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I consider a Corbino-geometry superconducting-normal-superconducting Josephson weak link in a thin
superconducting film, in which current enters at the origin, flows outward, passes through an annular Josephson
weak link, and leaves radially. In contrast to sandwich-type annular Josephson junctions, in which the gauge-
invariant phase difference obeys the sine-Gordon equation, here the gauge-invariant phase difference obeys an
integral equation. I present exact solutions for the gauge-invariant phase difference across the weak link when
it contains an integral number N of Josephson vortices and the current is zero. I then study the dynamics when
a current is applied, and I derive the effective resistance and the viscous drag coefficient; I compare these
results with those in sandwich-type junctions. I also calculate the critical current when there is no Josephson
vortex in the weak link but there is a Pearl vortex nearby.
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I. INTRODUCTION

Thin-film annular Josephson weak links have been
proposed1–3 as a test bed for the observation of the influence
of the Berry phase4 on the dynamics5 of a vortex trapped in
the weak link. Recent experiments have been carried out by
Hadfield et al.6 in Corbino-geometry thin-film annular Jo-
sephson weak links, in which the weak links are in the same
plane as the electrodes. The weak links were fabricated using
a focused-ion-beam technique in a superconductor/normal-
metal �Nb/Cu� bilayer to mill a 50 nm trench in the super-
conducting layer to form a weak-link superconducting-
normal-superconducting �SNS� junction. In the following, I
theoretically examine the properties of a thin-film annular
Josephson weak link in an idealized Corbino geometry, in
which current enters at the origin, flows outward, passes
through an annular Josephson weak link, and leaves radially.

The topological differences between annular weak links
and straight weak links of finite length produce striking dif-
ferences in behavior. For example, since only integral num-
bers N of flux quanta can be present in annular weak links,
their critical currents are zero when N�0, whereas arbitrary
amounts of flux can enter finite-length weak links, such that
their critical currents are usually continous functions of the
applied magnetic field.

I consider here only thin films of thickness d less than the
London penetration depth �, in which the current density j is
practically uniform across the thickness, and the characteris-
tic length governing the spatial distribution of the magnetic
field distribution is the Pearl length7

� = 2�2/d . �1�

Figure 1 shows the Corbino-geometry SNS Josephson weak
link considered. Current, supplied to the inner S film at the
origin, flows radially outward and passes through the annular
weak link �N� of inner and outer radii R−=R−dN /2 and R+
=R+dN /2, where dN�R and continues to flow radially out-
ward through the outer S film.

For simplicity, I consider only the case for which ��R.
When a Josephson vortex is trapped in the weak link or a
Pearl vortex7 is situated in the vicinity of R, the magnetic

flux �0=h /2e carried up through the film is spread out over
an area of order ��2 so that the corresponding magnetic flux
density is very weak. Although we can neglect the magnetic
field generated by the vortex, it is essential to take into ac-
count the spatial distribution of the current density j or the
sheet-current density K= jd.

In thin-film junctions or weak links8–10 there is a second
important length scale, which characterizes the spatial varia-
tion in the gauge-invariant phase across the junction11–14

� = �0/4�	0�2jc = �0/2�	0�Kc �2�

in SI units, where jc �assumed to be independent of 
 in Fig.
1� is the maximum Josephson current density that can flow
radially as a supercurrent through the weak link and Kc
= jcd is the maximum Josephson sheet-current density. The
case ��2�R corresponds to the small-junction limit in
straight finite-length junctions, and ��2�R the large-
junction limit.15

The main goals of this paper are to �a� show that when
there are N Josephson vortices trapped in the weak link, the
critical current Ic is zero for all values of the ratio � /2�R, �b�
present exact static solutions for the 
 dependence of the
gauge-invariant phase difference for arbitrary N for all val-
ues of the ratio � /2�R when the applied current is zero, �c�
examine the dynamics when a current is applied, and �d�
show how the critical current density is affected by the pres-
ence of a nearby Pearl vortex when there is no Josephson
vortex trapped in the weak link.

In Sec. II, I derive the basic equation for the gauge-
invariant phase difference ��
� across the weak link and
note that there are three additive contributions to ���
�
=d��
� /d
 to be considered. I examine in Sec. III the con-
tribution due to N flux quanta in the weak link, in Sec. IV the
contribution due to a Pearl vortex pinned nearby, and in Sec.
V the contribution due to Josephson currents. In Sec. VI, I
derive the integral equations connecting �� and sin �. I
present exact solutions for the gauge-invariant phase differ-
ence in a thin-film annular Josephson weak link containing a
single Josephson vortex �N=1� in Sec. VII and an arbitrary
number N of Josephson vortices in Sec. VIII, and for all
cases I work out some consequences for the vortex dynamics

PHYSICAL REVIEW B 82, 174515 �2010�

1098-0121/2010/82�17�/174515�11� ©2010 The American Physical Society174515-1

http://dx.doi.org/10.1103/PhysRevB.82.174515


when a net current I is applied. I calculate in Sec. IX the
critical current of the annular weak link when there is a Pearl
vortex nearby, and I briefly summarize all results in Sec. X.
Appendix A contains general expressions for the vector po-
tential and sheet-current density generated by N flux quanta
in a narrow circular slot of radius R, Appendix B contains
details of the Josephson-current-generated sheet current, and
Appendix C presents a brief comparison with the properties
of sandwich-type annular junctions.

