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Ab initio low-energy dynamics of superfluid and solid ‘He
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We have extracted information about real time dynamics of “He systems from noisy imaginary-time corre-
lation functions f(7) computed via quantum Monte Carlo (QMC): production and falsification of model spec-
tral functions s(w) are obtained via a survival-to-compatibility with f(7) evolutionary process, based on genetic
algorithms. Statistical uncertainty in f(7) is promoted to be an asset via a sampling of equivalent f(7) within the
noise, which give rise to independent evolutionary processes. In the case of pure superfluid “He we have
recovered from exact QMC simulations sharp quasiparticle excitations with spectral functions displaying also
the multiphonon branch. As further applications, we have studied the impuriton branch of one He atom in
liquid “He and the vacancy-wave excitations in hcp solid “He finding an unexpected rotonlike feature.
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I. INTRODUCTION

The development of ab initio theoretical descriptions of
the low-energy dynamical behavior of quantum interacting
models is naturally a very important issue in a huge variety
of physical studies, ranging from statistical physics to quan-
tum field theory. In the realm of condensed-matter physics,

this requires to start from the Hamiltonian operator H of a
many-body system and to investigate dynamical properties
via the study of spectral functions,

e dr . s b
s(w) = —e'e""Ae™""'B), (1)
L 27

A and B being given operators acting on the Hilbert space of
the system, and the brackets indicating expectation value on
the ground state or thermal average. In this work we will
address this topic in the case of bulk 4He, which, during last
decades, has gained extreme interest since it provides the
simplest scenario in which quantum fluctuations and the sta-
tistics obeyed by the involved degrees of freedom govern the
physics of a macroscopic sample, giving rise to a big deal of
fascinating phenomena.! The simple Hamiltonian of the sys-
tem displays all the complexities related to strong correla-
tions among particles and has been a very important test
ground both for many body theories and for numerical simu-
lations. In particular, the absence of the additional difficulties
connected with Fermi statistics has allowed quantum Monte
Carlo (QMC) methods to provide exact descriptions of equi-
librium phases of *He, opening the possibility of putting
light into the intriguing physical mechanisms underlying su-
perfluidity and Bose Einstein condensation on a quantitative
basis.?

The natural idea of extending such approaches to dynami-
cal properties (excitation spectra, transport coefficients, etc.)
is highly not trivial: a direct QMC computation of Eq. (1)
faces the problem of obtaining exact real time evolution, and
general solutions are not known. Nevertheless, we can try to
partially fill this lack of knowledge using QMC techniques
themselves. The stochastic processes related to imaginary-
time Schrodinger equation underlying QMC simulations al-
low to perform observations on the system, resembling ac-
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tual measurements on an experimental sample; in particular,
in a QMC simulation it is straightforward to collect a set of
observations

FE{f‘O’fl’”"fl}’ (2)

which are estimations of imaginary-time correlation func-
tions

£(7) = (MTAe B (3)

in correspondence with a (unavoidably) finite number of
imaginary-time values {0,87,267,...,167}, 7 being the
time step of the QMC algorithm employed. In general F is
obtained as an average of several QMC calculations of f(7),
each affected by statistical noise and which are used to esti-
mate the statistical uncertainties {O'fo, Tpseens a'f[} associated
with F.

Such observations can provide information to infer an es-
timation of s(w), through the exact relation

fln)= f dwk(7,w)s(w), 4)

—TW

where for example, at zero temperature, (7, w)=6(w)e ™,
6(w) being the Heaviside distribution. We have thus to face
the inverse problem® of deducing the spectral function s(w),
inverting Eq. (4) starting from limited and noisy data. At a
first glance, one immediately convinces himself that such an
inverse procedure in most realistic situations is unavoidably
ill posed since any set of observations is limited and noisy
and the situation is even worse since the kernel (7, w) is a
smoothing operator: the possibility of finding out one and
only one s(w) solving our problem is excluded.

Often sum rules provide useful help, either imposing ex-
act constraints on s(w) or allowing to perform additional
QMC measurements

C={...,c0.C1s .- »Cpr-. .} (5)

which provide estimations for some moments of s(w)
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For example, ¢ is an estimation of (AB) which may be eas-
ily obtained in equilibrium QMC simulations together with
an associated statistical uncertainty. Moreover some a priori
knowledge may be assumed such as the support, non-
negativity or some further properties.

We would like to stress that the problem we have to face
belongs to the huge class of the inverse problems, which,
since the earliest days of research in Physics, have always
provided challenges in a huge variety of physical or even
more generally scientific studies.>* At the most general level,
an inverse problem emerges whenever one is building up a
theoretical description of a natural phenomenon and ought to
fill some lack of knowledge. Typically one could need to
infer some parameters of the theory, and this could be
achieved borrowing information from experimental data or,
as in our specific case, numerical observations, i.e., computer
simulations.

The task of facing the problem in Eq. (4), typically re-
ferred in literature as an analytic continuation problem, has
already been investigated: the maximum entropy method?
(MEM) is the most widely popular strategy developed; in the
realm of bulk quantum fluids it has provided only qualita-
tively interesting results.®’ Other methods have been pro-
posed: the average spectrum method® (ASM), which has
been recently applied to lattice spin models’ but also to re-
alistic off-lattice systems,!? the stochastic analytic continua-
tion (SAC) method'' and also the spectral analysis described
in Ref. 12. ASM and SAC are very similar approaches and it
has been proposed that MEM can be identified as a special
limit of SAC.!3 Along this way, very recently an algorithm
strictly based on principles of Bayesian statistical inference
has been proposed.'# All these more recent approaches have
been found able to reveal some fine details of the spectral
functions but none of them has been applied to superfluid
*He which is the case study of this work. We have used an
inversion strategy which shares some features with the ap-
proaches cited above, but possesses also some peculiar fea-
tures: the way to deal with the statistical uncertainties in the
observations and the use of genetic algorithms (GA) to find
spectral functions compatible with observations. A prelimi-
nary application of this strategy to the determination of the
dynamical structure factor S(g,w) of liquid “He was pre-
sented in Ref. 15; here we explain it in detail and we present
several applications to the Helium system.

The structure of the paper is the following. In Sec. II we
describe the strategy which we have used; in Sec. III we
show applications of this strategy on several Helium sys-
tems; Sec. IV contains our conclusions. Appendix A contains
some details of the used strategy, while in Appendix B we
present tests on the reliability of this strategy on known spec-
tral models.

