hypothesis that the thermo-
physical quantities are constant. On the other hand, a nonlin-
ear extension of Eq. �1� should account for two different
types of phenomena. First of all, as heat conduction measure-
ments in crystals show clearly, the material functions �, cv,
�R, and �N are temperature dependent.15,18–20 Moreover, in
nanosystems, due to the small size of the heat conductor,
small temperature differences could lead to high values of
temperature gradient, and as a consequence nonlinear terms
accounting for products of the temperature gradient or the
heat flux must also be taken into consideration.

In the present paper we derive and discuss in detail a
generalization of Eq. �1� which takes into account both the
aforementioned effects. The difference with some previous
approaches is the emphasis on the dynamical character of the
heat flux �also assumed in Grad’s approach to kinetic
theory1� and on the analogies with hydrodynamical equa-
tions, the heat flux playing a role analogous to the velocity of
a fluid, an approach which is of interest in the domain of the
so-called phonon hydrodynamics.

The simplest nonlinear extension of Eq. �1� can be written
as

�Rq̇i + qi = − ��,i + l2�qi,kk
+ 2qk,ki

� + �qkqk,i
, �2�

with � as suitable material coefficient. For constant material
functions, Eq. �2� has been derived in Refs. 21 and 22. Here
we obtain the equation above from a more general model in
which the thermophysical quantities depend on the tempera-
ture. The expression of � will be determined on thermody-
namical grounds.

In the following, we describe relaxational heat transfer in
terms of a dynamical nonequilibrium temperature �, ruled by
a suitable evolution equation, to be determined on purely
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thermodynamic grounds.21–23 The essential idea of this ap-
proach is that the heat flux is given by

qi = − ��,i. �3�

According with the Fourier law, this formalism still as-
sumes that heat flows in the opposite direction of the gradi-
ent of a potential function. However, in contrast with it, this
potential is � rather than �. The main differences between �
and �, and the consequence of Eq. �3� on the second-sound
propagation have been pointed out in a recent paper by Jou
et al.24 Equation �3� is capable to reproduce different heat
conduction regimes, depending on the evolution equation of
�. Other ways to derive an equation such as Eq. �2� without
direct use of the dynamical nonequilibrium temperature �
are also possible, but we have preferred to use it in the line of
our previous papers.21,22

In linear situations, namely, for constant material func-
tions, the different thermodynamic regimes, such as para-
bolic and hyperbolic heat conduction,25 as well as the energy
equation in the phonon scattering model and the energy
equation in the phonon-electron interaction model,26 can all
be connected with the dual-phase-lagging constitutive equa-
tion for heat conduction �also named Tzou equation5,27�, re-
lating the temperature gradient at a material point x and time
t+�T, to the heat flux vector at x and time t+�q. The model
proposed here cannot be incorporated in the Tzou equation
since it allows both the relaxation times to depend on the
temperature.

The present paper runs as follows. In Sec. II we derive the
model equations and investigate their compatibility with sec-
ond law of thermodynamics. In Sec. III, we derive a nonlin-
ear extension of the Guyer-Krumhansl equation and point out
the conditions under which Eqs. �1� and �2� can be recov-
ered. In Sec. IV we compare the nonlocal nonlinear heat-
transport equation proposed here with that proposed in the
so-called thermomass model for heat transport.28–30 In
Sec. V we show that in particular situations our nonlinear
transport equation takes a form similar to the classical
Navier-Stokes equation of incompressible viscous hydrody-
namics. To show that, in the context of phonon hydrodynam-
ics we first define some characteristic quantities �i.e., the
thermal analogous of the well-known dimensionless numbers
used in hydrodynamics� related to the geometry of the sys-
tem as well as to the characteristic time of the phenomenon
and to the standard physical conditions under which it takes
place. Then, we recover the hydrodynamic equations under
suitable hypotheses on these numbers. We also consider an
initial and boundary value problem for the heat flow and an
initial perturbation of it, and point out in what conditions the
flow is unstable under such a perturbation. In Sec. VI we
summarize and discuss the results of the previous sections.

II. PHYSICAL MODEL

Nonlinear effects may be understood in two different
ways: as a temperature dependence in the material functions
or as the presence of nonlinear products of the temperature
gradient �or the heat flux� in the transport equations. The
effects of both these kinds of nonlinearities on second-sound

propagation have been analyzed in Refs. 21 and 31. In the
present section we postulate a suitable nonlocal and nonlin-
ear evolution equation for �, implying a correspondent evo-
lution equation for the heat flux, and assume that the material
functions are temperature dependent, i.e., �=����, cv=cv���,
�R=�R���, and �N=�N���. Then, let us consider a rigid heat
conductor whose thermodynamic state space is spanned by
the specific internal energy e and the dynamical nonequilib-
rium temperature �, together with their first-order gradients,
namely, Z= �e ;e,k ;� ;�,k�. The motivation for the inclusion
of the gradients of e and � as independent state-space vari-
ables rests on the description of nonlocal effects.