II. GAUGE-INVARIANT PHASE DIFFERENCE

In the context of the Ginzburg-Landau �GL� theory,16,17

the superconducting order parameter can be expressed as
�=�0fei�, where �0 is the magnitude of the order param-
eter in a uniform sample, f = ��� /�0 is the reduced order
parameter, and � is the phase. Let us assume that the induced
or applied current densities are so weak that the suppression
of the magnitude of the superconducting order parameter is
negligible, such that f =1. For a thin film in which d
� the
second GL equation �in SI units� can be expressed as

K = −
2

	0�
�A +

�0

2�
� �� , �3�

where K= jd is the sheet-current density, A is the vector po-
tential, and B=��A is the magnetic induction.

With a sinusoidal current-phase relation, the Josephson
sheet-current density in the radial � direction across the weak
link is K��
�=Kc sin ��
�, where Kc is the maximum Joseph-
son sheet-current density and ��
� is the gauge-invariant
phase difference between the inner ��
R−� and outer ��
�R+� superconducting banks

��
� = ��R−,
� − ��R+,
� −
2�

�0
�

R−

R+

A���,
�d� , �4�

where R�=R�dN /2. A simple relation between ��
� and the
sheet-current densities at �=R− and �=R+ can be obtained by
integrating the vector potential A around a loop of width a
few coherence lengths larger than dN enclosing the weak link
with one end of the arc at 
�=0 and the other end at 
�=
, as
shown by the dashed contour in Fig. 1. �The weak link may
cause a proximity-induced suppression of the order param-
eter over a distance of the order of the coherence length �
into the superconductor. I assume here that ��dN.� Since
dN��, we can neglect the magnetic flux up through the
loop. Making use of Eq. �3� for those portions of the integra-
tion along the inner and outer boundaries of the weak link,
we obtain

��
� = ��0� +
�	0�

�0
�

0




�R+K
�R+,
�� − R−K
�R−,
���d
�

�5�

such that the gauge-invariant phase difference obeys

d�

d

=

�	0�

�0
�R+K
�R+,
� − R−K
�R−,
�� . �6�

When a current I enters at the origin and there is neither a
Josephson vortex trapped in the weak link nor a Pearl vortex
pinned nearby, the sheet-current K has a radial component
K�= I /2�� but no azimuthal component �K
=0�, such that
the gauge-invariant phase difference � is independent of 
.
Since dN�R, the radial current of the weak link is I
=2�RKc sin � to good approximation, and the maximum su-
percurrent that can flow without producing a voltage across
the weak link is the critical current, Ic0=2�RKc.

On the other hand, when flux quanta are trapped in the
weak link or a Pearl vortex is pinned nearby, azimuthal sym-
metry is destroyed, the radial component of the sheet-current
density K� varies as a function of 
, and the azimuthal com-
ponent of the sheet-current density K
 has the property that
�R+K
�R+ ,
�−R−K
�R− ,
���0, such that � varies with 
 ac-
cording to Eq. �6�. The net supercurrent carried through the
weak link is I= Ic0 sin �, where the bar denotes the average
over 
, and the critical current is given by its maximum
value, Ic= Ic0�sin ��max.

Although there are nonlinearities associated with the
properties of Josephson weak links, it is important to note
that Eq. �6� is a linear equation. Just as the net sheet-current
density K can be written as a linear sum of contributions so
also can d� /d
 be written as a linear sum of contributions.
Since we are interested in the behavior when flux quanta are
in the annulus, pinned vortices are nearby, and radial Joseph-
son currents flow, we need to calculate the effects of the
linear superposition of all three of the corresponding contri-
butions to the sheet-current density K and the 
 derivative of
the gauge-invariant phase difference

x

y

R

θ

R

-

+

S

N

S

FIG. 1. Sketch of the thin-film annular Josephson weak link of
inner and outer radii R−=R−dN /2 and R+=R+dN /2, considered
here. �The weak-link width dN is shown greatly exaggerated.� Cur-
rent enters the film at the origin and leaves radially at a distance
well beyond R+. Dashes show the integration contour used to derive
Eq. �5�.
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d��
�
d


= 	d��
�
d




N

+ 	d��
�
d




P

+ 	d��
�
d




J

�7�

each of which can be calculated from the corresponding dis-
continuity in �K
�� ,
� across the annulus at �=R �Eq. �6��.
We next examine each of these three contributions in turn.

III. N FLUX QUANTA IN THE ANNULAR
WEAK LINK

Suppose that N flux quanta are trapped in the annular
weak link in the absence of any nearby Pearl vortices or any
Josephson currents across the junction. Since we are consid-
ering only the case that ��R, we can neglect the vector
potential term in Eq. �3�. For �
R−, the phase �=const. and
K=0. However, for ��R+, the phase winds by multiples of
2�. When there are N flux quanta in the junction, �=−N
,
which generates the azimuthal sheet-current contribution
K
���=N�0 /�	0�� in the region ��R+. From Eq. �6� we
obtain

	d��
�
d




N

= N . �8�

The above current, phase, and field distributions are equiva-
lent to those produced by N Pearl vortices whose cores are
distributed uniformly around the circle of radius R,9 such that
the total magnetic flux carried up through the superconduct-
ing film is N�0. See Appendix A for details. Choosing an
integration contour in the shape of a circular sector of radius
��R and central angle 
 instead of the contour shown in
Fig. 1, one can show that Eq. �8� is valid for any value of
� /R.

