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We have studied the distinctive features of the Fulde-Ferrel-Larkin-Ovchinnikov �FFLO� instability and
phase transitions in two-dimensional �2D� mesoscopic superconductors placed in magnetic field of arbitrary
orientation and rotating superfluid Fermi gases with imbalanced state populations. Using a generalized version
of the phenomenological Ginzburg-Landau theory we have shown that the FFLO states are strongly modified
by the effect of the trapping potential confining the condensate. The phenomenon of the inhomogeneous state
formation is determined by the interplay of three length scales: �i� length scale of the FFLO instability; �ii� 2D
system size; �iii� length scale associated with the orbital effect caused either by the Fermi condensate rotation
or magnetic field component applied perpendicular to the superconducting disk. We have studied this interplay
and resulting quantum oscillation effects in both superconducting and superfluid finite-size systems with FFLO
instability and described the hallmarks of the FFLO phenomenon in a restricted geometry. The finite size of the
system is shown to affect strongly the conditions of the observability of switching between the states with
different vorticities.
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I. INTRODUCTION

The Zeeman interactions of electron spins with magnetic
field is known to be one of the mechanisms destroying the
singlet superconducting order �see, e.g., Ref. 1�. According
to this mechanism a homogeneous superconducting state be-
comes energetically unfavorable above the Pauli limiting
field Hp=� /�B

�2, where � is the gap value and �B is the
Bohr magneton. However, superconductivity can appear
even at the fields exceeding the Hp field provided we con-
sider inhomogeneous states with a spatially modulated
Cooper-pair wave function.2 In this scenario the Cooper pairs
consist of electrons with different spin projections and dif-
ferent absolute values of momentum.

There are at least two difficulties in experimental obser-
vation of the FFLO instability: �i� first, the strong orbital
effect which destroys Cooper pairs above the upper critical
field Hc2 which appears to be much less than Hp in most
superconducting compounds; �ii� second, the impurity scat-
tering which is known to prevent the FFLO state formation.
Thus, to observe this interesting physical phenomenon we
need to find rather clean superconducting materials with very
short coherence lengths to increase the critical field corre-
sponding to the orbital effect. Alternatively, we should con-
sider strongly anisotropic quasi-two-dimensional �2D� sys-
tems or very thin films in a magnetic field parallel to the
superconducting planes. Among the compounds which are
usually included in the list of strong candidates for the FFLO
states observation one should mention layered organic
superconductors3 and heavy fermion systems like CeCoIn5
�see Ref. 4 and references therein�.

During the last decade the attention of both theoreticians
and experimentalists have been attracted to a new type of
superfluid systems which are considered as promising play-
ground for the study of this intriguing phenomenon, i.e., ul-
tracold Fermi gases in magneto-optical traps.5 The FFLO-

type instability in these systems is caused not by the Zeeman
interaction but by the tuning of the population imbalance
between two lowest hyperfine states of 6Li atoms. Experi-
mentally this population imbalance is governed by the radio-
frequency signal inducing transitions between the hyperfine
states. Thus, changing the population imbalance we should
get the inhomogeneous FFLO state with a certain intrinsic
length scale and this phenomenon is not masked by any kind
of the orbital effect. The orbital effect in such neutral atomic
condensates is associated not with magnetic field but with
system rotation which is known to be an important part of
the experimental procedure of detection of superfluidity in
the ultracold gases.6 The FFLO states in an ultracold gas
cloud should be, of course, modified by the effect of the
trapping potential confining the atomic system. As a result,
the physics of this phenomenon will be determined by the
interplay of three length scales: �i� length scale of the FFLO
instability; �ii� atomic system size; �iii� the length scale as-
sociated with the condensate rotation L�=�� /M�, where M
is the atomic mass and � is the angular velocity. An analo-
gous interplay appears in a thin mesoscopic superconducting
disk with FFLO instability caused by the strong magnetic
field parallel to the disk plane. The effect of rotation in this
case and corresponding length L� should be replaced by the
magnetic field component Hz perpendicular to the disk plane
and magnetic length LH=��c /eHz, respectively. The goal of
this paper is to study this interplay in both superconducting
and superfluid finite-size systems with FFLO instability and
describe the hallmarks of the FFLO phenomenon in a re-
stricted geometry.