II. INVERSION STRATEGY

When considering ill-posed inverse problems some im-
portant questions naturally arise: what can we really learn
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when facing an inverse problem? What do we mean when we
speak about a solution? In our opinion, a key proposition is
brilliantly put forward in Ref. 16, following Popper:!” obser-
vations may be used only to falsify a theory. Translating this
idea into the language of our problem, we cannot expect to
find out a recipe that will allow to deduce all what is needed
to build up a unique function s(w) from a given set of ob-
served data, maybe together with additional informations,
D={F,C}. Nevertheless, provided that we are able to con-
struct a suitable parametrization of the abstract space S con-
taining all the possible spectral functions, we may use obser-
vations to provide a “falsification test,” aimed to exclude the
functions s(w) which fail to fit the data D={F,C} via Egs.
(4) and (5). In this way we will be able to collect a (maybe
very big) class of spectral functions, which have been not
falsified by the measured data. In our opinion, the best way
to achieve this is to fully exploit all the information related to
the observations: that is, since any set of experimental data
appears together with statistical uncertainties evaluated start-
ing from suitable measurements, any set of data compatible
with the original one has to take part to the falsification test,
in order to suppress the possibility of unphysical effects aris-
ing from statistical fluctuations.

Once we remain with a set of equivalent spectral func-
tions “survived” to the falsification test, depending on the
mathematical details of the space S, a natural idea appears to
be that of devising a procedure allowing to capture what do
the survived ones have in common. In this way, even if we
won’t succeed in finding out a unique s € S, we will be able
nevertheless to find out a class of features, providing physi-
cal properties, that s has to possess not to be falsified by the
limited set of observations. As explained below, to imple-
ment this we need a space of models S, containing a wide
collection of spectral functions consistent with any prior
knowledge about s(w), a falsification procedure relying on
the QMC “measurements” D={F,C} and a strategy to cap-
ture the accessible physical properties of s(w). The strategy
we are going to describe in the following relies on genetic
algorithms'® to explore S and falsify its elements; for this
reason in the text we will refer to it as the genetic inversion
via falsification of theories (GIFT) strategy.

A. Space of models

In our mathematical framework S contains a wide class of
step functions, providing a compromise between the possi-
bility of suitably approximating any model of spectral func-
tion and the feasibility of numerical operations inside it. In
the typical case (A=B") when s(w) is known to be real-
valued, non-negative and the zero-moment sum rule holds,
we rely on models 5 of the form

Ny-1 N1
o s ~
s(w) = go MAwXAJ’(w)’ Z,) s;= M. (7)

5(w) differs from the physical spectral functions by a factor
co, the zero-moment sum rule, which belongs to the set of
observations and its role will become evident below. We in-
troduce a discretization of the codomain
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s;e NU {0}, (8)

to make the space finite, and we use the characteristic func-
tion Xa, (w) of the intervals A;=[w;,w;,y), {wy, .. Loy } be-
ing a partltlon of width Aw of an 1nterval of the real line
larger than the hypothesized support of s(w). M provides the
maximum number of quanta of spectral weight available for
the ensemble of the intervals A;.

B. Falsification principle

Once we have defined the space of model spectral func-
tions, we have to devise a practical strategy to implement the
falsification principle. We have to rely on the QMC estima-
tions D={F,C}. To keep the description simpler we now
concentrate only on F; naturally all what we will say refers
also to C with obvious modifications. The numbers
{fo.f1,-...f1} are averages evaluated during a simulation and
appear together with their estimated statistical uncertainties
{afo,af], ’Ufz}' In typical approaches, such information
are dealt with inside the framework of Bayes’ theorem; they
provide the key ingredients to build up the a posteriori
probability® to be maximized, together with some a priori
probability, to extract the most probable spectral function.

On the other hand, we find it natural to suggest a way of
exploiting the information contained in {O'f 2O s Ufz}
any set F* equivalent to Eq. (2), i.e., such that I f,| is of
the same order as Iy, could be a result of another simulation.
Falsifying the elements of S should require not only compat-
ibility with 7 but also compatibility with a vast population of
F* equivalent to the set Eq. (2) of data. In general, relying on
independent simulations to generate equivalent sets F* could
represent a very demanding computational task; thus, when
this is not systematically practicable, we need a recipe to
generate equivalent sets F*, and then we have to use the
generated F* to falsify the elements of S. At the simplest
level we have addressed the generation of the sets F* by
sampling independent Gaussian distributions centered on the
original observations, with variances corresponding to the
estimated statistical uncertainties. A generic element F* is
then

P E{f0+86,f1 +8T, 9fl+87}={F’f’ ’fl*} (9)

being s random numbers sampled from Gaussian distribu-
tions w1th zero mean and variances equal to 0'2 See the end
of Appendix A to read about possible extenswns related to
this point. When the procedure in Eq. (9) has been used, a
posteriori, in some selected cases, one can check the accu-
racy of the results obtained by comparing these with models
coming from the analysis of independent QMC observations.
We stress that the very idea of exploiting the statistical un-
certainties in the observations for generating equivalent sets
JF* is the main difference with respect to preexisting statisti-
cal approaches to inverse problems.

The key point is then to falsify the elements of S relying
on each one of these sets [Eq. (9)]: compatibility means
small deviations from the observations. Thus, given the set
F*, a very simple measure of the compatibility of a model
with this set of observations can be obtained by computing
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1
A== {f; - f dwe™ " *s(w)] (10)
I+155

The normalization of our models requires the multiplication
of s(w) by the estimation, c(, of the zero moment, which
belongs to the set of observations D; consistently, we sample
also its value analogously to how we treat F. This is the
reason why a factor ¢, appears in Eq. (10).

Each member F* of equivalent data leads to a different
model; let us call 5; the model found with the kth member
F*. Each one of these models cannot be trusted to be the
solution of the inverse problem, being at least partially bi-
ased by the particular F*; in other terms we can say that each
one of these models will posses spurious information, pre-
sumably different in each model, together with some physi-
cal information. An averaging procedure is therefore the sim-
plest way to filter out the spurious information and to reveal
physical information, which consists in the common features
among the models which have not been falsified

2 cV5(w), (11)

rk—

Sairr(w) =

where N, is the number of equivalent random set of F* used
in the computation and ¢\’ is the ¢ used in the kth recon-
struction. We stress again that the averaging procedure in Eq.
(11) does not represent the absence of a sensible strategy for
the choice among the generated 5;; in fact, as explained in
Ref. 16, the whole collection of the not falsified models
should be considered. Contrarily, we have a sensible strat-
egy: we must not make any choice, all the models that have
not been falsified are equivalent; as a consequence we are
interested only in their common features, an information that
we extract via the averaging procedure in Eq. (11).