IV. PEARL VORTEX PINNED NEARBY

Suppose that a Pearl vortex is pinned at �x ,y�= ��v ,0�
either inside the annular weak link ��v
R−� or outside ��v
�R+� but no flux quanta are trapped in the annular slot nor
are there any radial Josephson currents across the junction.
Since � ·K=0 and ��K=0, with the latter equation holding
to good approximation because the magnetic field can be
neglected when R��, the method of complex potentials and
fields can be used to calculate the sheet-current density gen-
erated in response to the Pearl vortex. In general, the com-
plex potential G��� is an analytic function of the complex
variable �=x+ iy, and the corresponding complex sheet cur-
rent is

K��� = dG���/d� = Ky�x,y� + iKx�x,y� . �9�

Since the radial and azimuthal components of K along the

unit vectors �̂= x̂ cos 
+ ŷ sin 
 and 
̂= ŷ cos 
− x̂ sin 
 are
K�= �Hxx+Hyy� /� and K
= �Hyx−Hxy� /�, we have the rela-
tion

K̃��� = K����/� = K
��,
� + iK���,
� , �10�

where x=� cos 
, y=� sin 
, �=�x2+y2, and 
=tan−1�y /x�.
When �v
R−, the complex potential is

Gin��� =
�0

�	0�
ln� � − �v

� − �i
�, � 
 R−,

=
�0

�	0�
ln �, � � R+, �11�

where �=x+ iy, x=� cos 
, y=� sin 
, and �i=R2 /�v corre-
sponds to the radial coordinate of an image vortex. Figure 2
shows a contour plot of the real part of Gin. The contours
correspond to streamlines of Kin.

When �v�R+, the complex potential is

Gout��� = 0, � 
 R−,

=
�0

�	0�
	ln� � − �v

� − �i
� + ln �
, � � R+. �12�

Figure 3 shows a contour plot of the real part of Gout. The
contours correspond to streamlines of Kout.

Evaluating Kin���=dGin��� /d� and Kout���=dGout��� /d�
at �=R− and �=R+ and using Eq. �6�, we find that

	d��
�
d




P

= P��̃v,
� , �13�

where

P��̃v,
� = 1 −
��̃v

2 − 1�
�̃v

2 + 1 − 2�̃v cos 

�14�

with �̃v=�v /R, holds for both �v
R− and �v�R+. When
�v=0 or �v=�, �d��
� /d
�P=0. However, as �v→R,
�d��
� /d
�P→1, the same result as Eq. �8� for one flux
quantum trapped in the annulus �N=1�.

V. JOSEPHSON CURRENTS

Let us next focus on the contribution to the sheet current
K generated by Josephson currents through the junction, ig-

�2 �1 0 1 2
�2

�1

0

1

2

x�R

y�
R

FIG. 2. Streamlines of the sheet current Kin generated by a Pearl
vortex at �x ,y�= ��v ,0�= �R /2,0� �black point� inside the annulus
when I=0 and N=0, obtained as a contour plot of the real part of
the complex potential Gin �Eq. �11��. The bold circle shows the
annular weak link and arrows show the current direction.
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noring the contributions due to flux quanta in the annular
weak link or a nearby Pearl vortex. To obtain the equation
determining how ��
� varies when the radial Josephson cur-
rent K��R ,
�=Kc sin ��
� varies as a function of 
, we start
by deriving the Green’s function for this problem, assuming
that the current I entering at the origin flows through the
weak link with a delta-function distribution K0��R ,
�
= �I /R���
−
��. As in Sec. IV, we can use the method of
complex potentials. The required complex potential is

G0��� = � i
I

2�
ln	 �� − ���2

���

 , �15�

where �=x+ iy=�ei
, ��=Rei
�, and the upper �lower� sign
holds for ��R ��
R�. The corresponding sheet current is

K0 =
I

2��
	 �̂��2 − R2� � 
̂2�R sin�
 − 
��

�2 + R2 − 2�R cos�
 − 
��

 , �16�

where �̂= x̂ cos 
+ ŷ sin 
 and 
̂= ŷ cos 
− x̂ sin 
. As �→R,
we obtain K0��R ,
�= �I /R���
−
�� and

K0
�R�,
� = �
I

2�R�

cot�
 − 
�

2
� . �17�

The complex potential for a general distribution of radial
Josephson sheet current K��
�=Kc sin ��
� can be obtained
from Eq. �15� by replacing I by Kc sin ��
��Rd
� and inte-
grating over 
�

G��� = � i
KcR

2�
�

−�

�

sin ��
��ln	 �� − ���2

���

d
�. �18�

From this expression we find that the radial and azimuthal
components of the sheet current associated with the Joseph-
son currents are

K���,
� =
Kc��̃2 − 1�

2��̃
�

−�

� sin ��
��d
�

�̃2 + 1 − 2�̃ cos�
 − 
��
, �19�

K
��,
� = �
Kc

�
�

−�

� sin ��
��sin�
 − 
��d
�

�̃2 + 1 − 2�̃ cos�
 − 
��
, �20�

where �̃=� /R and the upper �lower� sign holds when �
�R+ ��
R−�. The terms involving the azimuthal compo-
nents of the sheet current needed in Eq. �6� are given by the
principal-value integral

R�K
�R�,
� = �
KcR

2�
�–

−�

�

sin ��
��cot�
 − 
�

2
�d
�

�21�

such that the Josephson-current contribution to Eq. �6� is

	d��
�
d




J

=
R

2��
�–

−�

�

sin ��
��cot�
 − 
�

2
�d
�. �22�

VI. GENERAL EQUATIONS

Combining the contributions from Eqs. �8�, �13�, and �22�,
we find that general equation determining the angular depen-
dence of the gauge-invariant phase is

d��
�
d


= N + P��̃v,
� +
R

2��
�–

−�

�

sin ��
��cot�
 − 
�

2
�d
�.

�23�

We can invert this integral equation by making use of

1

2�
�–

−�

�

cot�
� − 


2
�cot�
� − 
�

2
�d
� = 2���
 − 
�� − 1.