In standard superconductors without FFLO instability the
finite system size is known to cause the so-called Little-Parks
effect, i.e., the oscillatory behavior of the phase transition
line on the plane magnetic field-temperature.7,8 These quan-
tum oscillations originate from the switching between the
superconducting states with different vorticities or winding
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numbers. The quantum oscillations of the critical tempera-
ture vs magnetic field �or angular velocity� are known to
reveal themselves also in infinite 2D FFLO superconductors
and superfluids.9,10 A manifestation of FFLO state is the spe-
cial type of the proximity effect at the interface between
superconductor and ferromagnet which results in damped os-
cillatory behavior of the Cooper-pair wave function inside
ferromagnet.11 The proximity induced switching between the
superconducting states with different vorticities in multiply
connected hybrid superconductor/ferromagnet structures was
suggested recently in Ref. 12. Our theoretical work aims to
the identification of both the similarities and distinctive fea-
tures of the quantum oscillations in mesoscopic systems with
and without FFLO instability. We focus here on the case of
2D systems when the quantum oscillatory effects appear to
be most pronounced. In Sec. II we discuss a modified
Ginzburg-Landau �GL� model which takes account of both
the FFLO phenomenon and confinement effect. In Sec. III
we consider the case of a mesoscopic disk while the Sec. IV
is devoted to the rotating Fermi condensates confined in
traps. We summarize our results in Sec. V.

II. MODIFIED GINZBURG-LANDAU MODEL
FOR 2D FFLO STATES

Hereafter our consideration of the FFLO phase formation
will be based on modified GL theory where the appearance
of the nonuniform state is caused by a change in the sign of
the second-order gradient term in the free-energy expansion.
An appropriate GL functional can be derived from the mi-
croscopic theory �see Ref. 13�. Calculating the superfluid
critical temperature one can take the GL free-energy density
in the form

F = a���2 − ��D��2 + ��D2��2, �1�

where � is the superfluid order parameter, a=	�T−Tc0� and
Tc0 is the critical temperature of the second-order transition
into a uniform superconducting or superfluid state, and D is
the gauge-invariant two-dimensional momentum operator.
Note that here we omit the terms of the higher order in �
which come into play only below the superfluid transition. In
the FFLO region the coefficients � ,�
0 and minimum of
the free-energy functional does not correspond to uniform
state since a spatial variation in the order parameter results in
decrease in the system energy. Certainly, the GL functional
provides an adequate description of a long-wavelength FFLO
modulation only near the Lifshitz tricritical point, however
the results of the GL approach can be extrapolated qualita-
tively to the whole region of the FFLO phase. Note that the
above free-energy density includes the terms quadratic in �
function and, thus, our model provides an adequate descrip-
tion only for the second-order phase transitions. The order of
the transition from the normal phase to the FFLO state
strongly depends on the particular system parameters and
dimensionality and is controlled by the fourth order in �
terms in the free-energy expansion. Explicit calculations13,14

have demonstrated that in the clean limit in 2D supercon-
ducting systems the transition into FFLO state is always of
the second order. Of course, for superfluid ultracold Fermi

gases the problem of the phase transition order should be
treated separately.

A lateral confinement of the condensate can be introduced
either using a boundary condition for the order parameter �
at the sample edge or adding an external potential well V�r�
to the free-energy density �1�

F = �a + V�r�����2 − ��D��2 + ��D2��2, �2�

where r is the in-plane radius vector. Varying an appropriate
free-energy functional �2� we find

�D4� + �D2� + �a + V�r��� = 0. �3�

We restrict ourselves to the consideration of cylindrically
symmetric systems and, thus, assume the confining potential
V�r� to depend only on the radius r, where �r ,� ,z� are the
cylindrical coordinates. The value k0=�� /2� in the above
equation plays the role of the inverse characteristic length
scale of the FFLO modulation. It is convenient to introduce a
dimensionless coordinate �=k0r and dimensionless shift of
the critical temperature =a /�k0

4,

Tc = Tc0 +
�k0

4

	
 . �4�

As a result, one can rewrite Eq. �3� in a dimensionless form

D�,�
4 � + 2D�,�

2 � + � + v����� = 0, �5�

where D�,�=D /k0 and v���=V /�k0
4.