The average procedure in the definition of Sger(w) points
toward some similarities between our strategy and that of
ASM or SAC and also that of Ref. 12. However, in the light
of the falsification principle, these approaches are fairly dif-
ferent: in order to obtain their “solution,” ASM and SAC
average over spectral functions obtained by exploring model-
space regions via a local Metropolis random walk based on a
probability distribution;®!! in these approaches the statistical
uncertainties in the observations play a different role, appear-
ing only in the definition of the probability (ASM and SAC)
or in the definition of the minimal deviation in Ref. 12. An-
other issue is the algorithm used to explore the space of
models; as explained below, GIFT uses a nonlocal dynamics
induced by a stochastic evolutionary process instead of a
local Metropolis random walk which, in principle, could suf-
fer from ergodicity problems, being the high probability
model-space regions not guaranteed to be connected.

At this point the following question urges an answer: How
can we practically explore S? We have implemented genetic
algorithms as efficient algorithms to explore our huge space
of models, S. There could be inverse problems and different
space of models which could be more efficiently explored
with other algorithms; obviously, the “inversion via falsifica-
tion of theories” approach, which consists mainly in the
novel treatment of the statistical uncertainties of observa-
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tions, can be applied also using a “dynamics” in the space of
models different from the genetic one.

C. Fitness and the genetic dynamics

GA provide an extremely efficient tool to explore a
sample space by a nonlocal stochastic dynamics, via a
survival-to-fitness evolutionary process mimicking the natu-
ral selection we observe in natural world; such evolution
aims toward “good” building blocks'® which, in our case,
should recover information on physical spectral functions.
The fitness of one particular 5(w) should be based on the
observations, i.e., on the noisy measured set D={F,C}. But
as explained before, taking into account the estimated statis-
tical noise of D, any set D* compatible with D provides
equivalent information to build a fitness function. Thus in
our GA any random set D*={F*,C*} (Ref. 19) gives rise to a
fitness, which simply compares “predictions” of theories and
“observations”

2
Dpe(5) =— AF) - >, 'yn[C;— f dww"cgs—(w)] . (12)

n

In Eq. (12) the free parameters 7y, >0 are adjusted in order to
make the contributions to ®p« coming from F* and from C*
of the same order of magnitude: the idea is that we are not
allowed to prefer some particular observation among the oth-
ers, thus they should have the same weight in the fitness. If it
happens that one moment is exactly known, no error is added
making ¢, =(w"). We stress that Eq. (12) provides the sim-
plest and the most natural definition; moreover, as explained
below, our GA uses ®p» only to order models in ascending
fitness, thus any alternative definition of ®p« which provides
the same ordering will give rise to an identical genetic dy-
namics.

GA are well know procedures characterized by well de-
fined (geneticlike) operations on populations of candidate so-
lution to optimization problems in applied mathematics. For
basic nomenclature and standard implementations one can
refer to textbooks (e.g., see Ref. 18). In Appendix A we
present our particular realization related to the space of mod-
els we have defined. In our GA, we start randomly construct-
ing a collection of s(w); each s(w) is coded by N,, integers, s;
in Eq. (7). The genetic dynamics then consists in a succes-
sion of generations during which an initial population, con-
sisting of N individuals, is replaced with new ones in order
to reach regions of S where high values of the fitrness exist,
for a given D*. In practice, in the passage between two gen-
erations a succession of “biological-like” processes takes
place, and, namely, selection, crossover and mutation. The
selection procedure is meant to choose preferentially indi-
viduals with large fitness in the process of producing the next
generation (see Appendix A for more details).

In our context the GA dynamics performs the falsification
procedure: only the s(w) with the highest fitness in the last
generation provides a model, 5;(w), which has not been fal-
sified by D*. The maximum amount of generations, Ng, is
chosen in order to reach the condition A(5(w)) =& (see Ap-
pendix A). Many independent evolutionary processes are
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generated by sampling different D*, thus obtaining a set
made of the elements cg )Ek(w); at this point, as explained
above, the averaging procedure in Eq. (11) extracts the com-
mon features in this set and this produces the GIFT estimate
of the spectral function.

II1. RESULTS FOR HELIUM SYSTEMS

We are ready now to present applications of our approach
on physical systems. Long Monte Carlo runs have been per-
formed in order to get imaginary-time correlation functions
with a typical statistical uncertainty of 0.1-1 %. For bulk
superfluid “He most of the simulations have been performed
with N=64 and N=256 atoms moving in a cubic box, but
also N=128 and N=512 have been studied; for solid “He the
hep lattice with N=180 and N=448 lattice positions have
been used. Imaginary-time correlation functions have been
computed for instants 7,=[07, [=0,..,/,,,=60 in the super-
fluid phase and [,,,=30 in the solid phase, spaced by &7
=1/160 K~'. All the results shown in this paper have been
obtained with the interatomic interaction of Ref. 20 but some
computations have been performed also with that in Ref. 21
as mentioned in the text. We have used the pair-product
approximation® to express the imaginary-time propagator in
the interval 7=1/160 K~!' which is known to be very accu-
rate. For bulk superfluid *He we choose y,=0 V n#1 [see
Eq. (12)], i.e., we have included only c,, which is the esti-
mation of the static structure factor, and the first moment
sum rule which is exactly known, (w)=|G|*/2m. For the ex-
traction of the impurity branch and of the vacancy excitation
spectrum we have only used the zero-moment sum rule.
Other parameters were fixed to Aw=0.25 K, M=5000,
N,=600-1600, initial value of A5=25 000 which is de-
creased down to the minimum value N;=400, as explained
in Appendix A; we have used about 10° different sets D* and
the number of generations for a given D* have been fixed to
10*. We have performed many tests with different choices of
such parameters showing that none has a critical role under
condition that N, Aw is larger of the support of the recon-
structed spectral functions.