�24�

The result is

sin ��
�

= sin � +
�

2�R
�–

−�

�	d��
��
d
�

− P��̃v,
��
cot�
� − 


2
�d
�,

�25�

where

sin � =
1

2�
�

−�

�

sin ��
�d
 =
I

Ic0
. �26�

The term involving N drops out of Eq. �25� because

�–
−�

�

cot�
� − 


2
�d
� = 0. �27�

Equation �25� can be converted back to Eq. �23� with the
help of Eq. �24� and �−�

� P��̃v ,
�d
=0.

�4 �2 0 2 4
�4

�2

0

2

4

x�R

y�
R

FIG. 3. Streamlines of the sheet current Kout generated by a
Pearl vortex at �x ,y�= ��v ,0�= �2R ,0� �black point� outside the an-
nulus when I=0 and N=0, obtained as a contour plot of the real part
of the complex potential Gout �Eq. �12��. The bold circle shows the
annular weak link and arrows show the current direction. Note that
the length scales differ from those in Fig. 2.
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VII. N=1

A. Exact solution for the static case when I=0

When a Josephson vortex is trapped in the annular weak
link �N=1� with no Pearl vortex nearby and the current I is
zero, the Josephson vortex is stationary, and the gauge-
invariant phase obeys

d��
�
d


= 1 +
R

2��
�–

−�

�

sin ��
��cot�
 − 
�

2
�d
�. �28�

This equation has an exact solution, corresponding to a Jo-
sephson vortex centered at 
=0

��
� = 2 tan−1	 tan�
/2�
tan�
1/2�
 + � , �29�

where

tan�
1/2� = �1 + �R/��2 − R/� �30�

or alternatively

R

�
=

1 − tan2�
1/2�
2 tan�
1/2�

. �31�

Note that ��−��=0, and ����=2�; also tan�
1 /2�→1 when
�→�, and 
1→� /R→0, when �→0. Fig. 4 shows ��
� vs

 for a variety of values of � /R.

Equation �29� yields

���
� =
d��
�

d

=

tan�
1/2��1 + tan2�
/2��
tan2�
1/2� + tan2�
/2�

. �32�

Note that ���0�=cot�
1 /2�=�1+ �R /��2+R /� and ������
=tan�
1 /2�=�1+ �R /��2−R /�. Figure 5 shows ���
� vs 

for a variety of values of � /R.

From Eq. �29� we also obtain

sin ��
� = −
2 tan�
1/2�tan�
/2�

tan2�
1/2� + tan2�
/2�
, �33�

which has its maximum �+1� and minimum �−1� at 
=−
1
and 
=+
1. Defining the angular width 
core of the Joseph-
son core as the range of 
 values for which � /2�sin ��
�
�3� /2, we find for N=1


core = 2
1 = 4 tan−1��1 + �R/��2 − R/�� . �34�

When � /R→�, 
core=�, and when � /R�1, 
core
2� /R.
See Figs. 4, 6, and 9. Note also that sin ��
�=0 at 
=−�, 0,
and �. Since sin ��
� is an odd function of 
, sin �= I / Ic0
=0. Figure 6 shows sin ��
� vs 
 for a variety of values of
� /R. Figures 4–6 and 9 show that the width of the Josephson
vortex core increases as � /R increases and that as � /R→�,
the Josephson vortex becomes so spread out that its center
can be identified only as the place where �=� �or an odd
multiple of ��.

The sheet-current distribution generated by the Josephson
currents can be calculated from Eqs. �19� and �20� using the
exact solution for ��
� given in Eq. �29�. When � /R=�, we
have simply ��
�=
+�, and the sheet current has the simple
dipolelike behavior K=−Kcŷ for �
R− and K
=Kc�R /��2�ŷ cos 2
− x̂ sin 2
� for ��R+. For finite values
of � /R, K can be evaluated analytically as in Appendix B or
calculated numerically from Eqs. �19� and �20�. Streamlines
of K, generated as contour plots of the real part of G using
Eq. �18�, are shown in Figs. 7 and 8 for � /R=30 and � /R
=0.3. Recall, however, that the total sheet-current distribu-
tion for N=1 is the sum of the Josephson-current contribu-

tion shown here and the contribution K= 
̂�0 /�	0�� for �
�R, as discussed in Sec. III.

In sandwich-type annular Josephson junctions �see Ap-
pendix C�, the phase obeys a sine-Gordon equation, which
involves the sine and the second derivative of the phase with
respect to the coordinate along the junction.15 In thin-film

l�R � 0.3

1

3
10

�3 �2 �1 0 1 2 3
0

1

2

3

4

5

6

7

Θ

Φ
'�Θ
�

FIG. 5. Plot of the derivative of the exact solution ���
�
=d��
� /d
 �Eq. �32�� vs 
 for N=1 and � /R=0.3, 1, 3, and 10.

l�R � 0.3

1 3 10

0.3
1310

�3 �2 �1 0 1 2 3
�1.0

�0.5

0.0

0.5

1.0

Θ

si
nΦ
�Θ
�

FIG. 6. Plot of the sine of the exact solution sin ��
� �Eq. �33��
vs 
 for N=1 and � /R=0.3, 1, 3, and 10.

l�R � 0.1
0.31 3 10

�3 �2 �1 0 1 2 3
0

1

2

3

4

5

6

Θ

Φ
�Θ
�

FIG. 4. Exact solution ��
� �Eq. �29�� vs 
 for a Josephson
vortex �N=1� in a thin-film annular weak link for � /R=0.1, 0.3, 1,
3, and 10.
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annular junctions discussed here, however, the sine of the
phase obeys an integral equation, obtained by partial integra-
tion of Eq. �25� with sin �=0 and P=0

sin ��
�� =
�

2�R
�–

−�

�

ln	csc2�
� − 


2
�
���
��d
�,

�35�

which is analogous to corresponding integral equations de-
rived in Refs. 8 and 9. The exact solution �Eq. �29�� obeys
this integral equation, as can be verified by evaluating Eq.
�35� with

���
� = −
tan�
1/2��1 − tan2�
1/2��tan�
/2�sec2�
/2�

�tan2�
1/2� + tan2�
/2��2 .

