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We consider a single-electron transistor in the form of a ferromagnetic dot in contact with normal-metal and
pinned ferromagnetic leads. Microwave-driven precession by the dot induces a pumped electric current. In
open circuits, this pumping produces a measurable reverse bias voltage, which can be enhanced and made
highly nonlinear by Coulomb blockade in the dot. The dependence of this bias on the power and spectrum of
microwave irradiation may be utilized to develop nanoscale microwave detectors analogous to single-electron
transistor-based electrostatic sensors and nanoelectromechanical devices.
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Recent work has demonstrated both theoretically1,2 and
experimentally3 that a dc electric current may be pumped
through a ferromagnet�insulator�ferromagnet �F�I�F� tunnel
junction by pinning one ferromagnet and precessing the
other at frequency �. This is analogous to spin pumping by a
precessing ferromagnet into adjacent normal metals,4 which
can subsequently induce a voltage across the ferromagnet by
spin-flip processes.5 In these cases, the voltage generated by
ferromagnetic dynamics is substantially smaller than �� �the
quantum of energy supplied by the microwave source� in the
absence of spin-spin or electron-electron correlation effects.

In this Rapid Communication, we study the interplay of
ferromagnetic pumping and Coulomb blockade in single-
electron transistors, which suggests their use as sensitive de-
tectors of microwave irradiation. Our proposal complements
and extends into the magnetic realm the established tech-
niques utilizing single-electron transistors, such as electro-
static sensing6 and mechanical electron shuttling.7

We consider charge pumping by a microwave-driven fer-
romagnetic dot with a classically large spin resonantly pre-
cessing at frequency � �see Fig. 1�. The zero-dimensional
nature of the quantum dot makes the electron-electron inter-
actions relevant. Unlike static theoretical arrangements in-
volving voltage-driven transport between an interacting
quantum dot and magnetic leads,8 ours exhibits steady
charge pumping by the magnetization precession. Quantum
tunneling of the large magnetic moment is assumed to be
strongly suppressed by the dissipative environment of the
phonon continuum and/or electronic excitations associated
with metallic regions; the dynamics of the dot are therefore
dominated by classical precession, in contrast to the pro-
posed macroscopic quantum tunneling of the dot’s magnetic
moment in Ref. 9. Traditional parametric spin and charge
pumping by varying tunneling amplitudes and energy-level
structure10 in a strongly interacting normal quantum dot con-
tacted by magnetic reservoirs was considered recently in Ref.
11.

In open circuits, charge pumping induces an electrostatic
buildup between the right and left leads, which we represent
here as the bias V0�VR−VL that yields I=0. �We will hence-
forth consider the right reservoir to be grounded, i.e., VR=0.�
Without Coulomb blockade, this bias is linear in pumping
frequency1

V0 =
��

2e

P sin2 �

1 + P2 cos �
, �1�

where P= �D↑−D↓� / �D↑+D↓� is the polarization of the dot
and ferromagnetic lead in terms of the spin-dependent den-
sity of states Ds �−e is the electron charge�. The nominal
charge-pumping efficiency E�eV0 /�� �as well as the differ-
ential efficiency Ediff��e /���V0 /��� is independent of the
microwave frequency and small, vanishing as �2 when the
precession angle goes to zero. To be specific, the dot is taken
to be made of the same material as the ferromagnetic lead.

We demonstrate here that electron-electron interaction on
the dot gives rise to a highly nonlinear response V0���,
which is also robust at small �. The efficiency E of this
response is greatly increased �although still less than one�
while the differential efficiency Ediff can become extremely
large when �� is close to the Coulomb-blockade energy gap.
This frequency �or, equivalently, Coulomb gap� sensitivity of
Ediff may pave way for microwave spectral analyzer and
magnetoelectronic logic applications.