A. Dynamical structure factor of superfluid ‘He

Our first case study is the determination of the dynamical
structure factor S(¢, ) of liquid bulk *He. We have used the
exact shadow path integral ground state (SPIGS) method?>*3
to compute the intermediate scattering function F(gq,7) at T
=0 K near the equilibrium density, p=0.0218 A~3, and
slightly above the freezing density, p=0.0262 A~; F(q, 7) is

simply f(7) when A=B" is chosen to be the Fourier transform

of the local-density operator A= ﬁq:Efile‘iq": i. An example

of our reconstructed Sgrr(g, ) is shown in Fig. 1, it exhibits
an overall structure in good agreement with experimental
data: a sharp quasiparticle (qp) peak and a shallow mul-
tiphonon (mp) maximum are present. Both features appear
for the first time within an analytic continuation procedure
applied to a QMC study of superfluid “He. Notice that it is
not appropriate to compare the widths of the two sharp qua-
siparticle peaks in Fig. 1: in fact the experimental peak in-
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0 Exp. S(q,0) , =0.7 A”
— Sg(9,0) , 9=0.783 A

25 45
o (K)

FIG. 1. (Line) Sgpr(g.®) for ¢=0.783 A~' and p
=0.0218 A~3; (open circles) observed (Ref. 24) dynamic structure
factor S(¢, w) in liquid *He for g=0.7 A~! at saturated vapor pres-
sure (SVP) and T=1.3 K. Notice the logarithmic scale. Notice also
the difference between the wave vector of Sgrr(g,®) and the one
of the experimental available (Ref. 24) dynamic structure factor; the
experimental single particle peak position is known to increase by
about 0.8 K in moving from ¢=0.7 A~ to ¢=0.783 A~'.

cludes the broadening arising from instrumental resolution
and the effect of the finite temperature; on the contrary, as
explained in the following, the width of the reconstructed
GIFT peak from a 7=0 imaginary-time correlation function
is mainly a measure of the uncertainty in reconstructing its
position. In Fig. 2 we show one Sgpr(g,®) in the roton
region together with the excitation energies &(g), i.e., the
position of the main peak as function of ¢g. The uncertainties
of &(q) correspond to the widths of the peaks o,: we have
checked the consistency of such identification by performing
independent QMC estimations of F(g,7) and comparing the
positions of the peaks obtained in Sgr(q, w); the distribu-
tion of the peaks displays a variance comparable to o'i

In principle also a MEM-like algorithm could fit into the
GIFT approach: it is enough to modify the fitness function by
adding to ®p« in Eq. (12) an entropic term —7S, with

S= f dw{E(w)ln{ S(w) } —5(w) +m(w)}, (13)
m(w)

S being the entropy as in Ref. 6 and =0 a free parameter;
m(w) is the default model which in previous
implementations®’ has been chosen to be simply a constant
in absence of any prior knowledge. This is not a faithful
implementation of MEM because the entropic term is used in
the context of GIFT and not within the framework of Bayes’
theorem. Anyway, it provides results for the dynamical struc-
ture factor of superfluid *He very similar to those appeared
in literature:%’ by using a constant as default model, m(w),
for all wave vectors ¢ we observed for the main peak of
S(¢,w) a broadening (see Fig. 2) strongly dependent on the
choice of the parameter 7. This makes us loose a great deal
of information and makes the extracted excitation energies
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FIG. 2. (a) and (b) Sgyr(g,®) at ¢g=1.755 A" and p
=0.0218 A~3; (a) single quasiparticle (qp) peak; (b) multiphonon
(mp) contribution (notice change in scale). Lines corresponding to a
Sarrr(q, w) obtained with a nonzero entropic prior (7% 0) are also
shown. (c) £(q) extracted at p=0.0218 A~3 from the position of the
gp (circles) peaks and the positions of the maxima of the mp con-
tribution (triangles) are shown. The error bars represent the 1/2—
height widths. (d) &(¢) and mp contribution extracted at p
=0.0262 A~3. Lines in (c) and (d): experimental data (Refs. 25 and
26); in the mp region in (c) the lower curve (dotted) represents the
position of the maximum while the upper one (dashed) represents
the 1/2-height width.

critically dependent on the value of 7, thus introducing am-
biguities in the interpretation of the results. Recently, a fully
Bayesian approach has been proposed,'* which avoids ad
hoc assumptions on the relative intensity of the entropic term
and which is able to reconstruct spectral functions with more
pronounced features. It will be interesting in the future to see
how this new method or other recent Bayesian methods per-
form on superfluid “He. Given their ability in reconstructing
some fine details of the spectral functions, observed in study-
ing different quantum systems, it is possible that such meth-
ods will give equivalent or even better results than GIFT
when applied to the same inverse problem. In our original
approach, i.e., without 7S5(s), we have checked that none of
the parameters (such as M, Aw, a, v,, ...) affects the class
of features that we may trust to carry reliable physical infor-
mation.

In Fig. 3 (see the upper panel) we compare the spectral
function shown in the upper panels of Fig. 2 with a spectral
function extracted with GIFT from a more noisy correlation
function (see lower panel in Fig. 3) computed with a less
accurate imaginary-time propagator for instants 7,=[07, [
=0,..,l.x=17, spaced by 57=1/40 K~'. In this new GIFT
reconstruction the statistical uncertainties {crfo,crfl,...,crfl}
are about four times bigger, i.e., about 4 X 1073 instead of
about 1073, but even if we have less accurate observations on
about four times fewer imaginary-time points, GIFT is able
to reconstruct a spectral function displaying an elementary
excitation peak and a multiphonon contribution in agreement
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FIG. 3. Upper panels: Sgrr(g.®) at g=1.755 A~ and p
=0.0218 A~? extracted from noisy imaginary-time correlation
functions with different level of accuracy; (left) single quasiparticle
peak; (right) multiphonon contribution (notice change in scale).
Lower panel: imaginary-time correlation functions f(7) used in the
GIFT reconstructions shown in the upper panel.

with the result of the more accurate simulation. This shows
the robustness of GIFT against less accurate QMC data. Fur-
ther studies on the robustness of GIFT against inaccurate
QMC data are shown in Appendix B, where tests on known
spectral models are presented (see Fig. 14).

As an example of the stochastic evolution of a GIFT com-
putation, in Fig. 4 we show the deviation (10) as a function

4

10

1 10 100 1000
Number of generations

107

10000

FIG. 4. Evolution of the deviation (10) during the stochastic
evolution of the genetic algorithm for the reconstruction plotted in
Figs. 2(a) and 2(b) for =0 averaged with respect to the sampled
sets D*. The dashed horizontal line represents the value &
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FIG. 5. (a) GIFT strength of the quasiparticle peak Z(g) as func-
tion of ¢ at two densities and experimental data (Ref. 27). (b) GIFT
Static density response function y(g) at two densities and experi-
mental data (Refs. 25 and 28) Error bars of theoretical results are
smaller than the symbol size.

of the number of generations in the evolutionary process for
the reconstruction plotted in Figs. 2(a) and 2(b) for %=0
averaged on the sampled sets D*. One can see that the maxi-
mum number of generations, N, ¢» we have used in this recon-
struction is optimal in reaching the “compatibility” condi-
tion, A(5)= 6= ﬁZézoa'z_, without overfitting (this point is
expanded in Appendix AI).