In the following sections we proceed with the calculation
of the shift of the critical temperature for FFLO states with
different vorticities or winding numbers. We consider two
generic examples of restricted FFLO systems: �i� a thin me-
soscopic superconducting disk of the radius R placed in an
external magnetic field tilted with respect to the disk plane;
�ii� rotating 2D superfluid Fermi condensate confined in a
harmonic trap.

III. FFLO STATE IN A 2D MESOSCOPIC DISC

A thin superconducting disk of a finite radius R placed in
external magnetic field H=H� +Hzz0 provides a simplest ex-
ample illustrating the effect of Cooper-pair confinement on
the FFLO state. The gauge-invariant 2D momentum operator
in the above equations for � takes the form

D = �+
2�i

�0
A ,

where A= �0,A� ,0�= �0,Hzr /2,0� is the vector potential of
the field component Hz=curlz A, and �0=��c / �e� is the flux
quantum. Considering the limit of vanishing disk thickness
we neglect here the orbital effect caused by the field compo-
nent H�. At the same time the Zeeman interaction energy
associated with this parallel field component H� is assumed
to be crucial and responsible for the FFLO instability. The
coefficient �= �H� ,T� is a function of temperature T and Zee-
man energy �BH� and vanishes in the tricritical Lifshitz point
�T� ,H�=Hc2�T���: ��H� ,T��=0. This tricritical point
�T� ,H�� is the meeting point of three transitions lines sepa-
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rating the normal, uniform superconducting, and nonuniform
FFLO states �see Fig. 1�a��. A trapping potential is assumed
to be absent �V�r�=0� and confinement of the superconduct-
ing condensate occurs due to the boundary condition at the
disk edge. This Neumann-type boundary condition for a disk
in an insulating environment and the gauge A= �0,A� ,0�
takes the form

� ��

�r
�

r=R

= 0.

A. FFLO state in a 2D mesoscopic disk in a parallel
magnetic field

We start our consideration from the case of zero perpen-
dicular component of external magnetic field: Hz=0. The Eq.
�5� can be simplified and written as follows:

��,�
2 � + 2��,�� + � = 0, �6�

where ��,� is a 2D Laplace operator written in dimensionless
coordinates � ,�. Equation �6� with the boundary condition

� ��

��
�

�=R0

= 0 �7�

defines a set of eigenfunctions and corresponding eigenval-
ues . Here we introduce the dimensionless disk radius
R0=k0R. The maximum eigenvalue  gives us a critical tem-
perature of transition into the FFLO phase. The solution can
be simplified due to the following obvious observation: the
eigenfunctions of the Eq. �6� coincide with eigenfunctions of
the Schrödinger-type problem

− ��,�� = q2� , �8�

with the boundary condition �7� at the disk edge. The result-
ing dimensionless shift of the critical temperature  depends
on the wave number q,

�q� = 2q2 − q4. �9�

The solutions of Eq. �8� characterized by a certain angular
momentum L can be expressed via the Bessel function of
first kind JL�q��,

� = eiL�JL�q�� . �10�

The vorticity parameter L coincides with the angular mo-
mentum of the Cooper-pair wave function. The boundary
condition �7� gives us a set of zeros zLn of the derivative of
the Bessel function JL�z� :�zJL�zLn�=0. As a consequence, we
get a set of eigenvalues qLn=zLn /R0. In accordance with Eq.
�9� the set of wave numbers qLn determines a set of critical
temperature shifts

Ln = 2	 zLn

R0

2

− 	 zLn

R0

4

, �11�

characterizing vortex states with different winding numbers
L,

�Ln = eiL�JL�qLn�� .