The state variable e is governed by the local balance of
energy

ė = − qi,i
, �4�

with the heat flux given by the constitutive assumption in
Eq. �3�.

Moreover, let us suppose that � is ruled by the following
evolution equation:

�̇ = −
�� − ��

�R
−

�

�
�,i�,i + g����,ii, �5�

where g is a suitable regular function of �, whose form may
be determined by second law of thermodynamics. The first
term in the right-hand side of Eq. �5� describes the relaxation
of � toward �. If only this term is considered, the combina-
tion of Eqs. �4� and �5� leads to a purely relaxational gener-
alization of the Fourier’s equation, namely, Eq. �1� with
l=0. Equation �5� explicitly models nonlocal effects through
the first- and second-order spatial derivatives of �. It is the
simplest extension of the evolution equation obtained in
Ref. 22 �see Eq. �54� therein� since the nonlocal effects aris-
ing from �,ik have been taken into account only through its
first invariant, i.e., through a linear term in �,ii. Moreover,
Eq. �5� is in accordance with the general theorems of repre-
sentation for isotropic scalar functions depending on scalar,
vector, and tensor variables.32

Before to proceed further, let us investigate the compat-
ibility of the model represented by Eqs. �3�–�5� with second
law of thermodynamics, under the hypothesis of
temperature-dependent material functions. In the present
case, the second law locally reads

ṡ + 	i,i

 0, �6�

being s the entropy density, and 	i, the components of the
entropy flux.1

To exploit inequality in Eq. �6� we use a generalization of
the classical Liu procedure,33 accounting for thermodynamic
restrictions on the coefficients of higher-order
derivatives.34,35 Passing over the cumbersome algebraic ma-
nipulations �refer to Refs. 34 and 35 for a detailed illustration
of such a procedure and to Ref. 22 for its application to heat
transport�, in what follows we point out the main results.

First of all, it turns out that the specific entropy s is non-
local both with respect to e and �. Up to the second order in
e,i and �,i, a suitable form of s is
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s�e;�;e,k;�,k� = s0�e� −
1

2
se�e;��e,ie,i −

1

2
s��e;���,i�,i,

�7�

where s0�e� is the equilibrium part of the entropy while
se�e ;�� and s��e ;�� are regular scalar functions. Although
this expression is not the most general one, it is suggested by
the general theorems of representation of isotropic scalar
functions depending on scalar and vector variables.32 More-
over it ensures that the principle of maximum entropy at the
equilibrium is fulfilled, provided se�e ;�� and s��e ;�� are
positive definite.36

Due to the classical definition of absolute nonequilibrium
temperature,37 namely, �−1=�s /�e, we infer that
�=��e ;� ;e,k ;�,k�, in general, is a truly nonequilibrium quan-
tity, which is strongly influenced by nonlocal effects. Indeed,
along with this result and the assumed dependence on � of
the material functions, one would observe that, in principle,
�, cv, �R, and �N, would depend on the whole set of the state
variables, too. However, since we did not find any depen-
dence of the material functions on the gradients, either in the
experimental observations on dielectric crystals,15,18–20 or in
those on silicon nanowires and carbon nanotubes,4,6–9,38 in
the next we will suppose they may only depend on e and �,
whereas we let g to depend on the whole set of the state
variables. In particular, the second-law forces g to be given
by

g��� = −
�

�,k�,k

se�e;��
s��e;��

e,i�,i. �8�

Although by Eq. �8� the mathematical form of g appear-
ing in Eq. �5� may be obtained easily, at this step its physical
meaning is still unknown. The study of the nonlinear Guyer-
Krumhansl equation in Sec. III will offer a mean to deter-
mine it.

Finally, our analysis is able to show �see Refs. 34 and 35
for explicit details� that the entropy flux may have a consti-
tutive equation which is more complex than that postulated
in rational thermodynamics,37 namely, more complex than
	i=qi /�.

III. NONLINEAR GUYER-KRUMHANSL EQUATION

Starting from the theory of heat conduction with dynami-
cal temperature �, in the present section we derive a nonlin-
ear extension of the Guyer-Krumhansl equation. To achieve
that task we have to calculate the time derivative of qi, and
its first- and second-order spatial derivatives. Indeed, due to
the constitutive assumptions on the material functions, com-
bination of Eqs. �3� and �4� yields

q̇i = − ��̇,i −
1

cv

� ln �

��
qk,k

qi. �9�

Analogously, it is possible to obtain the following expres-
sion for the gradient of the heat flux:

qk,i
= − ��,ki +

� ln �

��
qk�,i. �10�

In order to simplify our analysis, in what follows we will
consider each time and/or space derivative as a first-order
term and will neglect third-order terms. Under the assump-
tions above, the second-order gradients of qi can be calcu-
lated keeping the algebraic manipulations down to a reason-
able level and still retaining sufficient generality.