�36�

B. Dynamical behavior when IÅ0

To calculate the critical current �see Sec. II� of a small
Josephson weak link �which corresponds to the case R /�
=0�, one usually can start with a noncurrent-carrying static
solution � for which sin �=0, add a bias phase �, and then
compute sin��+��=cos � sin � to conclude that the critical
current is proportional to the average �cos ��. This procedure
remains valid here in the limit R /�=0, and the result is
�cos ��= �cos 
�=0, which tells us that the critical current is
zero in this case. However, this procedure fails for finite
values of R /� because ��
�+� is not a solution of Eq. �28�.
No static current-carrying state can be generated from the
exact solution given in Eq. �29�; there is no solution corre-
sponding to a stationary Josephson vortex in the presence of
a current I. In other words, the critical current Ic of a thin-
film annular Josephson weak link is zero for all ratios of
R /�.

As soon as a current I is applied, the gauge-invariant
phase distribution becomes time dependent and the weak
link becomes resistive. The behavior is simplest in the limit
R /�=0, for which the voltage measured directly across the
weak link between �=R− and R+ is, by the Josephson rela-
tion, V= �� /2e�d� /dt= IRn, where Rn is the normal-state re-
sistance of the annulus. Since the phase � slips by 2� with a
frequency �, this occurs because the straight-line phase dis-
tribution, given by ��
�=
+� at time t=0 �similar to the
dotted line for � /R=10 in Fig. 4�, slides rigidly toward nega-
tive values of 
 with an angular velocity �=2��, giving rise
to a voltage V=h� /2e=�0�, where �= �Rn /�0�I.

For increasing values of the ratio R /�, the time-dependent
behavior is more conveniently described in terms of
Josephson-vortex motion using a quasistatic approach. The
applied current entering at the origin produces a uniform
sheet-current density KI= �̂KI�= �̂I /2�R at the annulus. The

resulting Lorentz force18,19 FL=−
̂FL=−
̂KI��0 induces the
Josephson vortex to rotate in a clockwise sense around the
annulus. When R /��1 �� /R�1�, the Josephson core be-
comes very compact and the dissipation there becomes quite
large. As a consequence, for the same current I, the vortex

speed v=2�RV̄ /�0 and the phase-slip frequency �= V̄ /�0
become smaller than in the opposite limit � /R�1, which has
the effect of reducing the effective resistance of the weak

link, Ref f = V̄ / I. This behavior is similar to that in sandwich-
type annular junctions, as discussed in Appendix C.

To show this quantitatively, we first note that the time
dependence of all quantities calculated from the exact solu-
tion ��
� in Eq. �29� can be obtained to good approximation
by replacing 
 by 
+�t. The voltage measured directly
across the weak link between �� ,
�= �R− ,
� and �R+ ,
� is
V�
 , t�= �� /2e�d� /dt=�0����
+�t�. The power delivered
to the weak link by the external current source is therefore

�2 �1 0 1 2
�2

�1

0

1

2

x�R

y�
R

FIG. 7. Dipolelike streamlines of the Josephson-current contri-
bution to the circulating sheet-current density K for a single flux
quantum N=1 trapped in the weak link when � /R=30 and I=0,
obtained as a contour plot of the real part of the complex Green’s
function G �Eq. �18�� using the exact static solution ��
� �Eq. �29��.
The bold circle shows the annular weak link and the arrows show
the current direction.

�2 �1 0 1 2
�2

�1

0

1

2

x�R

y�
R

FIG. 8. Streamlines of the Josephson-current contribution to the
circulating sheet-current density K for a single flux quantum N=1
trapped in the weak link when � /R=0.3 and I=0, obtained as a
contour plot of the real part of the complex Green’s function G �Eq.
�18�� using the exact static solution ��
� �Eq. �29��. The bold circle
shows the annular weak link, the Josephson vortex is centered at
�x ,y�= �R ,0�, and the arrows show the current direction.
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Pin =
I�0�

2�
�

−�

�

���
 + �t�d
 = IV̄ , �37�

where V̄, the angular average of the voltage, is equal to the
time-averaged voltage, �V�=h� /2e=�0�. However, the
power dissipated by the ohmic currents across the weak
link20 is

Pout = �
−�

�

�V2�
 + �t�/Rn�d
 = �V̄2/Rn���2, �38�

where the angular average of ��2, obtained from Eq. �32�, is

��2 =
1

2�
�

−�

�

����
��2d
 = �1 + �R/��2. �39�

Equating the input power Pin to the dissipated power Pout,
we obtain the effective resistance of the annular weak link

Ref f = V̄/I = Rn/��2 = Rn/�1 + �R/��2 �40�

and the corresponding phase-slip frequency,

� = �Rn/�0�I/�1 + �R/��2.