To get the critical temperature of the superconducting transi-
tion into the FFLO state we need to find the maximum of the
Tc value, i.e., the maximum of the function

Tc − Tc0 =
�k0

4

	
max

Ln
�Ln� . �12�

In Fig. 2 we plot the dependencies of the dimensionless
shift of the critical temperature Ln vs the parameter R0 for
different L and n values. These phase transition curves
clearly demonstrate the switching between the FFLO
states characterized by different winding numbers L. For the
fixed value of the disk radius R the parameter R0 can be
tuned by changing the temperature T and/or the in-plane
magnetic field H�. We see that for a small disk radius
R�1 /k0�R0�1� FFLO instability is suppressed ��0� and
only uniform superconducting state appears to be energeti-
cally favorable. With the increase in the R0 value the diam-
eter of the disk becomes comparable with the period of the
superconducting order parameter oscillations and, thus,
FFLO state in the disk becomes energetically favorable. It is
interesting to note that nonuniform FFLO state promotes the
vortex states with L�0: the mode L=1 arises primarily just
below T�. The switching between the FFLO states character-
ized by different winding numbers L results in an oscillatory
behavior of the critical temperature Tc as a function of the
external field H�, which can be found as an envelope of a set

T

||H
FFLO

Homogeneous
superconductor

Normal phase

� �**, HT

(a)

Lifshitz
tricritical point

T

||HFFLO

Homogeneous
superconductor

Normal phase

� �**, HT

1�L

2�L

0�L

(b)

FIG. 1. Schematic phase diagram in the plane H� −T for an
infinite 2D superconducting film �a� and for a 2D disk of a finite
radius �b� in a parallel magnetic field H�. Phase transition lines
between normal state and different superconducting phases are
shown by solid lines. The phase transition line between the FFLO
and homogeneous superconducting phases is shown by the dotted
line. These phase transition lines cross at the tricritical Lifshitz
point �T� ,H��. The phase transition line between the normal phase
and vortex states in panel �b� is shown by the dashed line.

FIG. 2. �Color online� Dependence of the shift of the critical
temperature  vs the dimensionless disk radius k0R for different
values of vorticity L.
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of curves in Fig. 2. In Fig. 1�b� we show schematically a
resulting phase diagram in the plane H�-T. The critical tem-
perature appears to be degenerate for FFLO states with op-
posite vorticity signs and, as a result, the sinusoidally modu-
lated superconducting states below Tc can be formed by
superpositions of angular harmonics with L and −L similar to
those observed numerically in mesoscopic rings.15

B. FFLO state in a mesoscopic disk in the magnetic field
of arbitrary orientation: Little-Parks oscillations

Let us now consider the effect of an additional component
of the magnetic field Hz, applied perpendicular to the disk
plane. We use here the gauge A= �0,A� ,0�, where
A�=Hzr /2, and look for the solution of the Eq. �5�
�with v=0� characterized by certain angular momentum L

���,�� = fL���eiL�. �13�

The function fL��� satisfies the equation

DL
2�DL

2 fL� + 2DL
2 fL + fL = 0, �14�

where the operator DL is determined by the expression

DL
2 =

1

�

d

d�
	�

d

d�

 − 	L

�
+

�

aH
2 
2

. �15�

Here aH=k0
��0 /�Hz is the dimensionless magnetic length

in the units of k0
−1. The solution in the disk should meet the

boundary condition

� � fL

��
�

�=R0

= 0 �16�

at the disk edge. As in the previous section, the eigenvalue 
determines the shift of the critical temperature caused by the
FFLO instability. The eigenfunctions fL��� of problems �14�
and �16� coincide with the eigenfunctions of the differential
operator DL

2

− DL
2 fL = q2fL, �17�

with the same boundary condition �16�. The relation between
the eigenvalue  and the eigenvalue of the operator DL

2 is
given by the expression �9�.

The solution of the Eq. �17� can be expressed via the
confluent hypergeometric function of the first kind �Kum-
mer’s function� F�a ,b ,z�,16

fL��� = e−�/2��L�/2F�aL,bL,�� , �18�

where

aL =
1

2
	�L� + L + 1 −

q2aH
2

2

, bL = �L� + 1, � = �2/aH

2 .