Then, combining the gradient extension of Eq. �5� with
the obtained expressions for the second-order gradients of qi,
and still disregarding third-order terms, it is possible to ob-
tain the following nonlinear extension of the Guyer-
Krumhansl equation:

�Rq̇i + �1 +
�R

cv

� ln �

��
�1 +

g

3

F

�
	qk,k


qi

= − ��1 + �� − ��
� ln �R

��
−

�R

�
� �g

��
−

2

3
g

� ln �

��

qk,k��,i

+ g
�R

3
�qi,kk

+ 2qk,ki
� + 2

�R

cv�
�1 − gF

�

�

� ln �

��
	qkqk,i

,

�11�

wherein the function F��� is defined as F= �s�g� / �se��.
In order to recover Eq. �2� as a special case of Eq. �11�,

i.e., when in it the terms in � /�� are negligible, we make the
following identifications:

g��� =
27

5
�

�N

�R
, �12a�

� = 2
�R

cv�
. �12b�

Equation �12b� allows us to identify the coefficient � of
the nonlinear term in Eq. �2� in terms of physically well-
known quantities. Note that our model is nonlinear even for
constant material functions, since, in this case, Eq. �11� does
not reduce to Eq. �1�, but contains a further nonlinear term in
qkqk,i

whose physical relevance will be discussed later. More-
over, a comparison between Eqs. �2� and �11� without non-
linear terms, allows us to identify g��� as the ratio l2 /�R,
once Eq. �12a� holds.

In closing this section, let us give a further comment
about Eq. �11�. In the first term of its right-hand side a dy-
namical heat conductivity, depending on �−� �namely, on

�̇�, appears. Close to the equilibrium of �, i.e., for �−�
negligible with respect to the other terms entering the dy-
namical heat conductivity, such a function depends on �
only.

IV. COMPARISON WITH THE THERMOMASS MODEL
OF HEAT TRANSPORT

The central topic of interest of the present paper is the
nonlinear and nonlocal transport equation for the heat flux.
Thus, it is of interest to compare our approach with other
proposals searching also for such an equation. In particular,
in the present section we will compare our model with the
so-called thermomass model of heat transport,28–30 which
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also aims to propose a hydrodynamic-like description of the
heat flux. In this approach, an effective mass density �i.e., the
so-called thermomass density� �h is attributed to the phonon
gas. It is calculated as �h=�cvT /c2, being � the density of the
medium, T the temperature of the phonon gas and c the
speed of light. Since heat conduction in dielectrics is due to
the motion of the phonon gas, the continuity and momentum
equations can be written as in fluid mechanics, namely,

�̇h + �,i
hv̄i + �hv̄i,i

= 0, �13a�

�h�v̇̄i + v̄ jv̄i,j
� = − p̄,i − f̄ i, �13b�

respectively. In the equations above, v̄i are the components
of the drift velocity of the phonons, p̄ is the pressure of the
phonon gas induced by the thermal vibration of the lattice,

and f̄ i are the component of the frictional force per unit of
volume. Equation �13b� holds since the gas is supposed to
move very slowly with respect to the light. The system of
Eqs. �13a� and �13b� is closed by the following set of con-
stitutive equations:29

v̄i =
qi

cvT
, p̄ =

��hc2

�
, f̄ i = v̄i, �14�

being � the Grüneisen constant and  a suitable coefficient
describing the resistance to the phonon flow. From the above
set of equations, it is easy matter to derive the following
general heat-conduction equation:29

�tmq̇i − cv�iṪ + � jqi,j
− Mh

2�T,i + �T,i + qi = 0, �15�

where �tm is the thermomass relaxation time and �i is a suit-
able length parameter given by �i=�tmv̄i. Moreover, in
Eq. �15� Mh=q / ��cvT2�cvT� stands for a dimensionless
number, less than unity, which is also called thermal Mach
number of the drift velocity relative to the thermal wave
speed in the phonon gas.28,29

The last two terms of Eq. �15� correspond to Fourier law,
and the first one corresponds to the heat flux relaxation time,
which is analogous to the first term in Eq. �2�. The second
term, instead, corresponds to the relaxation of the tempera-
ture gradient, a typical term in the dual-phase-lagging con-
stitutive equation proposed by Tzou.5,27 The new terms are
the third and fourth ones, which are nonlinear terms. In more
detail, in the third term the length parameter � j depends of
the heat flux itself,29 in such a way that this term is propor-
tional qjqi,j

and therefore it is different from the last term in
Eq. �2�. We will comment it in the next paragraph. It is
important to note that the mean-free path of phonons l is
independent of the heat flux, and has therefore a different
meaning than the vectorial length �i. Moreover, since Mh

2 is
proportional to the square of the heat flux, it follows that the
fourth term is of the form q2T,i. This kind of nonlinearity
does not appear explicitly in Eq. �2�. However, it could ap-
pear in it if one assumes that the thermal conductivity de-
pends on the heat flux as �eff=��1−MT

2q2� with MT=Mh /q.
Indeed, this kind of nonlinearity, which has been analyzed in
Ref. 22, has not been considered here for the sake of sim-
plicity.