Central to our discussion is the observation that the pre-
cessing dot creates a fictitious spin-dependent voltage; this
bias, in turn, drives electron transport via hopping onto and
off of the dot from two metallic leads, one nonmagnetic
�“right” lead� and one with spin-exchange splitting � in the z
direction �“left” lead� �cf. Fig. 1�. Supposing the dot is
steadily precessing clockwise around the z axis at a constant
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FIG. 1. �Color online� Schematics of the precessing magnetic
dot coupled to two large reservoirs and the effective spin splittings
of the chemical potentials associated with the fictitious Zeeman
field of ��, according to Eqs. �2� and �3�, in the rotating frame of
reference. The long black arrows show magnetization directions.
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angle �, the total single-electron Hamiltonian �without in-
cluding electron interactions on the dot� can be written as

Ĥ�t�=p2 /2m+V�r�−�m�r , t� · �̂ /2, where �̂ is a vector of
Pauli matrices and m is the majority-spin direction. The first
two terms determine the tunneling Hamiltonian and energy
spectra of the leads and dot while m�r , t� is given by �0,0,1�
in the left lead, �sin � cos��t� , sin � sin��t� , cos �� in the dot,
and is set to zero everywhere else. By going into the rotating
frame of reference, the precession of the dot is formally
eliminated, at the expense of transforming the Hamiltonian
as follows:12

Ĥ�t� → R̂†ĤR̂ − i�R̂†�tR̂ = Ĥ�t = 0� − ���/2��̂z, �2�

where R̂=e−i�t�̂z/2 is a rotation operator that transforms out
dot precession while leaving the spin-independent energy
terms �including Coulomb interaction� unaffected. Whereas,
according to Eq. �2�, the lead Hamiltonians pick up a ficti-
tious spin-dependent potential −��� /2��̂z, the dot Hamil-
tonian can be simplified in the rotating frame to

Ĥdot�t� → Ĥdot�0� − ���/2��̂� cos � , �3�

where �̂� = �̂ ·mdot�0� is the spin operator in the direction of
the t=0 dot magnetization mdot�0� and we have disregarded
the normal component of the fictitious field in the dot, which
is valid in conventional ferromagnets with ����. The extra
“inertia” terms in Eqs. �2� and �3� shift energies of the
spin-up �down� electrons by ��� /2 in the leads and
���� /2�cos � in the dot thus creating an effective spin-
dependent bias between leads and dot that can drive transport
currents. Assuming strong spin relaxation in the dot, on the
scale of the electron injection rate, no spin accumulation is
built up there.

In the sequential tunneling regime, the electric current
flowing from, say, the left �ferromagnetic� lead to the
metallic dot is given by a sum over the possible number
of electrons N occupying the dot:13 IL=−e�NP�N��	N→N+1

L

−	N→N−1
L �, where 	N→N
1

L is the tunneling rate for one elec-
tron to hop from �to� the ferromagnet to �from� the
N-occupied dot and P�N� is the probability that N excess
electrons are contained on the dot at a given moment of time.
Coulomb blockade effects are captured by introducing the
electrostatic energy EN associated with N electrons occupy-
ing the dot, where EN=EcN�N−1� /2−eVgN and Vg is the
gate voltage �renormalized by various mutual capacitances�.
The energy for adding a single electron to the N-electron dot
is �N�EN+1−EN=EcN−eVg. Setting the equilibrium chemi-
cal potential of the leads to zero, the dot operates at the
characteristic electron number N	eVg /Ec. The energy scale
Ec is realistically of the order of 10 meV, while the driving
energy �� is typically not more than a fraction of a millielec-
tron volt. This requires going to Kelvin-range temperatures if
one is to completely disregard thermal effects. We suppose
the gate voltage Vg on the dot can be tuned so that the gap for
adding one excess electron is within the range of the driving
frequency �� but higher occupancies are increasingly less
likely due to a finite Ec.