�19�

The boundary condition �16� can be rewritten in terms of the
Kummer’s functions

aLF�aL + 1,bL + 1,�R� +
bL

2
	 �L�

�R
− 1
F�aL,bL,�R� = 0,

�20�

where �R=�R2Hz /�0 is the magnetic flux piercing the disk
area in the units of flux quantum. Equations �19� and �20�
define an implicit dependence of the eigenvalue qL on the
parameters k0, R, Hz and the orbital number L. Thus, using
Eq. �9� one obtains the dependence of the critical tempera-
ture TL of the state with a vorticity L on the parameters k0, R,
Hz,

TL = Tc0 +
�k0

4

	
L, �21�

where

L = 2qL
2 − qL

4 . �22�

The critical temperature Tc of superconductivity nucleation is
determined by the maximal TL value

Tc = max
L

�TL� . �23�

The maximal TL corresponds to the maximal eigenvalue  of
problems �14� and �16�. It has been already shown that for
Hz=0 the function �q� can be expressed through the zeros
of the derivatives of the Bessel functions. These values were
taken as the zero approximations to roots of the general
boundary condition �20� for Hz�0.

In Figs. 3 and 4 we show typical phase diagrams on the
plane � ,�a=1 /aH

2 � for different disk radii. Here �a is a di-
mensionless magnetic field component along the z axis. The
phase boundary exhibits Little-Parks oscillations, caused by
transitions between the states with different angular mo-
menta L. The decrease in the disk radius results in the de-
crease in the observable number of transitions between dif-
ferent vortex states. For rather small disk radii �Fig. 3� one
can clearly observe the regime of the magnetic field induced
superconductivity. It should be noted that the switching be-
tween the vortex states in the disk can occur with large
jumps in vorticity �L
1 �see Fig. 4�b��. Similar jumps in

FIG. 3. �Color online� Typical phase diagrams for 2D disks in
the plane � ,�a� for disk radii k0R=1,1.2. The segments of the
��a� curves corresponding to the different values of the vorticity
L=0,1 are indicated by the arrows. The dotted line corresponding
to an infinite 2D system �see. Ref. 9� is shown for comparison.
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vorticity are known to occur in mesoscopic rings17 and hy-
brid FS structures.18

C. Vortex solution in a disk beyond the range of FFLO
instability: Critical field of the vortex entry

Unconventional behavior of the vortex states in thin disks
placed in a strong parallel magnetic fields reveals, of course,
not only in the peculiarities of the oscillatory behavior of the
superconducting phase transition line. To illustrate the effect
of Zeeman interaction energy on the basic properties of vor-
tices in finite-size samples we consider here the critical field
of the first vortex entry into a homogeneous superconducting
state close �but beyond� the range of FFLO instability. In
order to find this critical field we need to calculate the energy
difference between the states with and without vortex. Ne-
glecting the contribution of the vortex core we can assume
the order-parameter absolute value to be homogeneous
��e−i�� and consider only the gradient part of the free-
energy functional

Fg

F0
=� d2r��1

2�D��2 + �2
4�D2��2� , �24�

where F0 is a constant normalization factor. Approaching the
tricritical point one can change the balance between two gra-
dient terms in the above expression: for H�→H� we obtain
�2��1 and, thus, the fourth-order gradient term becomes a
dominant one.

We consider a vortex placed in the center of a disk of
finite radius R and take the gauge A�=Hzr /2. The energy
difference between the states with and without such vortex
takes the form

�Fg

F0
= 2��

�m

R

rdr��1
2	1

r
−

2�

�0
A�
2

− �1
2	2�

�0
A�
2

+ �2
4	1

r
−

2�

�0
A�
4

− �2
4	2�

�0
A�
4� ,

where �m=max��1 ,�2�. Integrating over r we find

�Fg

F0
= 2��1

2�ln
R

�m
− �R +

�2
4

2�m
2 �1

2

+
�2

4

R2�1
2	3�R

2 − �R
3 − 4�R ln

R

�m

� ,

where �R=�R2Hz /�0. The condition �F=0 gives us the field
of first vortex entry

ln R̃ − �R +
	

2
+

	

R̃2
�3�R

2 − 4�R ln R̃ − �R
3� = 0.

Here we introduce the dimensionless parameters:

R̃=R /�m�1 and 	=�2
4 / ��m�1�2. It is natural to consider now

two limiting cases. Far from the range of FFLO instability
we can put �1��2�	�1� and find a standard logarithmic
expression �R ln�R /�1�. The field of the first vortex entry
can be written as follows:

Hz
�c� �

1

R2 ln
R

�1
, �1 � �2.