The term in � jqi,j
in Eq. �15� is a conceptually interesting

term arising from the second term on the left-hand side in
Eq. �13b�, where it was introduced as the convective part of
the material derivative of the heat flux. Indeed, in our formu-
lation in Eq. �2�, the term in q̇j, i.e., the time derivative of the
heat flux, has some ambiguity concerning the convective
term. Since the solid is at rest, one could assume that there is
no convective term. However, since the phonon gas has a
slow drift velocity proportional to the heat flux, given by
Eq. �14�, it seems logical to take this velocity in the convec-
tive term of the time derivative. Thus, we could consider that
in Eq. �2� as well as in other equations we are referring to
q̇i=qi,t

+v jqi,j
=qi,t

+ �qj /�cvT�qi,j
. In our opinion, this is the

true core of the thermomass model. However, in our formal-
ism it is not necessary to postulate a mass for the phonon
fluid, although it is not against such an interpretation. In our
model it is enough to take the convenient convective term in
the time derivative appearing in the relaxational term. Being
convective terms, they do not appear in the entropy produc-
tion and they do not modify our previous analysis in Sec. III.
In fact, the idea that in some situations in the analysis of heat
transfer one may consider the heat flow as a hydrodynamic
flow was considered by some authors as Grmela39 and
Sieniutycz40 some years ago, although not in the context of
nanosystems.

In comparison with Eq. �2�, Eq. �15� is lacking the La-
placian term of the heat flux, which is a specially relevant
term in phonon hydrodynamics, as it describes, for instance,
how the effective thermal conductivity depends on the radius
of a nanowire or the width of a thin layer.10 Without this
term, Eq. �15� would predict that the effective thermal con-
ductivity of a nanowire would not depend on the radius,
which is against the experimental observations.6,9,10 How-
ever, it would be very easy to incorporate this kind of term in
the thermomass model, by assuming that the friction term

�i.e., f̄ i in Eq. �13b�� is not only proportional to the heat flux,
but adding a second contribution proportional to the Laplac-
ian of the heat flux. This kind of friction is of the so-called
Brinkman-Navier form in usual hydrodynamics of porous
media, where the friction proportional to the velocity corre-
sponds to the Darcy law of porous media and the term in the
Laplacian of the velocity is the well-known Navier-Stokes
viscous friction, describing the internal friction of the fluid.

Equation �15� reduces to a Cattaneo-type equation when
the second, the third and the fourth term are negligible, but
with a different physical meaning of �tm with respect to �R
since �tm means the lagging time from the temperature gra-
dient to the corresponding heat flux while �R means the lag-
ging time from the thermal nonequilibrium to the equilib-
rium state. For dielectric crystals the value of the
characteristic time may differ for two orders of magnitude,29

which results in a much slower temperature response to a
heat pulse predicted by the thermomass model than that by
Cattaneo’s model.

The comparison with thermomass model is interesting for
several reasons. In our model it is not necessary to postulate
that phonons have an effective mass, or thermomass, but the
generalized transport equation of the hydrodynamic form
emerges naturally. Thermomass model, in its current formu-
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lation, is lacking a relevant term, namely, that of the Laplac-
ian of the heat flux which is found in Eq. �2�, but not in
Eq. �15�. This could be added in a natural way, and this could
make the comparison between both theories more illustrative
and interesting. On the other side, the thermomass structure
�namely, suggesting that the equation for the heat flux may
be compared to a momentum balance equation for the
phonons� suggests the presence of nonlinear terms analogous
to a convective contribution in the temporal derivative of the
heat flux. In contrast, our identification of the coefficient � in
the nonlinear term of Eq. �2� is related to the second law and
is given by Eq. �12b�. But the identification of � in Eq. �12b�
is very close to the coefficient of the convective term in the
thermomass model: in fact in both cases this term is propor-
tional to the resistive time �R and inversely proportional to
the specific heat times the absolute temperature. Indeed, the
third term in Eq. �15� may be written as

� jqi,j
=

�

2�cv��cvT�2qjqi,j
=

�R

�cvT
qjqi,j

, �16�

since in the thermomass model �R=� / �2��cv
2T�. But this

identification is close to our interpretation Eq. �12b�. Further
analysis is still needed, but it is clear that the comparison
between our model and the thermomass model could be
fruitful, provided the thermomass model in enlarged to cope
with the Laplacian term in heat flux.