By integrating Sgrr(q, @) with respect to w in the range
of the sharp peak and in the remaining frequency range we
have access to the strength of the single quasiparticle peak,
Z(g), and to the contribution to the static structure factor,
S(g), coming from multiphonon excitations. Remarkably,
Z(q) turns out to be in close agreement with experimental
data (see upper Fig. 5), thus strongly suggesting that the
shallow maximum in Sqrr(g, ) at large energy carries in-
deed reliable physical information on the multiphonon
branch of the spectrum. The position of such multiphonon
maximum [see Fig. 2(c)] is in qualitative agreement with
experiments:?> as we show in Appendix B, within the present
implementation of GIFT there is no possibility to recover the
detailed shape of the spectral function like the multiphonon
substructures given by high-resolution measurements?’ of
S(g,w). In the lower panel of Fig. 5 we show the static
density response function y(g) obtained evaluating the (w™')
from Sgipr(g, w); the agreement with experiments is impres-
sive, also near freezing.”

The calculation of the excitation spectrum &(g) in super-
fluid “He via QMC was addressed, for instance, in Ref. 29
and in Ref. 30 but here we are clearly much more ambitious
because we aim to reconstruct the full spectral function. In
our reconstructed spectral functions the elementary excita-
tion peaks are so accurately resolved that it is possible to
reveal the effects of even fine details of the interatomic in-
teraction. For example, the computed spectrum &(g) in the
phonon region is about 0.7 K above the experimental value.
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TABLE I. Roton energies, Eg, at two different densities and
using the v(r) in Ref. 20, EL. and the v(r) in Ref. 21, E, a potential
considered more accurate. In the last column experimental data
(Ref. 31) are shown.

p E;e E;{ Experimental Ep
(A7) (K) (X) (K)
0.0218 8.96+0.47 8.67+£0.29 8.608 = 0.01
0.0262 7.43+0.34 7.22+0.27 7.3%+0.02

We understand this as an effect of truncation of the inter-
atomic interaction v(r) at a certain distance r,. In most of our
computations the interatomic potential is cut off and dis-
placed to zero at r,=6 A, and the equation of state gives rise
to an overestimation of the sound velocity by about 16%. We
have performed some computations with r.=14 A, in a
simulation of N=512 *He atoms and in this case the sound
velocity turns out to be correct and now the theoretical &(g)
at small g agrees with experiment within the resolution Aw.

In order to give a more detailed description of the roton
region we have computed £(g) for many wave vectors in the
roton region and the average of the excitation energies
nearby the roton minimum, produces our estimate of the ro-
ton energy, Eg, as shown in Table 1.

B. Impurity and vacancy dynamics

Another interesting test case is provided by liquid *He in
presence of one *He impurity, in order to extract the impurity
branch which has been experimentally measured.’? Varia-
tional results for such branch are known*3 but no results from
exact QMC are available. This calculation requires the
choice of A=e™7imp, where Fimp 18 the position of the impu-
rity. In Fig. 6 we show the reconstructed spectral functions
together with the estimated dispersion relation obtained from
a simulation of N=255 *He atoms and one *He atom at p

15 T T T
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¢
T / i
" .
g \! Il Il
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e ot
5 0.5 — g=0.55 A:
S B — g=0.83 A’
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-
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FIG. 6. Impurity He quasiparticle peak in superfluid “He at
SVP for several wave vectors; in the inset the extracted excitation
energies are shown together with experimental data (Ref. 32).
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FIG. 7. Vacancy excitation spectrum in solid “He extracted from
the Sgir(g,®) of the vacancy—vector position X, at p
=0.0293 A3 in a hep lattice with N=447 particles along the prin-
cipal symmetry directions: (a) I'K, (b) I'M, and (c) T'A. Two dif-
ferent algorithms have been used to obtain X,: a coarse-grain algo-
rithm (Ref. 36) and the Hungarian algorithm (Refs. 37 and 38).
Dotted lines represent the spectrum of a tight-binding model for the
hep lattice (Ref. 39) obtained imposing the values of the bandwidth
along the I'K and I'A directions equal to the average between the
values extracted from the two different algorithms. The arrow
points out the vacancy-roton mode.

=0.0218 A=3. The agreement with experimental data’? is
very good, thus providing a robust check of validity of our
approach.

As a further application of GIFT we have studied the
excitation spectrum of a single vacancy in hep solid “He at
p=0.0293 A3, a density slightly above melting. The behav-
ior of vacancies in solid *He is of high interest because va-
cancies and other defects are believed to have a key role in
the possible supersolid phase of “He at low temperature. 3435
In order to apply GIFT to vacancy dynamics the first step is
the definition of a vector position x,, that allows to follow the
“motion” of the vacancy in imaginary time during a SPIGS
simulation. This problem is much more difficult than the
evaluation of the impurity branch because the very definition
of X, is far from trivial due to the large zero-point motion of
the atoms in the low-density solid. X, turns out to be a many-
body variable, depending on all the vector positions of *He
atoms, and even not free of ambiguities. We have employed
two different procedures to obtain X,: the coarse grain®® and
the Hungarian.>”3® In Fig. 7 we show the vacancy excitation
spectrum g,(g) extracted from the vacancy spectral functions

(A=e""7%) obtained with the two methods. The results ob-
tained with the two definitions of X, are very similar, and at
first sight make evident a picture of Bloch waves in the crys-
tal; the agreement with a tight binding hopping model® is
good. Notice that g,(G) represents the excitation energy with
respect to the state with a vacancy with |G|=0, i.e., £,(q)
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does not include the vacancy activation energy. By fitting
£,(¢) with the tight-binding expression we extract the va-
cancy effective mass in the different lattice directions: mjy
=mfy=0.46=0.03m, and m;,=0.55*0.1my, where my is
the “He mass; these values for m* are in agreement with the
results obtained with a different method in Ref. 40.