Close to the range of FFLO instability we need to consider
an opposite limit �1��2�	�1� and obtain �R�R /�2�2/3.
The scaling behavior of the field of the first vortex entry
changes dramatically

Hz
�c� � 	 1

R

4/3

, �2 � �1.

Both coherence lengths ��1 and �2� diverge as one ap-
proaches the tricritical point. Considering the above asymp-
totical expressions for Hz

�c� one can see that for H� well below
H� the field Hz

�c� diverges as a function of variable H�−H�

while close to H� the critical field Hz
�c� tends to zero. Thus,

the dependence of the critical field Hz
�c� vs H�−H� should

reveal a peak in the vicinity of the Lifshitz tricritical point.

IV. FFLO STATE IN A SUPERFLUID CONDENSATE
CONFINED IN A TRAP

As a second example of the effect of the condensate con-
finement on the FFLO states we consider a superfluid Fermi
gas trapped by a harmonic potential

FIG. 4. �Color online� �a� Typical phase diagrams for 2D disks in the plane � ,�a� for disk radii k0R=2,5. The dotted line corresponding
to an infinite 2D system �see Ref. 9� is shown for comparison. �b� Jumps in vorticity L vs the dimensionless magnetic field �a for
k0R=2.
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V�r� =
1

2
M�2r2. �25�

Here � is a trapping frequency and M is the atomic mass.
Similarly to the previous section we start from the free-
energy density �Eq. �2�� written in notations which are ad-
equate for a rotating superfluid gas. In this case the two-
dimensional momentum operator D can be expressed
through the angular velocity vector �=�z0 directed along
the z axis

D = �−
2iM

�
��,r� ,

and the coefficient � of the term �����2 in the expression
�2� depends on the population imbalance ��. The rotation of
superfluid gases plays a similar role as the orbital effect in
superconductors. Varying the free-energy functional and in-
troducing a dimensionless radial coordinate �=k0r we find

D�,�
4 � + 2D�,�

2 � + � + v0�2�� = 0, �26�

where D�,�=D /k0 and the parameter v0=M�2 /2�k0
6 charac-

terizes the trapping potential.

A. FFLO state in a parabolic trapping potential

In the absence of rotation ��=0� the Eq. �26� can be
simplified

��,�
2 � + 2��,�� + � + v0�2�� = 0, �27�

where ��,� is a 2D Laplace operator written in � ,� coordi-
nates. Introducing a 2D Fourier transform

� =� d2qeiqr���q� �28�

one can write the Eq. �27� in the momentum representation
as the Schrödinger-type equation with the potential
U�q�=q4−2q2,

− v0�q� + U�q�� = − � . �29�

One can see that the solution of Eq. �27� with minimal en-
ergy − should correspond to the zero angular momentum:
L=0. Indeed, the momentum-dependent contribution to en-
ergy is positive and proportional to L2. For rather small v0
values the lowest-energy level − in this Schrödinger-type
equation is close to the value −1 and the wave function is
localized near the potential minimum. As a result, one can
introduce the coordinate s=q−1 and expand the potential
near the minimum U−1+4s2 to consider an approximate
oscillator-type solution. Indeed, for �s��1 we obtain

− v0
�2

�s2� + 4s2� = �1 − �� . �30�

The lowest-energy level of this harmonic oscillator and cor-
responding wave function take the form

 = 1 − 2�v0, � = e−s2/�v0.

The expression =1−2�v0 gives us the critical temperature
of the FFLO state. One can see that the FFLO instability

appears only for rather small trapping frequencies: v0�1 /4.
To find the eigenfunction in the r space we should consider
the inverse Fourier transform

�  �
−�

+�

dse−s2/�v0J0��1 + s��� ,

where J0 is a Bessel function of the zeroth order. Considering
the asymptotical expression for the Bessel function at ��1
we find

� 
1
��
�

−�

+�

dse−s2/�v0 cos��1 + s�� − �/4�

=
1
��

Re�
−�

+�

dse−s2/�v0ei�1+s��−i�/4

=��

�
cos�� − �/4�e−�2�v0/4.

Thus, the wave function strongly decays with increase in the
trapping frequency and the number of observable oscillations
is on the order of 2v0

−1/4=2k0�� /M�2�−1/4.