V. HYDRODYNAMIC ANALOGY AND STABILITY OF
THE HEAT FLOW IN NANOSYSTEMS

In Sec. I we already observed that the Guyer-Krumhansl
equation �Eq. �1�� does not account for nonlinear phenomena
arising at a very small length scale. Therefore, in order to
take into account also nonlinear effects, in Sec. III we de-
rived Eq. �11�. When the hypothesis of temperature-
dependent material functions is relaxed, it becomes

�Rq̇i + qi = − ��,i + 2
�R

cv�
qkqk,i

+ l2�qi,kk
+ 2qk,ki

� , �17�

where we have used the relation g= l2 /�R. It is worth noticing
that, under the hypothesis of constant material functions, the
equation above can be derived by combining Eqs. �3� and
�5�, without any approximation.21

Here we show its analogy with the hydrodynamic equa-
tions and point out a possible way of predicting instability of
the heat flow. As we will show in this section, such an anal-
ogy can be obtained whenever qi is negligible with respect to
its spatial derivatives. Due to the small dimensions, this situ-
ation is peculiar to nanosystems, where the gradients of the
heat flux are proportional to the inverse of their length.

A. Characteristic numbers

From a physical point of view, each term entering a given
equation is able to model a certain effect. It is a usual prac-
tice in applied science and engineering to make approxima-
tions allowing to neglect some effects with respect to others
in some given situations. However, this way of solving a

problem presupposes an a priori choice of the approximation
limits one wants to use.

In order to test the validity of a given approximation, it
would be useful to characterize quantitatively the relative
importance of the different effects. To this end and as one
may compare only effects which are homogeneous in dimen-
sions, it is useful to introduce some dimensionless numbers.
In the next we denote by a superscript � the dimensionless
unitary quantities and by a superscript r the reference quan-
tities, i.e., the standard values of the physical quantities at
which the system works.

Looking to the local balance of internal energy �Eq. �4��,
we may observe that the relative importance of the left-hand
side term with respect to the right-hand side one is a measure
of the unsteady state of e. To understand in what conditions
we may neglect the temporal rate of internal energy �namely,
in what situation we are allowed to consider the problem
essentially as a quasisteady-state process�, taking into ac-
count the relation de=cvd�, let us rewrite Eq. �4� as

cv
r�r

tr cv
��̇� +

qr

Lrqi,i
� =

1

Mq
ė� + qi,i

� = 0, �18�

with

tr =
cv

rLr2

�r , �19a�

Mq =
qrLr

�r�r . �19b�

From Eqs. �18� and �19� one may conclude that for regu-
lar solutions of the field equations, i.e., for finite values of ė,
it is possible to neglect the term in ė whenever Mq�1. In
practical applications, one may try to interpret �r as the av-
erage temperature of the system, �r as the effective thermal
conductivity of the systems at �r, Lr as the longitudinal
length of the system, and qr as the longitudinal heat flow due
to the difference in temperature through the ends of the sys-
tem.

Forcing the fluid dynamic nomenclature, let us refer to the
dimensionless number in Eq. �19b� as the Mach number for
the heat flow. Indeed, this fanciful identification, as well as
those we will make in the next, stems from the observation
that the form of the constitutive equation for the heat flux in
phonon hydrodynamics is analogous to the hydrodynamic
equation for the velocity of a viscous fluid, with qi playing
the role of the fluid speed vi, �,i the role of the pressure
gradient P,i, and l2 /� the role of viscosity. This latter iden-
tification may be easily seen from the linearized steady-state
version of Eq. �17�, which reduces to l2qi,kk

=��,i and com-
pare this with the linearized steady-state version of the
Navier-Stokes equations. Note that here we are not making
an identification, but only an analogy, which is useful in
linear and steady-state situations. However, when relax-
ational and nonlinear terms are also included a new question
arises concerning the analogous of the mass density in the
Navier-Stokes equation. This was precisely one of the moti-
vations of the thermomass model of heat transport analyzed
in Sec. IV.
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The Mach number in Eq. �19b� may be also written as the
ratio of the reference heat flux qr divided by Qr, being
Qr=�r�r /Lr. In the particular case that Lr, instead of being
taken as the length of the system, was taken as
Lr=q� / �2�cv��cvT�2�, the Mach number for the heat flux in
Eq. �19b� coincides with the square of thermal Mach number
in Eq. �15�.

Taking into account the relations between the thermal
quantities and the hydrodynamic ones, it is possible to ob-
serve that, as in fluid dynamics the Mach number �M� is
given by the ratio between the body speed and the speed of
sound �assumed with a suitable reference speed�, in our
model Mq is given by the ratio between the actual heat flux
in the system at hand �i.e., qr� and a reference heat flux �i.e.,
�r�r /Lr�. Moreover, as in fluid dynamics M represents the
percent rate, per unit time, of the mass density along a given
particle stream line �and therefore it is a measure of the com-
pressibility of the fluid�, here Mq will be used as a measure
the temporal rate of e.

From the practical point of view one may try to check a
critical value of Mq representing the threshold between the
steady-state problem and an unsteady one. Experimental
situations could complement and test the validity of this the-
oretical proposal. However, let us underline that the possibil-
ity of interpreting a characteristic number as a measure of the
relative importance of an effect with respect to one another
�and all the arising consequences� is always conditioned by
the appropriate choice of the reference quantities.