The agreement of g,(§) with the tight-binding model fails
dramatically in the I'M direction. In fact, at any reciprocal-
lattice vector the excitation energy should vanish and this
agrees with our results along the I'K and I'A directions as
one can see in Fig. 7. On the contrary at the first reciprocal
lattice vector along I'M our vacancy excitation spectrum
does not vanish but it reveals a novel vacancy-roton mode
with an energy of 2.6 = 0.4 K and an effective mass of about
myp=0.46m,. We have checked that this energy does not de-
pend on the size of the system. Such behavior of €,(g) in the
I'M direction implies that the (nonzero) minimum is not a
consequence of the lattice periodicity but it is related to cor-
related motion of particles like in superfluid “He. It is inter-
esting that neutron scattering from hcp *He gives an unex-
pected excitation mode beyond the phonon modes exactly in
the I'M direction with a rotonlike mode at the reciprocal
wave vector.*! The experimental energy of such roton mode
is about 4.4 times larger than what we find; so it is unclear
the connection, if any, between our mode and experimental
data. A larger vacancy roton energy might arise in presence
of clusters of vacancies. By analyzing the contributions to
f()=(e""Ae”MTATY with A=e™7%, one can see that the
vacancy-roton mode is connected to motions of the vacancy
between different basal planes. The fundamental difference
between in-basal-plane and interbasal-plane motions is that
the lattice position in the first case is a center of inversion
whereas this is not so in the second case. The fact that hcp is
not a Bravais lattice is fundamental in this respect. We have
verified that in bec crystal and in a two-dimensional triangu-
lar lattice, both Bravais lattices, no such vacancy roton mode
is present.

IV. CONCLUSIONS

We have extracted information about the dynamics of a
quantum many-body systems via analytic continuation of
QMC data, obtaining very accurate results in the *He case, in
the liquid and in the solid phase, even in presence of disor-
der. Our results provide major improvements with respect to
previous MEM studies appeared in literature on superfluid
*He: we have been able to recover sharp quasiparticle exci-
tations, with excitation energies in good agreement with ex-
perimental data, and spectral functions displaying also the
multiphonon branch with the correct relative spectral weight.
As discussed in Sec. I, the ability to reveal some fine details
of the spectral functions has been already observed in more
recent Bayesian methods applied to other systems. These
methods have never been applied to the “He case; it will be
interesting in the future to compare the results of all these
different strategies applied to the same inverse problem.

The basic idea of the falsification principle'® guided us to
follow a particular strategy which relies on genetic algo-
rithms to explore the space of models to find those of them
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which are compatible with observations. Each of these mod-
els is affected by the noise and by the limited information on
the dynamics of the system but we identify the relevant
physical information by extracting the features that are com-
mon to such compatible models. This is obtained via an av-
eraging procedure among the collection of models which has
not been falsified. This feature of the strategy we have used
has some similarities with other methods®%!"!? but signifi-
cant differences are present in the role of statistical noise. A
drawback of this strategy is the repeated computationally
demanding exploration of the space of models via the genetic
dynamics; this can be faced much more efficiently by imple-
menting simultaneous falsification procedures on different
sets of observations D* via parallel computation. Anyway, it
remains the possibility that different inverse problems and/or
different space of models could be more efficiently explored
with algorithms different from genetic algorithms. The used
analytic continuation strategy can be extended to include dif-
ferent kinds of constraints on the spectral function or addi-
tional information like cross correlations between the statis-
tical noise of f(7) at different imaginary times; many variants
of it can be devised depending on the problem, for instance a
basis set different from step functions [Eq. (7)] can be used
or nonuniform discretization in presence of problems with
multiple time scales, or distribution of noise that is not
Gaussian.
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APPENDIX A: DETAILS AND POSSIBLE EXTENSIONS
OF GIFT

The implemented selection procedure in our GA choose
preferentially individuals with large fitness by ordering the
population in ascending fitness and selecting the kth indi-
vidual with

k=[Na"31+1,

where r is an uniform random number, r € [0,1), and [---] is
the integer part; the non linear dependence of k on r ensures
that individuals with large fitness are preferentially selected.
The crossover then operates on two selected 5(w), the father
and the mother, exchanging subparts of their total number of
quanta of spectral weight, M, to generate two sons. We have
used a special single-point crossover by sampling a random
integer, w, between 0 and M and by exchanging w randomly
chosen quanta of spectral weight between the father and the
mother. In this way, the second equation in Eq. (7) is auto-
matically satisfied, implying that the zero-moment sum rule
is also satisfied. Each exchanged quantum remains in the
original frequency bin as in its parents, thus ensuring that
strong features present in both parents tend to persist in the
sons. Successively, with a given probability, mutation takes

(A1)
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place on the two new individuals, i.e., a shift of a fraction of
spectral weight between two intervals A;. This is repeated till
a new generation of 5(w) replaces the old one, with the ex-
ception of the 5(w) with the highest fitness in the old genera-
tion which is cloned (elitism). The number of individuals in
the new population is constantly reduced by about 5% at
every generation till A5 is equal to a given minimal value;
from this point over, the number of individuals N in the new
generations is kept constant to this minimum value. The dis-
carded individuals are those with the smallest fitness in the
population. This is done to start the genetic evolution from a
wide variety of possible models without dissipating compu-
tational time on falsified spectral functions.

The choice of the form of A(5) in Eq. (10) is not critical
because, as explained above, its role in GIFT is only to as-
sign an ordering among models based on their compatibility
with observations; thus alternative definitions of A(s) that do
not change this ordering will give rise to identical results.
However, in presence of strong variations among the esti-
mated statistical uncertainties {o N ,Ojfl} it is prefer-
able in the definition of A(5) to divide each term of the sum
by the relative 02- in order to give more weight to more

precise observatlons The statistical uncertainties of the
imaginary-time correlation functions, computed in our stud-
ies of “He systems, were found quantitatively comparable;
therefore, we have used A(5) as defined in Eq. (10).

The natural scale of A(s) is provided by the value &

1i121 a?j: models 5 such that A(5) <8 may provide un-

physical overfitting. In our statistical approach to inverse
problems there are two procedures which preserve from
overfitting. The first one is that, given a set F*, the explora-
tion of the space of models S should be stopped when a
model 5(w) is found such that A(5) = &, a further reduction in
A will only represents the intention to give to F* a strong
belief, which is incompatible with the statistical treatment of
the observations in our strategy. The second procedure is
even more relevant and in some sense it is intrinsic to our
strategy: given an F* the reconstructed model 5(w) contains
some spurious information, but these information will be av-
eraged out in Sgpr(w).