Let us discuss a sufficiently large Ec, such that only the
transitions N�N+1 between the dot and the leads are rel-

evant. The dot electrons occupy parallel and antiparallel spin
states that adiabatically evolve with the precessing magneti-
zation. Both leads are also considered to be equilibrated in
the laboratory frame of reference at the respective spin-
independent voltages, so the tunneling rate for each is a sum
over four channels for two spin projections of dot electrons
hopping to �from� static up and down states in the leads:

	N�N+1
�l� = kBT�tl�2�

s,s�

Ds
�l�Ds��
s�s����2

� f�
��N + eVl + ���/2��s − s� cos ���
 . �4�

Here, l=L ,R labels the left/right leads and s= ↑ ,↓ �or 
�,
spin projection along the magnetization direction �or z axis
for the normal lead� while Ds

�L�=Ds, Ds
�R�=D are the ferro-

magnetic and normal-metal densities of states, respectively.
We consider the tunnel amplitudes tL and tR to be energy
independent. The spin-space matrix elements squared are
given by: �
↑ �↑ ���2= �
↓ �↓ ���2=cos2�� /2� and �
↑ �↓ ���2
=sin2�� /2�. The temperature-dependent weighting function
in Eq. �4� is f�
�= �
 /kBT��e
/kBT−1�−1.

Let us count N with respect to a reference state, such that
for �kBT ,����Ec the dot switches between N=0 and N=1
occupancies; we henceforth denote ��E1−E0. The total
steady-state electric current, I= IL= IR, is then

I = − e
	0→1

L 	1→0
R − 	1→0

L 	0→1
R

	0→1
L + 	0→1

R + 	1→0
L + 	1→0

R . �5�

The current as a function of VL �with VR=0� and � is
graphed in an inset of Fig. 2. Under the transformation �N
→−�N, VR→−VR, VL→−VL, and �→−�, the electric cur-
rent, Eq. �5�, changes sign, reflecting the electron-hole sym-
metry in our model. We can therefore choose to consider
only positive �. According to Eq. �5�, the condition for zero
current is

	0→1
L 	1→0

R = 	1→0
L 	0→1

R . �6�

The microwave-induced potential V0 is thus independent of
D, tL, or tR and depends only on �, P, �, and T.

Let us now turn to the zero-temperature properties, which
can be found analytically. First, at arbitrary � in the limit
�→� /2

eV0 = P
�2 − ���/2�2

P� − ��/2
����/2 − ���� , �7�

where the Heaviside step function ��x� reflects the fact that
the Coulomb blockaded transport is blocked at low frequen-
cies. At zero gap ��=0�, we have V0= P�� /2e, in accord
with Eq. �1�. At nonzero gap, the system exhibits marginally
increased or decreased charge-pumping efficiency E over the
noninteracting value, Eq. �1�, depending on � and P. Sec-
ond, we consider the limit �→0, keeping � finite. Equation
�1� mandates that the charge pumping vanishes with �→0
when the electron-electron interactions are neglected. At a
nonzero Coulomb-blockade gap �, however, the induced
voltage remains finite as �→0 and, in fact, is dramatically
enhanced compared to the �=� /2 result, Eq. �7�. At exactly
�=0, the total current vanishes, as it should, and V0=0.
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However, as �→0, we obtain angle-independent zero-
temperature solutions for ��0 given by