Let us concentrate our attention now on Eq. �17�, describ-
ing the evolution of the heat flux. According with the con-
clusion above, when Mq�1 we may assume that the heat
flux is a solenoidal vector. In this case Eq. �17� can be re-
written as

qr

tr q̇i
� +

qr

�R
r

qi
�

�R
� −

2

cv
r�r

qr2

Lr

1

cv
���

qk
�qk,i

� −
lr2

�R
r

qr

Lr2

l�2

�R
� qi,kk

�

+
�r

�R
r

�r

Lr

��

�R
� �,i

� =
1

Stq
q̇i

� + �R
r Req

Knq
2

qi
�

�R
� −

1

cv
���

qk
�qk,i

�

−
1

Req

l�2

�R
� qi,kk

� +
1

Frq

��

�R
� �,i

� = 0, �20�

wherein we have introduced the following quantities:

Stq = 2
qrtr

cv
r�rLr , �21a�

Req = 2
qr�R

r Lr

lr2cv
r�r , �21b�

Knq =
lr

Lr , �21c�

Frq = Mq Req Knq
2 = 2

qr2�R
r

�rcv
r�r2 , �21d�

which, along with the same observations as above, we call,
respectively, thermal Strouhal number, thermal Reynolds

number, thermal Knudsen number, and thermal Froude num-
ber. Under the same identifications as before for the refer-
ence quantities, it is also possible to identify cv

r , lr and �R
r ,

respectively, as the specific heat of the system, the mean-free
path of phonons, and the resistive relaxation time at the av-
erage temperature �r. The reference time tr used in Eq. �20�,
in principle, would be different from that used in Eq. �18�.
However, if one uses the reference time defined in Eq. �19a�,
from Eq. �21a� it follows that Stq=2Mq.

Equation �20� points out that it is possible to neglect the
heat flux with respect to the spatial variations in the heat flux
itself whenever �R

r Req /Knq
2�1. As we said above, this con-

dition is fulfilled frequently in nanosystems.21 In this case
Eq. �20� becomes

�Rq̇i − 2
�R

cv�
qkqk,i

= − ��,i + l2qi,kk
, �22�

which is very similar to the Navier-Stokes equation describ-
ing the motion of an incompressible viscous fluid in the ab-
sence of external force and gives a better understanding of
the strict relation between the hydrodynamic quantities and
the thermal ones. Note that in Eq. �22� the nonlinear contri-
bution is related to qkqk,i

, while in the Navier-Stokes equa-
tion it has the form vkvi,k

.
Equation �22� allows to relate the term in �R / �cv��qkqk,i

with the convection phenomena in the evolution of the heat
flux, the term in l2qi,kk

with the irreversible diffusion phe-
nomena, and the term in ��,i with the driving force due to
inhomogeneities in the thermal field. Note that the possibility
of having both a convective contribution and a diffusive one
must not be surprising. In fact, in the framework of extended
irreversible thermodynamics1 the heat flux has its own evo-
lution equation, namely,

q̇i = −
qi + ��,i

�R
+

1

�R
Qik,k

, �23�

being Qik a second-order tensor representing the flux of heat
flux per unit time. Therefore, according to the definition of
flux itself, one may split Qik in the convective part and in the
diffusive part. This way we may conclude that, in the context
of phonon hydrodynamics, in Eq. �17� the thermal Strouhal
number �Eq. �21a�� gives information about the relative im-
portance of unsteady phenomena with respect to the convec-
tion phenomena, whereas the thermal Froude number
�Eq. �21d�� accounts for the relative importance of the con-
vection phenomena with respect to the driving force due to
inhomogeneities in the thermal field. This is in analogy with
the physical meanings of hydrodynamic Strouhal number
�St� and hydrodynamic Froude number �Fr�. These are fur-
ther reasons of the nomenclatures we used for Eqs. �21a� and
�21d�. Note that, in contrast with the formal analogy between
the definition of the thermal Mach number �Eq. �19b�� and
that of the hydrodynamic Mach number we observed above,
in classical hydrodynamics St and Fr have definitions which
are not formally the same of those in Eqs. �21a� and �21d�,
although they play an analogous role. Remember that in hy-
drodynamics one has St= trvr /Lr, and Fr=vr2 / �Lrḡr�, being
vr the reference fluid speed and ḡr a reference acceleration,

CIMMELLI, SELLITTO, AND JOU PHYSICAL REVIEW B 82, 184302 �2010�

184302-6



which is usually taken as the gravity acceleration, but qr /cv
r�r

has dimensions of a speed, i.e., units of m/s.
The thermal Reynolds number �Eq. �21b�� points out, in-

stead, the relative importance of convection with respect to
the irreversible diffusion. Its definition is similar to the
definition of hydrodynamic Reynolds number �Re�, i.e.,
Re=vrLr /�r, being �r the reference kinematics viscosity.
That way we may assume that in phonon hydrodynamics the
ratio 2�R / �l2cv�� plays the same role of � in hydrodynamics.
Further information about the relative importance between
other effects may be enlightened by obtaining suitable ratio
between these characteristic numbers.