When R /��1, such that ��2=R /� to good approxima-
tion, the Josephson core size ���� becomes much smaller
than the circumference of the weak link �2�R� and it is then
appropriate to think of the Josephson vortex speed v as being
determined by a balance between the Lorentz force19 FL and
a viscous drag force20 �v. Equating the input power Pin
=FLv to the dissipated power Pout=�v2, we obtain the vis-
cous drag coefficient �units Ns/m�

� =
�0

2

4�2RnR�
. �41�

Note that � is inversely proportional to the Josephson core
size. As discussed in Appendix C, this behavior of � is simi-
lar to that in sandwich-type annular junctions, in which � is
inversely proportional to the Josephson penetration depth �J.

The above calculations assume that the maximum value
of the displacement current density across the weak link
��r�0 /dN��dV /dt� is much smaller than the maximum Joseph-
son current density jc. This approximation is equivalent to
the requirement that the vortex speed v be much smaller than
c̄, where we find for � /R�1

c̄ = �4�3�dN

9�r�d
�1/2

c , �42�

where �r is the relative dielectric constant in the weak link
and c is the speed of light in vacuum. Note that c̄ is the
analog of the Swihart velocity21 in long sandwich-type Jo-
sephson junctions.

VIII. EXACT SOLUTIONS FOR ARBITRARY N

When N equally spaced Josephson vortices are trapped in
the annular weak link �N=1,2 ,3 , . . .� with no Pearl vortex
nearby and the current I is zero, the Josephson vortex is

stationary, and the gauge-invariant phase obeys

d��
�
d


= N +
R

2��
�–

−�

�

sin ��
��cot�
 − 
�

2
�d
�. �43�

An exact solution of this equation, corresponding to one Jo-
sephson vortex centered at 
=0 and the others arranged
around the annulus with equal angular spacing �
=2� /N is

��
� = 2 tan−1	 tan�N
/2�
tan�N
N/2�
 + � �44�

for −� /N�
�� /N. For 
 outside this interval in the posi-
tive �negative� 
 direction, multiples of 2� must be added to
�subtracted from� Eq. �44� to make ��
� continuous with the
property that ����−��−��=2�N. Also

tan�N
N/2� = �1 + �R/N��2 − R/N� �45�

or alternatively

R

�
= N

1 − tan2�N
N/2�
2 tan�N
N/2�

. �46�

Note that tan�N
N /2�→1 when �→�, and 
N→� /R→0
when �→0.

Equation �44� yields

���
� =
N tan�N
N/2�

tan2�N
N/2�cos2�N
/2� + sin2�N
/2�
. �47�

Note that ���0�=N cot�N
N /2�=�N2+ �R /��2+R /� and
����� /N�=N tan�N
N /2�=�N2+ �R /��2−R /�. Equation
�44� also yields

sin ��
� = −
2 tan�N
N/2�sin�N
/2�cos�N
/2�

tan2�N
N/2�cos2�N
/2� + sin2�N
/2�
,

�48�

which has a maximum �+1� and a minimum �−1� at 
=−
N
and 
=+
N. Defining the angular width 
core of one of the
Josephson cores as the range of 
 values for which � /2
�sin ��
��3� /2 �modulo 2��, we find for arbitrary N


core = 2
N = �4/N�tan−1��1 + �R/N��2 − R/N�� . �49�

When � /R→�, 
core=� /N, when � /R�1, 
core
2� /R.
See Fig. 9.

As in the case N=1, the critical current of the annular
weak link is zero for all N. When a current I is applied, the
effective resistance can be calculated as in Eqs. �37�–�40�,
except that for arbitrary N we have V̄=N�0�, Pout
= ���0��2 /Rn���2, and

��2 = N2�1 + �R/N��2 �50�

such that the effective resistance of the annular weak link is

Ref f = V̄/I = RnN2/��2 = Rn/�1 + �R/N��2, �51�

when R /N��1, such that ��2=NR /� to good approxima-
tion, the Josephson core size ���� becomes much smaller
than the intervortex spacing �2�R /N�. In this case the effec-
tive resistance of the annular weak link containing N Joseph-
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son vortices is Ref f =NR1, where R1=Rn� /R is the effective
resistance when N=1 in this limit �see Eq. �40��. It is also
appropriate in this limit to think of the Josephson vortex
speed v as being determined by a balance between the Lor-
entz force19 FL and a viscous drag force20 �v. Equating the
input power per vortex Pin /N=FLv to the dissipated power
per vortex Pout /N=�v2, we obtain exactly the same viscous
drag coefficient as in Eq. �41�.

IX. CRITICAL CURRENT AFFECTED BY A NEARBY
PEARL VORTEX

We next consider the behavior when there is no flux quan-
tum in the annular weak link �N=0� but there is a Pearl
vortex at �x ,y�= ��v ,0� either inside the annulus ��v
R−� or
outside ��v�R+�. For simplicity, let us consider only the
case for which � /R is so large that we can ignore the effect
of the Josephson currents on d��
� /d
. The equation deter-
mining the angular dependence of the gauge-invariant phase
is then simply

d��
�
d


= P��̃v,
� , �52�

where �̃v=�v /R and P��̃v ,
� is given in Eq. �14�. Integration
of Eq. �52� yields the gauge-invariant phase difference

�v��̃v,
� = 
 − 2 tan−1��v tan�
/2�� , �53�

where

�v = � �̃v + 1

�̃v − 1
� �54�

and the constant of integration is chosen such that
�v��̃v ,
�=0 at 
=0, the point on the annulus that is closest
to the Pearl vortex.