In the present applications on *He systems the whole co-
variance matrix has not been computed, thus equivalent sets
F* have been sampled simply by using the procedure in Eq.
(9). In general, the knowledge of the whole covariance ma-
trix should not be neglected; however, in Appendix B we
show (see Fig. 15) that even the exact knowledge of the
correlation function on an equivalent or slightly wider dis-
crete set of imaginary-time instants, 7;, is not enough to sub-
stantially improve the reconstruction abilities of our strategy
when the kernel in Eq. (4) is of the form K(7,w)
=60(w)e ™. Thus in the present study we have considered
only the diagonal part of the covariance matrix in order to
reduce the computational cost of our QMC simulations and
GIFT reconstructions. We have also checked that this limita-
tion does not seem to affect the present results by performing
a few GIFT reconstructions using outputs of several indepen-
dent simulations, which represent the exact (but computa-
tionally heavy) sampling of p(F*), instead of constructing
F* via Eq. (9). Note that in presence of more complete in-
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formation in the observations, like an estimation of the full
covariance matrix 3, for the data in Eq. (2), the generation of
the equivalent sets F* can be readily generalized by sam-
pling an (/+ 1)-variate normal distribution with the following
probability density function

exp| -5 (F - PSR - P

(277)’“/2det(2)1/2 ’

p(F)= (A2)

standard methods to perform efficiently this task are known
(see, for example, Ref. 42).

In the present applications we have not explored different
variants of GIFT as, for instance, a basis set different from
step functions; one cannot exclude the possibility that by
using different variants more information could be obtained.

APPENDIX B: TESTS ON KNOWN SPECTRAL
MODELS

Here we show several tests of application of GIFT on
known analytical spectral models suitably discretized and
“dirtied” with random noise to “simulate” actual data. It will
appear evident what we have already pointed out in Sec. I:
only some features of the exact solution can be consistently
reproduced; we have no possibility to reconstruct exactly the
shape of s(w); on the other hand, access is granted to the
identification of the presence of peaks and to their positions,
to some integral properties involving s(w) and to its support.

The most natural test for the reliability of the GIFT ap-
proach is provided by a systematic study of Laplace inver-
sion problems whose analytical solution is known. Our idea
is to focus our attention on model functions of the form

Np

EP_/:l
j=1

P —(w ,uj) /2q
s(@) = 0(w) X p; (B1)
Jj=1

\r

linear combinations of Gaussians multiplied by 6(w), the
Heaviside distribution, resembling qualitatively the experi-
mental results for spectral functions in condensed-matter
physics at 7=0. We may perform several tests varying the
parameters N, number of maxima, {u,, ..., uy }, positions
of the maxima, {a,... aN} widths of the peaks and
{p1,....p /\/} the areas under the peaks. The Laplace trans-
form f(7) of Eq. (B1) may be expressed in terms of the
standard complementary error function

2 [+
erfc(z) = - f dte"z, (B2)
NTTJ 7
whose values are tabulated, in the following form:
_u o
A7) = —E pje i erfe (E%ﬂ) (B3)
\!

In order to simulate the output of a typical QMC calculation,
we define the measured imaginary-time data F={f,, ....f}}
as
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TABLE II. Typical parameters used with GIFT related to: the
space of models (SM), the correlation function (CF), and the ge-
netic algorithm (GA).

Name of the parameter Symbol  Value
SM Number of bins in frequency space N, 600
SM Resolution in frequency space Aw 0.25
SM  Number of quanta of spectral weight M 5% 103
CF Discretization in imaginary time oT 1/160
CF Number of points in imaginary time l 60
GA Number of generations Ng 104
GA Initial number of models N 25x%x10*
GA Final number of models N; 400
GA Number of new random sets generated N, 10°
fi=f(én) +e, (B4)

where f(j7) is evaluated from Eq. (B3), and &; are random
numbers, mimicking the error bars affecting QMC data, fol-
lowing Gaussian distributions with zero mean and variances,
oﬁv, comparable with the ones typically occurring in our
QMC results (o, /f; in the range 0.1-4 %). f; play the role
of the output of éMC simulation; GIFT falsification uses N,
random sets 7*={f{, ....f]} defined by

fi=fi+ej, (B5)

o . . .
g; being Gaussian random variables with zero mean and
variances which here, to be coherent with the applications we
have presented, we assume to be equal to of

Our aim is to compare Eq. (B1) with the GIFT result we
obtain pretending that our knowledge about the imaginary-
time correlation function is limited to the discretized and
noisy data F in Eq. (B4), and to other available information
¢, about the moments which, inside these tests on analyti-
cally solvable models, can be evaluated from Eq. (B1); we
will neglect now the error bars affecting the values of the c,,.
The parameters we have employed in our GIFT reconstruc-
tions are listed in Table II. Obviously, the choices of the
interval of the frequency space, of the resolution Aw (which
fixes N,), of the discretization A7 and of the number of
points in imaginary time [ are crucial for a specific spectral
function one is trying to reconstruct and should be chosen
consistently with the considered model; the other parameters
are not crucial for a correct functioning of GIFT and they
have been chosen in order to falsify a wide variety of models
leaving the computational cost of the algorithm at a reason-
able level.

Also in the reconstruction of known models of spectral
functions one can compare GIFT results with those based on
the strategy of MEM by adding in the fitness function an
entropic term, as we did with the dynamical structure factors
in superfluid *He from QMC imaginary-time correlation
functions.
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FIG. 8. (Color online) Single peak reconstruction. Upper panel:
two noisy imaginary-time correlation functions obtained via Eq.
(B4) from f(7) (open circles) and f”)(7) (x symbols), which are
the Laplace transforms of s,(w) (dotted line in the middle panel:
pu=10 and @=0.1) and s,(w) (dotted line in the lower panel: wu
=10 and a=1). The inset is a zoom on one imaginary-time instant.
Middle panel: s,(w) (dotted line) and reconstructed Sgpp(w)
(stairstep lines) using in the fitness ®p« only the first moment (i.e.,
v,=0 V n#1); green and blue lines represent MEM-like recon-
structions with different values of the 7 parameter in the fitness (see
legend); greater the values for this parameter wider are the spectral
functions. Lower panel: s,(w) (dotted line) and reconstructed
Scirr(w) using in the fitness ®p« only the first moment (i.e., v,
=0V n#1).