B. FFLO states in a rotating superfluid gas in a parabolic
trapping potential

As a next step we study the effect of rotation ���0� on
the superfluid states of the Fermi gas trapped in the parabolic
potential well �Eq. �25��. We look for the solution of Eq. �26�
characterized by the conserving angular momentum L

�L��,�� = fL���eiL�, �31�

where fL satisfies the equation

DL
2�DL

2 fL� + 2DL
2 fL + � + v0�2�fL = 0, �32�

DL
2 =

1

�

d

d�
	�

d

d�

 − 	L

�
+ �a�
2

, �33�

and �a=2M� /�k0
2 is the dimensionless rotation frequency.

Let us consider the following expansion for the order param-
eter:

fL��� = �
n=0

�

cnunL��� , �34�

where unL are the eigenfunctions of the operator −DL
2 corre-

sponding to the eigenvalues

qnL
2 = 2�a�2n + L + �L� + 1� ,

and the coefficients cn satisfy the equation

�2qnL
2 − qnL

4 �cn − �
m

vnm
L cm = cn. �35�

The matrix elements

vnm
L = v0�

0

�

�d��umL�2unL�

are nonzero if m=n or m=n�1,
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vnn
L =

v0

�a
�2n + �L� + 1�, vn�n+1�

L = −
v0

�a

��n + 1��n + �L� + 1� ,

v�n−1�n
L = −

v0

�a

�n�n + �L�� . �36�

The set of normalized eigenfunctions unL��� can be written
as follows:

unL��� =�2�a

�n + �L��!
�n!��L��!�2e−�a�2/2��a�2��L�/2

�F�− n, �L� + 1,�a�2� ,

�
0

�

�d��unLumL� = �nm. �37�

The maximal eigenvalue  of the above problem determines
the shift in the critical temperature of the FFLO transition.
Within the first-order perturbation theory in v0 one can get
the following expression for the temperature shift nL vs the
dimensionless rotation frequency �a:

nL = nL
�0� − vnn

L . �38�

Thus, perturbation theory provides us a simple estimate for
the FFLO transition temperature

 = max
L�0

��4�a − v0/�a��2L + 1� + v0L/�a − 4�a
2�2L + 1�2� .

In Fig. 5 we show the results of the numerical calculation
of the dependencies ��a� for different trapping frequencies.
These phase diagrams appear to be in good qualitative agree-
ment with the above estimate for not too small �a values. For
rather large trapping frequencies one can clearly observe the
regime of the rotation-induced superfluid transition. It is im-
portant to note that the increase in the trapping frequency v0
causes a decrease in the critical temperature of vortex states
with higher vorticities and, thus, is responsible for suppres-
sion of quantum oscillations of the superfluid phase transi-
tion line.

V. CONCLUSIONS

To sum up, we have studied the effect of confinement of
superconducting and superfluid condensates on the phenom-
enon of FFLO instability. We have found the following hall-
marks of the FFLO phenomenon in a restricted geometry: �i�
both the finite system size and parabolic trapping potential
are responsible for suppression of the quantum oscillations
of the superfluid critical temperature; �ii� the spatial oscilla-

tions of the superfluid order parameter in the FFLO regime
are suppressed by the increase in the trapping frequency; �iii�
change in the Zeeman interaction energy in the mesoscopic
superconducting system can induce phase transitions be-
tween different inhomogeneous FFLO states; �iv� switching
between the vortex states in confined geometry can be ac-
companied by giant jumps in vorticities; �v� rotation-induced
superfluid transition in a Fermi gas cloud for rather large
trapping frequency; �vi� superconducting transition induced
by the perpendicular magnetic field component in a mesos-
copic superconducting disk; �vii� unusual scaling in the de-
pendence of the field of the vortex entry vs system size in the
vicinity of FFLO instability. We believe that these theoretical
predictions can be used for experimental identification of the
FFLO phases in both mesoscopic superconductors and super-
fluid Fermi gases. Note in conclusion, that we consider our
results to be useful for analysis of experimental data both in
systems with second- and first-order phase transitions: in the
latter case the phase diagrams studied above can be observed
under the supercooling conditions.
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