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We examine the question of thermal melting of the triangular Abrikosov vortex solid in two-dimensional
superconductors or neutral superfluids. We introduce a model, which combines lowest Landau-level �LLL�
projection with the magnetic Wannier basis to represent degenerate eigenstates in the LLL. Solving the model
numerically via large-scale Monte Carlo simulations, we find clear evidence for a continuous melting transi-
tion, in perfect agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory and with recent
experiments.
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The problem of melting of two-dimensional �2D� solids
has been around for several decades. As was pointed out by
Kosterlitz and Thouless,1 a 2D solid to liquid transition can
generally be expected to be very different from its three-
dimensional �3D� counterpart. 3D solids melt via a first-order
transition, where the magnitude of the long-range crystal or-
der measured, e.g., by the strength of the Bragg peaks in the
structure factor, drops to zero discontinuously from a finite
value just below the melting temperature Tm. In 2D, long-
range crystal order, which breaks continuous symmetry of
spatial translations, is impossible at any nonzero
temperature.2 2D solids are thus characterized by power-law
decay of crystalline correlations at low temperatures. This,
however, is enough to give rise to a nonzero shear modulus
and the low-temperature phase is thus a true solid. The order
in this case is topological, in the sense that the solid phase is
characterized by the absence of free topological defects, i.e.,
dislocations, which are bound into pairs with Burgers vectors
equal in magnitude and opposite in direction. Kosterlitz and
Thouless proposed1 that melting in 2D can happen continu-
ously via the unbinding of dislocation pairs. Such a melting
transition is then closely analogous to the well-known
Kosterlitz-Thouless transition in 2D superfluids. Halperin,
Nelson, and Young3 developed the idea of Kosterlitz and
Thouless into a detailed theory of dislocation-mediated 2D
melting transition, which is now frequently referred to as
KTHNY theory.

Experimental confirmation of KTHNY theory has proven
to be somewhat difficult to obtain.4 However, by now there
exist reports in the literature of apparently continuous melt-
ing transitions of triangular solids, which agree very well
with KTHNY theory predictions.5 In particular, very recently
direct scanning tunnel microscope imaging of dislocation-
mediated melting of a triangular vortex solid in a thin-film
superconductor has reported a continuous transition.6 In con-
trast, there exists no direct theoretical evidence of a continu-
ous finite-temperature melting transition in any microscopic
model of 2D vortex solids.7–9

In this Rapid Communication we address the problem of
the melting of Abrikosov vortex lattices in 2D superconduct-
ors and neutral superfluids by introducing a model which
combines lowest Landau-level �LLL� projection with the
magnetic Wannier basis to represent degenerate eigenstates
in the LLL. Solving the model using state of the art Monte
Carlo simulations, we obtain clear evidence for a continuous

melting transition, in perfect agreement with KTHNY theory.
We start from the standard Ginzburg-Landau �GL� expres-

sion for the energy functional of a superconductor

H =� d2r� 1

2m���− i� � +
e�

c
A���r��2

+ a���r��2 +
b

2
���r��4	 . �1�

The superconductor is placed in a perpendicular magnetic
field B=��A. We will assume that we are dealing with a
strongly type-II superconductor, as is the case in the experi-
ment of Ref. 6. In this case fluctuations of the electromag-
netic field can be neglected and our results will then be ap-
plicable to neutral 2D superfluids in an artificial
perpendicular magnetic field as well. The quadratic part of
Eq. �1� is diagonalized by expanding the complex order pa-
rameter ��r� in terms of Landau-level eigenstates. If the
magnetic field is close to the upper critical field Hc2, or,
equivalently, the superconducting coherence length is of the
order of the magnetic length �=�c /eB, the LLL approxima-
tion can be used,8,9 when only the contribution of the LLL to
the eigenstate expansion of the order parameter is retained.
We will adopt the LLL approximation henceforth. The order
parameter is then written as