To calculate the critical current �see Sec. II�, we note that
the net supercurrent carried through the weak link is I
= Ic0 sin �. Noting that ��
�=�v��̃v ,
�+�, where � is a con-
stant bias phase, also is a solution of Eq. �52�, we obtain
supercurrent-carrying solutions for which I
= Ic0 cos �v sin �. The critical current is then given by the
simple result

Ic/Ic0 = �cos �v� = 4�v/�1 + �v�2 �55�

or

Ic/Ic0 = 1 − �̃v
2, 0 � �̃v � 1, �56�

=1 − �̃v
−2, �̃v � 1. �57�

Note that Ic=0 when �̃v=1, which corresponds to the case
that the Pearl vortex has moved into the annular junction.
This is equivalent to the state N=1 discussed in Sec. VII.

Equations �55�–�57� are valid only in the limit R /�=0. To
calculate Ic for finite values of R /� would require solving
Eq. �23� for N=0 at all �v. While this equation can be solved
perturbatively for small R /�, the corrections to Eqs.
�55�–�57� are second order in R /�, such that this procedure
yields only very small increases in the values of Ic / Ic0 for
0
�̃v
1 and �̃v�1. How Ic is affected for small values of
� /R �large R /�� remains unknown.

X. DISCUSSION

In this paper I have reported a detailed study of the prop-
erties of a Corbino-geometry annular weak link of radius R
in a superconducting thin film for which the Pearl length7

�=2�2 /d is much larger than R. I have considered sepa-
rately the contributions due to an integral number N of flux
quanta trapped in the weak link, a Pearl vortex pinned
nearby, and the Josephson current distribution across the
weak link. I derived two equivalent integral equations de-
scribing the gauge-invariant phase distribution ��
� around
the annulus, and I described how these integral equations can
be transformed into each other. I considered the case of N
=1 with no nearby Pearl vortex, first presenting an exact
solution for ��
� in the static case when I=0, and then dis-
cussing the dynamic case for I�0, when the Josephson vor-
tex rotates around the annulus at constant angular velocity. I
then briefly discussed the case of an arbitrary number N of
equally spaced flux quanta trapped in the weak link, again
presenting an exact solution for the static case when I=0 and
discussing the dynamic case when I�0. Finally, I calculated
the critical current Ic of the weak link as a function of the
position of a nearby Pearl vortex and showed that Ic=0 when
the Pearl vortex falls into the weak link.

A number of the effects calculated theoretically in this
paper already were observed experimentally in Ref. 6. How-
ever, we can make only a qualitative comparison between
theory and experiment, because some theoretical assump-
tions made here were not satisfied experimentally. For ex-
ample, I assumed here that ��R, while in the experiments6

�=200 nm and R=2.5 	m. In addition, I assumed a geom-
etry with azimuthal symmetry, as in Fig. 1, while the experi-
ments were done with a circular weak-link junction at the
center of tracks of width 6, 7, and 8 	m. In studying the
behavior of the critical current following field cooling, the
authors concluded that Ic was reduced by vortices pinned
near the junction �qualitatively consistent with the expecta-
tions of Eqs. �56� and �57��. In examining the effects of field
cycling, the authors also found that Ic could either abruptly
decrease as a vortex entered the junction or abruptly increase
as an antivortex entered the junction and annihilated a pre-
existing vortex �qualitatively consistent with the theoretical
expectation that Ic=0 when a finite number of flux quanta are

2l�ΠR
N � 1

N � 2

N � 3

N � 4

0 2 4 6 8 10
0.0
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l�R

Θ c
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e�
Π

FIG. 9. Angular width of the Josephson core 
core �in units of ��
vs � /R for N=1, 2, 3, and 4 �Eqs. �34� and �49��. The dashed line
shows the limiting behavior for N� /R�1.
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in the junction and there are no other nearby vortices�.
I mentioned in the introduction that thin-film annular

weak links containing trapped vortices have been
proposed1–3 as a place to test for the influence of the Berry
phase on the vortex dynamics. However, in this paper I have
assumed that the vortex motion is determined only by the
principle of conservation of energy: the vortex speed was
obtained by setting the power supplied to the weak link equal
to the power dissipated via ohmic currents. I leave it to other
authors to discover how this treatment may need to be modi-
fied to account for the influence of the Berry phase.
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APPENDIX A: N FLUX QUANTA IN A CIRCULAR SLOT

The vector potential describing the magnetic flux density
B=��A when there are N flux quanta trapped in a narrow
annular slot of radius R in an otherwise thin film character-
ized by the Pearl length �=2�2 /d can be obtained using a
procedure similar to that in Ref. 7 with the result A
= 
̂A
�� ,z�, where

A
��,z� =
N�0

2�
�

0

� J0�qR�J1�q��
1 + q�

e�qzdq �A1�

and the upper �lower� sign holds when z�0 �z
0�. For r
=��2+z2��, B
 � r̂N�0 /2�r2, where r̂= ��̂�+ ẑz� /r. The

sheet-current density is K= 
̂K
���, where

K
��� =
N�0

�	0�	1

�
 � �

R
� − �

0

� J0�qR�J1�q��
1 + q�

dq

�A2�

and  �x�=1 when x�1 and  �x�=0 when x
1.

APPENDIX B: SHEET-CURRENT DENSITY

The Josephson-current-generated sheet-current density
can be evaluated analytically from the exact solution given in
Eq. �29� as follows. The complex current density K���
=Ky�x ,y�+ iKx�x ,y�=dG���d� can be obtained by differentia-

tion of Eq. �18�. The corresponding K̃���=K���� /�
=K
�� ,
�+ iK��� ,
� �see Eq. �10��, where �=x+ iy=�ei
, x
=� cos 
, y=� sin 
, �=�x2+y2, and 
=tan−1�y /x�, is then

K̃��� = � i
KcR

2��
�

−�

�

sin ��
��� � + ��

� − ��
�d
�, �B1�

where sin ��
� is given by Eq. �33�, ��=Rei
�, and the upper
�lower� sign holds when ��R ��
R�. Changing variables to

u=tan��
�−
� /2�, !=tan�
 /2�, and !�=tan�
1 /2� �Eq. �30��,
and employing the definition

"� =
1 − !�

1 + !�

=
R/�

1 + �1 + �R/��2
�B2�

reduces the apparent complexity of the resulting integral,
whose evaluation yields for �̄=� /R�1

K
��,
� = −
4Kc!��"��!2 + 1� + �̄�!2 − 1��

�̄�1 + !��2��"� − �̄�2 + �"� + �̄�2!2�
, �B3�

K���,
� = −
8Kc!�!