B. Stability of the heat flow: A simple example

Let us now illustrate by a simple example the possibility
of relating the stability of heat flow with the value of some
thermal numbers. To this end, let us suppose Mq�1 and
Req�Knq

2 /�R
r . From Eqs. �4� and �17� we have

qi,i
= 0, �24a�

q̇i − �qkqk,i
− �qi,kk

+ �,i = 0, �24b�

being �=2 / �cv��, �= l2 /�R, and �=�� /�R. Prescribe then
the following boundary values:

qi�xj;t� = qi
b�xj;t�, ∀ xj � ��, ∀ t 
 0 �25�

as the initial ones

qi�xj;0� = qi
0�xj�, ∀ xj � � , �26�

where qi,i
0 �xj�=0, ∀xj ��, being � the spatial domain occu-

pied by the nanowire, and �� the boundary of the system,
respectively. Note that both �� and � cannot change in time,
since we are regarding the nanosystem as a rigid body. It is
worth observing that Eq. �24a� is not able to furnish now the
function e and hence, we cannot calculate the function �
appearing in the right-hand side of Eq. �24b� from its consti-
tutive equation. As a consequence, � must be regarded now
as an additional unknown quantity, as the components of the
heat flux. The four unknowns e and qi are to be calculated by
solving the system in Eqs. �24�. The same situation holds in
classical hydrodynamics where, in the presence of the con-
straint of incompressibility, the pressure cannot be calculated
through a constitutive equation, but becomes an additional
unknown quantity.

The solutions of the initial boundary value problem
�IBVP� in Eqs. �24a�, �24b�, �25�, and �26� will be denoted as

�qi�xj;t;qi
0�;��xj;t;qi

0�� . �27�

We aim to study the stability of these solutions when the
initial values qi

0�xj� are perturbed. Thus, let us consider the
further solution

�qi
a;�a� = �qi�xj;t;qi

0 + �qi
0�;��xj;t;qi

0 + �qi
0�� , �28�

which still satisfies Eqs. �24� and �25�, but differs from the
initial value �qi�xj ; t ;qi

0� ;��xj ; t ;qi
0+qi

0�� since

qi
a�xj;0� = qi�xj;0;qi

0 + �qi
0� = qi

0�xj� + �qi
0�xj� . �29�

If the solutions �27� and �28� behave in the same way for
increasing time, we face with stable solutions, otherwise we
have instable solutions. To be more explicit, we are inter-
ested in determining whether the form which the fields in
Eq. �27� take as t→� is stable with respect to perturbations
in the initial conditions. This problem can be analyzed by
introducing the following IBVP:

�qi,i
= 0, �30a�

�q̇i − ��qk�qk,i
+ �qkqk,i

+ �qk�qk,i
� − ��qi,kk

+ p,i = 0,

�30b�

�qi�xj;t� = 0, ∀ xj � ��, ∀ t 
 0, �30c�

�qi�xj;0� = �qi
0�xj�, ∀ xj � � , �30d�

which governs the evolution of the disturbance
��qi ; p�= �qi

a−qi ;�a−��. That way, the stability we are look-
ing for coincides with the stability of the problem in
Eqs. �30�.41 If we define the average energy of a disturbance
as

E�t� =
1

M�����

��qi�2d� , �31�

being M��� the measure of the volume of �, we may call
the solution of Eqs. �30� stable to the initial perturbations if41

lim
t→�

E�t�
E�0�

= 0. �32�

In order to apply to a very simple situation this stability
criterion, let us suppose that the disturbances are character-
ized by a small amplitude, so that we have �h /h�1, being h
the generic unperturbed quantity. Without loss of generality,
this allows us to disregard nonlinear third-order terms in the
perturbations, too. Finally, just for the sake of simplicity,
suppose also Stq�1. Along with previous observations, in
this case we have �q̇i=0, and Eq. �30b� becomes

����qkqk,i
� + �qk�qk,i

� = p,i − ��qi,kk
− ��qkqk,i

, �33�

which, having present the hypothesis �h /h�1, up to the
second-order in the perturbations, yields

��qi�2 =
1

�2�qk,i
�2

���qi,kk
− p,i�2. �34�

Therefore, if Mq�1 and Req�Knq
2 /�R

r , the heat flow re-
mains stable under initial perturbations if

lim
t→�

�
�
� cv�

2�R
	2� �l2�qi,kk

− ���,i�

�qi,k
� 	2

d�

�
�

�qi
0d�

= 0, �35�

once we have used previous identifications for �, �, and �.
For finite values of E�0�, from Eq. �35� we may conclude

that, if the gradient of the heat flux does not tend to zero as
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t→�, the stability of qi will be recovered if the perturbations
in the initial values are such that l2�qi,kk

→���,i for increas-
ing time. More generally, it is sufficient that the perturbations
in the initial values are such that the integral in the numerator
of the left-hand side of Eq. �35� is infinitesimal.