��r� = 

m

cm�m�r� . �2�

Here m is as yet unspecified LLL eigenstate label, �m�r� is
the corresponding eigenfunction, and cm is the complex am-
plitude, corresponding to the LLL eigenstate �m�r�. A crucial
ingredient of our work is a judicious choice of the LLL basis
in Eq. �2�, which should be chosen in such a way as to lead
to the simplest representation of the low-energy states of the
system. As will be clear from the discussion below, the best
LLL eigenstate basis for our problem is the basis of magnetic
Wannier functions, introduced in Ref. 10, and employed, e.g.,
in Refs. 11 and 12. We will only briefly mention the proper-
ties of magnetic Wannier functions that will be important for
our present problem. Readers interested in a more detailed
discussion should consult Refs. 10–12. Magnetic Wannier
states are defined on the sites of a triangular lattice with basis
vectors a1=ax̂ , a2=a�x̂+�3ŷ� /2 so that rm=m1a1+m2a2
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with integer m1,2. The lattice constant a2=4��2 /�3 is chosen
in such a way that the unit cell of the lattice contains exactly
one magnetic-flux quantum �a1�a2�=2��2. The explicit
form of magnetic Wannier functions �m�r� will be unimpor-
tant for us, we will only mention that these states are nor-
malizable but have a 1 /r2 decay at long distances, which is
the fastest decay compatible with the LLL projection. The
utility of this set of LLL eigenstates for our problem be-
comes apparent when one notices that, unlike arbitrary spa-
tial translations in the presence of a perpendicular magnetic
field, translations by lattice vectors of the above lattice of
magnetic Wannier states commute with each other. This al-
lows us to define lattice momentum k, belonging to the first
Brillouin zone of the triangular lattice and the corresponding
Bloch states �k�r�=1 /�N�
m�meık·rm, where N� is the total
number of magnetic-flux quanta piercing the sample. As was
shown in Ref. 12, the wave functions �k�r� are nothing but
the magnetic Bloch states, introduced by Eilenberger.13

These states form a complete orthonormal set of states in the
LLL and correspond simply to triangular Abrikosov vortex
lattices with vortex cores located at

rmk = rm + �a1 + a2�/2 + �2ẑ � k , �3�

i.e., the Bloch momentum k labels the center-of-mass posi-
tions of different Abrikosov lattice states. As shown in Ref.
12, the GL functional Eq. �1� takes a particularly simple
form, when written in the magnetic Wannier basis. Namely,
the quartic term of the GL functional �d2r���r��4
=
m1,. . .,m4

Im1m2m3m4
cm1

� cm2

� cm3
cm4

, where Im1m2m3m4

=�d2r�m1

� �r��m2

� �r��m3
�r��m4

�r� turns out to possess a low-
energy symmetry corresponding to center-of-mass conserva-
tion, i.e., Im1m2m3m4

�m1+m2,m3+m4
. This symmetry is a re-

flection of the translational symmetry of the 2D plane,
leading to the degeneracy of all the Abrikosov vortex lattice
solutions and of the LLL projection, which makes the set of
Abrikosov vortex states a complete set. Taking into account
that the matrix elements Im1m2m3m4

are short range, namely,
have a 1 /r6 decay at large distances, we then arrive at the
following LLL representation of the GL functional

H = − K

P

cos��1 − �2 + �3 − �4� , �4�

where P labels all possible smallest four-site plaquettes of
the triangular lattice �see Fig. 1� and we have taken cm
ei�m while �cm�2 is assumed fixed �note that this is not the
same as neglecting fluctuations of the amplitude of ��r�,
which would lead to Landau-level mixing�. K can be easily
related to the parameters of the original GL functional Eq.
�1� but will be left here as a phenomenological parameter. Its
physical meaning, as will become clear shortly, is the shear
modulus of the vortex lattice. Equation �4� represents the
shortest range phase-dependent center-of-mass conserving
quartic term on the triangular lattice. The quadratic term in
the GL functional and the phase-independent quartic terms
simply determine the magnitude of �cm�2 and consequently of
the parameter K.