eV0 =
P��� � ���

P� − ��1 + P2�/�1 
 P����
���� � �� . �8�

Again, the step function ��x� shows the current to be
blocked for small frequencies up to ��= ���, where the re-
sponse V0 abruptly switches on. It should be clear, however,
that the limit �� ,T�→0 is nonanalytic: a finite T makes V0
vanish in the limit of �→0, progressively more abruptly so
at small temperatures. The physical explanation for a finite
V0 at small angles and low temperatures in the presence of
Coulomb blockade is as follows. First, we need to appreciate
the importance of hopping involving a spin flip although the
rates of these processes with respect to the equilibrium state
vanish as �2 �i.e., the spin-flip matrix elements squared� ac-
cording to Eq. �4�. The insets of Fig. 4 show as long red
arrows the slower, bottlenecking step of the two-part sequen-
tial process for transport of a charge from lead to dot to
opposite lead, in the presence of Coulomb blockade. The
voltage V0 would then develop in response to this weak out-
of-equilibrium tunneling. The back action of the voltage on
tunneling will not be appreciable, however, until it ap-
proaches a finite value on the scale set by energies ��− ���
and �, leading to Eq. �8�. Note that, based on this reasoning,
we should anticipate that the time necessary for the buildup
of a finite voltage, Eq. �8�, diverges as �→0, since the spin-
flipped pumping rates vanish as �2.

At finite temperatures and arbitrary � and �, Eq. �6� is
transcendental in V0 and must be solved numerically or ap-
proximately. When the induced voltage is low, expanding Eq.
�6� in V0 gives

V0��� �� 	0→1
R 	1→0

L − 	1→0
R 	0→1

L

	1→0
R �VL

	0→1
L − 	0→1

R �VL
	1→0

L �
VL,VR=0

, �9�

which can be used to find the pumping efficiencies E and Ediff
�see Fig. 3�. We have numerically graphed V0 versus � for
various positive � at kBT /Ec=10−3 and �=5° in Fig. 2 and
confirmed that the analytical curves obtained from Eq. �9�
�not shown� reproduce the numerical ones very closely. At
low frequencies, the response V0 is linear in � due to thermal
excitations. At higher frequencies, the response increases
gradually before plateauing at some V0, the value of which
depends on the sign of the gap �. For both signs of �, the
plateau sets in at about �� /Ec	10−2. However, once ��
reaches ���, the microwave driving starts to take over the
Coulomb blockade, and V0 increases rapidly �see, e.g., the
dotted line in Fig. 2 for zero temperature�. At some �, this
increase begins to fall off and, at high enough frequencies,
the response becomes linear and of essentially the same
slope as �=0, albeit with an offset.

It can be noticed from Fig. 2 �see also the inset in Fig. 3�
that E��� attains some maximum value Emax that depends
only on the sign of � �and the ferromagnetic polarization P�
at low temperatures. We can straightforwardly obtain these
Emax


 �P� �
 here labeling positive/negative �, respectively�
from the zero-temperature expression, Eq. �8�, valid at small
�. See Fig. 4 for the corresponding plots. For the parameters

FIG. 2. �Color online� Low-frequency I=0 ����Ec� numerical
curves for ��0, �=5°, P=2 /3, and kBT /Ec=10−3. Here, the in-
creasingly darker gray lines represent � /Ec= �1,2 ,3 ,4 ,5��10−2,
respectively, while the dotted-dashed red line corresponds to zero
Coulomb blockade, Eq. �1�. The T=0 small-angle analytic solution,
Eq. �8�, is shown as a dotted black line superimposed on the corre-
sponding finite-temperature curve in black. Upper inset: high-
frequency relief plot of current density for the same parameters as
the solid black curve in the main panel with tL= tR= t and I0

=0.02ekBTD2�t�2. Lower inset: thermal effects for � /Ec=−3
�10−2. The black curve corresponds to kBT /Ec=10−3 and the in-
creasingly long red dashed lines to kBT /Ec= �5,6 ,7 ,8��10−3 /2,
respectively. The dotted-dashed red line illustrates the zero
Coulomb-blockade case, as in the main panel.

FIG. 3. �Color online� The solid gray scale curves in the main
panel show the differential charge-pumping efficiency Ediff

= �e /���V0 /�� for � /Ec= �1,2 ,3 ,4 ,5��10−2 at �=5°, P=2 /3,
and kBT /Ec=10−3, according to Eq. �9�. The dotted lines show
sharper efficiency peaks as the temperature is lowered to kBT /Ec

=10−4. The dashed red lines show smearing of the peaks as the
temperature is increased to kBT /Ec= �5,6 ,7��10−3 for � /Ec=5
�10−2. Note that �=0 efficiency is too small to be seen. Inset: the
nominal charge-pumping efficiency E=eV0 /�� for the same param-
eters �omitting the kBT /Ec=10−4 data�.