The physical interpretation of the result above is the fol-
lowing. For constant internal energy, the gradient of q can be
interpreted as the thermodynamic force which drives the heat
flow along a given direction. In Eq. �35� the strength of such
a force is represented by the term qi,k

2 . On the other hand, the
strength of the sole initial perturbation appearing in Eq. �35�
is represented by the quantity l2�qi,kk

−���,i. For large t, if
the initial perturbation has order of magnitude which is
smaller than that of the driving force, then it will be not
capable of changing appreciably the direction of q, so that
the heat flow remains stable.

On the other hand, if for large t the order of magnitude of
the initial perturbation gets high values enough to render
finite the integral above, i.e., if it is higher than that of the
driving force, hence the perturbation can deviate the heat
flux from the direction previously determined by the initial
conditions, inducing so disordered and unpredictable evolu-
tions of the flow, as, for instance, turbulence and vorticity.

Finally, let us observe that, since the form of the domain
is known, the integral above can be estimated,41 obtaining so
a threshold for the initial perturbation at which the turbulent
regime arises. Such a threshold can be useful in calculating
the risk of thermal damage in Micro/Nano Electro Mechani-
cal Sensors design.

VI. CONCLUSIONS

In the present paper we have proposed a model of rigid
heat conductor with a scalar internal state variable, in which
the evolution of the heat flux is ruled by a nonlinear Guyer-
Krumhansl equation. The internal variable can be interpreted
as a dynamical nonequilibrium temperature. A proportional-
ity law of Fourier type between heat flux and dynamical
temperature has been postulated. Under the hypothesis of
temperature-dependent thermophysical quantities, we veri-
fied that the model is compatible with thermodynamics and
derived a nonlinear extension of the classical Guyer-
Krumhansl equation. Such an equation can offer a valid tool
in the study of heat conduction in nanosystems, where non-
linear effects become important and cannot be described by
the linear Guyer-Krumhansl equation.

After introducing some dimensionless numbers, which are
suitable to express the relative importance of some of the
quantities entering the system of equations with respect to
other ones, we have proved in a simple case the stability of
the heat flow under a perturbation in the initial conditions. To
this end, we have exploited the analogy of our system of
equations with that of classical hydrodynamics of viscous
incompressible fluids. Although we have considered a very
special and simple case, the procedure is related to important
concepts, namely, the analogy with hydrodynamics and the
possibility of applying the results of the theory of stability of
fluid motions. More complex situations as well as specific

explicit applications will be considered in future researches.
Furthermore, we have compared the evolution equation

for the heat flux obtained in the present model with that
proposed in the thermomass model.28–30 It seems that a con-
fluence of both approaches is feasible and would lead to a
wide-encompassing description of heat transport in nanosys-
tems. In particular, we have commented that the nonlinear
terms appearing in the thermomass model come from a con-
vective contribution to the time derivative of the heat flux.
This convective contribution seems logical and it may be
also incorporated in our model in a natural way. But our
model has another nonlinear contribution �the last term in
Eq. �2��, which comes from nonlinear terms in a constitutive
equation, and not from a convective term. Therefore, this
contribution is restricted by the second law of thermodynam-
ics. Though here we have emphasized the transport equations
for the bulk heat flux, it should not be forgotten that the slip
heat flow along the walls may also play a very relevant role
in the description of heat transport in nanowires,42 and there-
fore it must be taken into consideration in a general analysis
of the problem. It would be of interest to explore how such
a slip-wall heat flux could influence the stability analysis
undertaken in Sec. V B, where a nonslip flow has been
assumed, in analogy with usual hydrodynamics.

For the sake of completeness, let us compare our results
with those obtained in the super-Burnett expansion of kinetic
theory. In Sec. V we noticed that, in the hypothesis of con-
stant material functions, Eq. �17� either follows from Eqs. �3�
and �5�, without need of disregarding higher-order terms, or
it replaces Eq. �11� once in its derivation third-order terms
are neglected. Let us observe that it is considerably different
from equations obtained in the super-Burnett expansion of
kinetic theory. In such a framework, a transport equation for
the heat flux up to third order was obtained by Cha and
McCoy.43 The full equations consist of more than 40 terms,
including couplings between gradients of temperature, veloc-
ity, and density. In a quiescent system with homogeneous
density and in the steady state, such equation reduces to

qi = − ��,i − a�,kk�,i − b�,ik�,k − c�,i�,k�,k − d�,kki, �36�

with a, b, c, and d phenomenological parameters, whose nu-
merical value may be obtained from kinetic theory for dif-
ferent kinds of interaction potentials. In contrast with
Eq. �17�, this equation does not contain time derivatives of
the heat flux and its formal structure is expressed in terms of
the temperature gradient rather than in gradients of the heat
flux itself. Even when qi is approximated in Eq. �17� up to
first order as qi�−��,i, the ensuing equation is still different
from Eq. �17�. The differences are still higher for unsteady
fast-varying situations, which are situations were instability
may most probably arise. Therefore, the topic of nonlinear
and nonlocal constitutive equations is very rich for explora-
tion.
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