Let us now demonstrate that Eq. �4� indeed properly rep-
resents elasticity theory of the Abrikosov vortex solid. It is

easy to show by direct substitution that the set of minimum-
energy states of Eq. �4� corresponds to all possible states
with uniform gradients of the phase �m along the basis di-
rections of the triangular lattice.14 Substituting the corre-
sponding amplitudes cmei�m into Eq. �2� one obtains pre-
cisely the set of magnetic Bloch states �k, where each
momentum k corresponds to a given value of the phase gra-
dient. It is then clear from Eq. �3� that in the long-
wavelength elasticity theory of the vortex lattice, we can
identify local vortex displacements with gradients of the
phase �

u = �2ẑ � �� . �5�

Defining the strain tensor uij = ��iuj +� jui� /2 in the standard
way and taking into account the incompressibility of the vor-
tex lattice uii=0 �summation over repeated indices is im-
plicit�, which immediately follows from Eq. �5�, one obtains
the following expression for the elastic energy:

E = 	� d2ruijuij =
	�4

2
� d2r��2��2, �6�

where 	 is the shear modulus of the vortex lattice. To con-
nect Eqs. �4� and �6�, we expand the cosine in Eq. �4� to
quadratic order in the phase, discard the ground-state energy
term, and take the continuum limit

H =
9K

32

a4

2��2� d2r��2��2 =
3�K�2

4
� d2r��2��2, �7�

which gives K=2	�2 /3� and defines the physical meaning
of K. The lack of the ����2 term in Eq. �7� is a consequence
of the center-of-mass conservation symmetry of Eq. �4�.
Equation �4� can thus be thought of as a lattice regularization
of the continuum elasticity theory of the incompressible
Abrikosov vortex solid Eq. �6�. The representation of the
continuum elasticity theory of the Abrikosov vortex lattice in
terms of the phase Laplacian in Eq. �6� has in fact been
obtained before by Moore.15 It has not, however, been real-
ized that a lattice regularization of Eq. �7�, Eq. �4� can be
used to study the melting transition.
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FIG. 1. �Color online� The internal energy, �H�, of Eq. �4�, using
Monte Carlo simulations for two different system sizes. The inset
shows the labeling of sites on the three different plaquette orienta-
tions in Eq. �4�.
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Before turning to numerical investigation of the phase
diagram of the lattice model in Eq. �4�, let us calculate some
of the basic properties of the vortex solid phase using the
continuum theory in Eq. �7�. In particular, correlations in the
vortex solid phase can be quantified by two correlations
functions: the phase correlation function Gph�r�
= �ei��r�e−i��0�� and the vortex position correlation function
Gv�r�= �eiG·�u�r�−u�0���, where G is a reciprocal-lattice vector.
Straightforward calculation gives

Gv�r�  1/r
G, 
G =
�G�2T

4�	
�8�

while Gph�r� vanishes in the thermodynamic limit for any
nonzero r and at any nonzero temperature. The exponent 
G
is in perfect agreement with the KTHNY results.3 The short-
range nature of the phase correlation function Gph in the
vortex solid has been emphasized by Tešanović16 and our
results are in agreement with Ref. 16.

As discussed above, we expect the power-law vortex solid
order in Eq. �8� to exist up to a melting temperature Tm, at
which free dislocations will appear and make the vortex po-
sitional correlations short range. To calculate Tm we will em-
ploy the standard argument,1 comparing energetic and en-
tropic contribution of a single dislocation to the free energy
of the system. We assume the presence of an isolated dislo-
cation with Burgers vector b=ax̂

� �ux · d� = a , �9�

where the contour in the above integral encloses the disloca-
tion core. Solution for the displacement field, minimizing the
elastic energy of an incompressible solid in Eq. �6� under the
constraint Eq. �9�, is given by ux=a� /2�
+ �a /4��sin�2�� , uy =−�a /4��cos�2��, where � is the po-
lar angle.17 Substituting this solution into Eq. �6�, one obtains
the following result for the dislocation energy Ed
= �	a2 /2��ln�L /a�, where L is the size of the system. Com-
paring this with the entropic contribution of the dislocation
to the free energy −T ln�L /a�2, one obtains the melting
temperature3,17 Tm=	a2 /4�=�3�K /2, which gives

K/Tm = 2/�3� . �10�

This can be compared with our numerical results, if K is
replaced by the actual value of the shear modulus at Tm �see
Eq. �11� below�.