MICROWAVE RESPONSE OF A MAGNETIC SINGLE-… PHYSICAL REVIEW B 82, 180403�R� �2010�

RAPID COMMUNICATIONS

180403-3



in Fig. 2, Emax
+ �0.36 and Emax

− /Emax
+ �0.1 while the nonin-

teracting efficiency, Eq. �1�, is only E�0.0018.
The reason for different maximum efficiencies for oppo-

site � can be understood as follows. For a dot attractive to
one electron �i.e., ��0�, the bottleneck process in sequential
tunneling is releasing the electron off the dot, i.e., 	1→0

L,R . Just
above the threshold frequency ��= ���, the only contributing
process to these rates is from electrons that spin flip from a
down state in the dot to an up state in the reservoirs �see the
upper inset of Fig. 4�. Both of these processes are propor-
tional to the number of available spin-down states in the dot,
D↓. In contrast, for a dot repulsive to an extra electron �i.e.,
��0�, at the same threshold pumping, the bottleneck pro-
cesses 	0→1

L,R represent electrons tunneling from a down state
in the leads to an up state in the dot �see the lower inset of
Fig. 4� both being proportional to the number of available up
states in the dot, D↑. One should notice, furthermore, that in

the ��0 case, these bottleneck channels for tunneling into
the two leads �which are here supplying the majority-spin
electrons for the dot� become progressively more asymmetric
between the two leads as P→1. We can, therefore, expect
greater absolute maximum efficiency �Emax

+ � for a ��0 dot
when P�0 and a greater absolute maximum efficiency
�Emax

− � for a ��0 dot when P�0, which is exactly what we
find for the �→0 case in Fig. 4. In fact, Emax


 →1 and 0,
respectively, as P→1. By the aforementioned electron-hole
symmetry, Emax


 switch roles when �→−�, which corre-
sponds to a different circular polarization of the ferromag-
netic precession.

Finally, supposing one has a coherent source of micro-
waves of unknown wavelength, the microwave frequency
can be measured by ensuring that the dot is in resonance with
the source and slowly ramping the electrostatic gate voltage
from �=Ec /2 down to zero, until the onset of strong charge
pumping at �=�� cos2�� /2� �supposing ��� /2, to be spe-
cific�. While this would require a frequency less than
Ec /2� cos2�� /2� �or else other transitions become relevant�
and low temperatures, it should be simple to detect the dra-
matic onset of pumping, either by the reverse bias V0 directly
or the differential efficiency Ediff. Further, we note that by
gating the dot so that it is occupied by one electron, we have
a single-electron transistor, as evidenced by the zero-
frequency I-V characteristics. By instead gating with the
pumping frequency ��, we can achieve an extremely high-
differential voltage gain Ediff= �e /���V0 /�� at the onset of
nonzero response V0 �see Fig. 3�. This offers a potential for
the on-chip integration of such devices with highly tunable
and coherent microwave sources provided by the nanomag-
net spin-torque oscillators.14
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FIG. 4. �Color online� Maximum efficiencies Emax
+ and Emax

− for
positive and negative gating �, respectively, at zero temperature
and small angles �, obtained from Eq. �8�. Emax

+ �P�=−Emax
− �−P�.

The inset schematics illustrate the difference between the two cases.
The short black arrows show the effective spin-up/down chemical
potentials in the dot and the leads. ��0 corresponds to the empty/
occupied dot �N=0 /1� in equilibrium, which becomes populated/
emptied by spin-flipped tunneling �shown by the long red arrows
toward/from the dot� when ��� ���.
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