�1 + !��2��"� − �̄�2 + �"� + �̄�2!2�
, �B4�

and for �̄=� /R
1

K
��,
� = +
4Kc!���!2 − 1� + "��̄�!2 + 1��

�1 + !��2��1 − "��̄�2 + �1 + "��̄�2!2�
, �B5�

K���,
� = −
8Kc!�!

�1 + !��2��1 − "��̄�2 + �1 + "��̄�2!2�
. �B6�

Since K= x̂Kx+ ŷKy = �̂K�+ 
̂K
, where �̂= x̂ cos 


+ ŷ sin 
 and 
̂= ŷ cos 
− x̂ sin 
, the above results also yield
Kx and Ky via Kx=K� cos 
−K
 sin 
 and Ky =K� sin 

+K
 cos 
. In the limit as �̄→1 ��→R+ or R−�, the above
results reduce to

K
�R�,
� = �
2Kc!��!2 − !��

�1 + !���!�
2 + !2�

, �B7�

K��R,
� = −
2Kc!�!

�!�
2 + !2�

. �B8�

However, K
�R� ,
� can be derived more simply from Eq.
�23� using N=1, P=0, and Eqs. �21�, �31�, and �32� while
K��R ,
� can be derived from K��R ,
�=Kc sin ��
� and Eq.
�33�.

When R /�=0, "�=0, and !�=1, the current pattern is di-
polelike. For �̄�1, K
�� ,
�=Kc cos 
 / �̄2 and K��� ,
�=
−Kc sin 
 / �̄2, while for �̄
1, K
�� ,
�=−Kc cos 
 and
K��� ,
�=−Kc sin 
.

For other values of R /�, the current pattern is dipolelike
only at distances �̄�"�, where, to good approximation

K
��,
� =
4Kc!� cos 


�1 + !��2�̄2 , �B9�

K���,
� = −
4Kc!� sin 


�1 + !��2�̄2 . �B10�

APPENDIX C: COMPARISON WITH SANDWICH-TYPE
ANNULAR JUNCTIONS

Numerous experimental studies have been carried out in
annular Josephson junctions, with some of these having the
so-called Lyngby geometry.22 These junctions can be thought
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of as long ring-shaped Josephson junctions sandwiched be-
tween a pair of superconducting washers. In such junctions,
there is only one length scale, the Josephson penetration
depth23 �J= ��0 /2�	0jcdef f�1/2, characterizing the spatial
variation of both the magnetic field and the nonlinear core of
a Josephson vortex as a function of the coordinate x along
the length of the junction. Here jc is the maximum Josephson
supercurrent, def f =di+2�, where di is the insulating barrier
thickness and � is the London penetration depth, and it is
assumed that �J�def f. Starting with solutions of the sine-
Gordon equation to describe the gauge-invariant phase dis-
tribution associated with a periodic Josephson-vortex array
of period L, Lebwohl and Stephen20 discussed the Lorentz-
force-induced motion of the array and calculated the result-
ing viscous drag coefficient per unit length of vortex �.

The gauge-invariant phase distribution for a sandwich-
type annular weak link of radius R and width W, where
def f �W�2�R, containing a single Josephson vortex �N
=1� can be obtained from Ref. 20 by simply replacing L by
2�R. The solution analogous to Eq. �29� is

��
� = 2 sin−1	sn�� R


k�J
�k2�
 + � , �C1�

where kK�k�=�R /�J, K�k� is the complete elliptic integral of
the first kind24,25 of modulus k and parameter k2, and
sn�u �m� is the Jacobian elliptic function of parameter m. In
the limits of small and large R /�J, Eq. �C1� reduces to

��
� = 
 + �, R/�J � 1, �C2�

=2 sin−1�tanh�R
/�J�� + �, R/�J � 1. �C3�

The angular dependence of ��
� in a sandwich-type annular
weak link is displayed in Fig. 10.

The critical current of a sandwich-type annular junction
containing a single Josephson vortex is zero, and for small
currents it is a good approximation to assume that the phase
distribution of Eq. �C1� rotates around the annulus with a
speed v=R�=2�R�. The effective resistance of the junction,
calculated as in Sec. VII, is

Ref f = V̄/I = Rn/��2, �C4�

where Rn is the normal-state resistance of the annular junc-
tion, ��2 is the angular average of �d��
� /d
�2

��2 =
4RE�k�
��Jk

, �C5�

=1, R/�J → 0, �C6�

=
4R

��J
, R/�J � 1 �C7�

and E�k� is the complete elliptic integral of the second
kind.24,25

In the limit �J�R, for which the Josephson core size
���J� is much smaller than the circumference of the annulus
�2�R�, it is appropriate to think of the effective resistance as
arising from a balance between the Lorentz force per unit
length of vortex and a viscous drag force per unit length. In
this limit, the viscous drag coefficient per unit length �units
Ns /m2� is20

� =
�0

2

�2RnRW�J
, �C8�

where W is the width of the annular junction. Note that � is
inversely proportional to the Josephson core size.
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