According to KTHNY theory,3 the dislocation-mediated
melting of a triangular solid results in an intermediate
hexatic phase, between the solid and the isotropic liquid,
which has power-law orientational order of the solid but no
positional order. We do not expect to observe this phase in
our numerics, which we will describe shortly. The reason is
that our choice of the LLL basis and periodic boundary con-
ditions that this choice implies, fixes the orientation of the
vortex solid, thus precluding spontaneous orientational order.
This is true for the simulations of Ref. 8, which used the
Landau gauge orbital basis, as well. We then expect to ob-
serve a single solid to liquid transition. The main question
we would like to resolve is whether the transition is driven

by the unbinding of dislocations and described by KTHNY
theory or it is first order as in the simulations of Ref. 8 and
thus possibly unrelated to unbinding of topological defects
entirely.

We now turn to numerical Monte Carlo simulations of our
lattice model in Eq. �4�. Taking the phases �m to be continu-
ous variables between 0 and 2�, we use a modified ME-

TROPOLIS algorithm that attempts an update on each phase
variable selected randomly from a uniform distribution be-
tween 0 and ��max. An important observation we make is
that the choice of ��max critically affects the ergodicity of the
update. In conventional simulations of XY-type models,
��max is varied as a function of temperature in order to maxi-
mize simulation acceptance rates. We find that in our model
this leads to problems with freezing into nearby metastable
states. In order to combat this, we systematically explored
the simulation dynamics as a function of a temperature-
independent ��max. We find that for insufficiently large
��max the simulation freezes into a metastable state of higher
energy in an intermediate temperature regime, however, with
sufficiently large ��max, the simulation is ergodic, and al-
ways finds the correct minimum free-energy state.18 Figure 1
shows the simulation energy in the vicinity of a finite-
temperature phase transition �Tm�1.3 K, discussed below�
for two different system sizes. No evidence of a first-order
discontinuity �latent heat� is apparent.

Figure 2 shows the main result of our simulations, which
is the finite-size scaling behavior of the shear modulus K,
defined as the second derivative of the free energy with re-
spect to the uniform shear angle �s=�3��2�2�

K =
1

N�
�� �2H

��s
2� −

1

T
�� �H

��s
�2�	

�s=0

, �11�

where the prefactor in the expression for �s is chosen so that
K�T=0�=K. As is apparent from Fig. 2, we observe a single
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FIG. 2. �Color online� The finite-size scaling behavior of the
shear modulus through the finite-temperature transition. The lower-
left inset is data for linear lattice size L=16 over a larger tempera-
ture range. The solid black line is the equation K= �2 /�3��K /T,
which from Eq. �10� gives a finite-size estimate for Tm�L�. The
upper right inset is the finite-size scaling �Ref. 19� of Tm�L�, as
discussed in text, which gives an estimate for Tm�� �the star� of
1.32 K.
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continuous phase transition from the vortex solid state with a
nonzero shear modulus, to the high-temperature liquid phase.
Comparing the value of the ratio K�Tm� /Tm with the value in
Eq. �10�, we see perfect agreement with the KTHNY theory.
We can make a highly accurate quantitative assessment by
comparing the finite-size scaling behavior of Tm obtained
using Eq. �10� to the expected scaling form Tm�L�−Tm��
�Tm��ln�L�−1/� �Ref. 19� �Fig. 2 inset�, where �=0.36963,
from which we extract Tm�� /K�1.32. This scaling form
follows from the KTHNY expression for the temperature de-
pendence of the positional order correlation length �
exp�C / �T−Tm���.3

In conclusion, we have introduced a microscopic model
for the melting of a 2D vortex solid using the magnetic Wan-
nier basis to represent degenerate eigenstates in the LLL.
Solving the model using large-scale Monte Carlo simulations
shows the finite-temperature melting transition is continuous,
in agreement with KTHNY theory and recent experiments.
We note that previous work on related model have observed
a first-order melting transition.8 We believe that the most

likely reason for this difference may be our neglect of the
fluctuations of �cm�2, only retaining fluctuations of the phase
�m �note again that this does not mean we are neglecting
fluctuations of the amplitude of the order parameter ��r��.
The �cm�2 fluctuations while not soft, could conceivably lead
to a weak fluctuation-induced first-order transition. An indi-
rect confirmation of this scenario is the fact that the melting
temperature in Ref. 8 is observed to be very close to the
KTHNY melting temperature. Therefore, our result clearly
demonstrates that dislocation unbinding is the mechanism
behind the vortex lattice melting transition in 2D, even
though the transition may be driven weakly first order in
specific cases.
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