1. Single peak reconstruction

The simplest test case is provided by the attempt of re-
constructing spectral functions displaying only one peak at a
given point u with a width @. The upper panel of Fig. 8
makes evident the difficulty of the inverse problem: two
functions with the same parameter u,= ;=10 but different
values of the widths, respectively, «,=0.1 and «a,=1.0, in
imaginary-time domain differ by about 0.5%, of the same
order as the typical QMC error bars. It is clear then that the
information about the width of the peak is always strongly
obscured by the noise. However, from the middle and lower
panel of Fig. 8 it is manifest that GIFT reconstruction, ob-
tained using in the fitness ®p« only the first moment (i.e.,
v,=0 ¥V n#1), is able to capture with an high accuracy the
position of the peak in both cases. We note that, despite the
difficulty mentioned above, in this simple case of a single
peak, even the widths are remarkably semiquantitatively re-
covered. This ability is evidently lost when the entropic term
with a constant default model is switched on (see Fig. 8)
with values of # similar to those used in Fig. 2.
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FIG. 9. (Color online) Double peak reconstruction for well-
separated peaks. Upper panel: noisy imaginary-time correlation
function obtained via Eq. (B4) from f(7) (dotted line) which is the
Laplace transform of s(w) (dotted line in the lower panel, see text
for parameters). Lower panel: s(w) (dotted line) and reconstructed
Sgirr(w) (stairstep lines) from f(7) using in the fitness ®p» only the
first moment (i.e., y,=0 V n# 1); green and blue lines represent
MEM-like reconstructions with different values of the » parameter
in the fitness (see legend).

2. Double peak reconstruction

In order to get closer to realistic physical applications, we
try to reconstruct also spectral functions displaying a double
peak. Inside such a double peak reconstruction, we may
check also the estimation of the integrated spectral functions

Iy(w) = f“’ do's(w'),
0

,s(w')

w/

I_l(w)=J dw (B6)
0

Iy(w) provides information about the spectral weight under
the peaks in s(w); in particular in the w range between the
two peaks I(w) gives the information from which we have
derived the strength of the single quasiparticle peak, Z(g), in
our GIFT study of superfluid 4He, as we will show in the
following section. On the other hand, the asymptotic value of
I_(w) for large w provides the key to estimate the static
response function x(g).

In Fig. 9 we show a reconstruction of a spectral function
s(w) for two well-separated peaks (p;=0.5, p,=0.5, =10,
=21, a;=0.1, and @,=2.0) using in the fitness Pp« only
the first moment (i.e., y,=0 V n#1); this is the typical
fitness used in our reconstruction of spectral functions of
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FIG. 10. Integral properties for double peak reconstruction. Up-
per panel: Iy(w) from the exact s(w) (dotted line) and /y(w) obtained
with the reconstructed Sgipr(w) in Fig. 9 (case 7=0). Lower panel:
I_i(w) from the exact s(w) (dotted line) and I_;(w) obtained with
the reconstructed Sgipr(w) in Fig. 9.

superfluid “He. The corresponding Io(w) and I_;(w) are plot-
ted in Fig. 10 compared with the analytic results from (B1).
We observe that no appreciable difference emerges, with re-
spect to the exact results, as far as the determination of the
positions of the peaks, of the areas under the peaks, and of
the (w™') moment (see Fig. 10) are concerned: the accuracy
is very good; on the other hand, the shape of the recon-
structed s(w) has not to be taken too seriously because it
belongs to the class of properties whose determination is
obscured by statistical errors and discretization in imaginary
time. For values of # similar to those used in Fig. 2, MEM-
like reconstructions are not even able to detect the presence
of two peaks; moreover the position of the maximum of the
reconstructed spectral function is dangerously 7-dependent
(see Fig. 9) thus showing the importance to find a strategy
which avoids ad hoc assumptions.'*

In Fig. 11 we consider two different spectral functions
s.(w) and s,(w), characterized by two overlapping peaks,
whose Laplace transforms, in imaginary-time domain, are
plotted in the upper panel (p;,=0.5, p,,=0.5, w;,=10, uy,
=15, {,=0.1 and a,,=4.0; p;,=0.5, p,,=0.5, wu;,=10,
Map=15, a;,=1.0 and a,,=4.0) As discussed previously, the
small difference, comparable with the (pretended) error bars,
rules out the possibility of a reconstruction of the actual
shapes. Nevertheless, GIFT succeeds in finding out the posi-
tions of the peaks with good accuracy even in this case in
which the overlap between the two peaks becomes signifi-
cant.

3. Multiple peak reconstruction

Finally, we devise the following test: we try to reconstruct
a spectral function s(w) (p;=0.5, p,=0.1, p3=0.2, p,=0.2,
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FIG. 11. Double peak reconstruction for overlapping peaks. Up-
per panel: two noisy imaginary-time correlation functions obtained
via Eq. (B4) from f9(7) (open circles) and f®)(7) (x symbols),
which are the Laplace transforms of s,(w) (dotted line in the middle
panel) and s,(w) (dotted line in the lower panel); see text for pa-
rameters. The inset is a zoom on one imaginary-time instant.
Middle panel: s,(w) (dotted line) and reconstructed Sgipp(w) using
in the fitness ®p« only the first moment (i.e., v,=0 V n#1).
Lower panel: s,(w) (dotted line) and reconstructed Sgrr(w) using
in the fitness ®p« only the first moment (i.e., y,=0 V n#1).

m1=10, u,=21, pu3=27, wy=35, a;=0.1, a,=2, az=4, ay
=6), displaying a main peak and a broad contribution at
higher w, made of a superposition of three Gaussians, resem-
bling qualitatively the shape of the multiphononic contribu-
tion in the dynamical structure factor of superfluid *He. We
have tested our strategy using the usual fitness function ®p»
with only the first moment included (i.e., y,=0 V n#1):
the results are plotted in Fig. 12. In Fig. 13 the integrated
spectral functions are plotted; from the comparison between
the exact Ij(w) and the one obtained from the reconstructed
Sarr(w) one can observe that the spectral weights under the
main peak and the broad contribution are well reproduced.
Also the large w limit of I_;(w) is in good agreement with
the exact value.

One can also study the effect of the noise in f(7) in order
to check the GIFT ability in recovering correct information
on the true s(w). In Fig. 14 we show two Sgpp(w) recon-
structed from a noisy f(7) with o, 10 times and 50 times
greater than in the test shown in Fig. 12. Only in the second
case, which represents a situation of very high relative noise
(0, /f; in the range 5-200 %), information on the correct
spejctral function is sensibly lost. This test show the robust-
ness of GIFT against noise in the observations, being able to
recover correct information on s(w) with a noise level up to
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FIG. 12. Multiple peak reconstruction. Upper panel: noisy
imaginary-time correlation function obtained via Eq. (B4) from f(7)
which is the Laplace transform of s(w) (dotted line in the lower
panel). Lower panel: s(w) (dotted line) and reconstructed Sgprp(w)
from f(7) using in the fitness ®p« only the first moment (i.e., v,
=0 V n#l).
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FIG. 13. Integral properties for multiple peak reconstruction.
Upper panel: Ij(w) from the exact (dotted line) and /j(w) obtained
with the reconstructed Sgpp(w) in Fig. 12. Lower panel: I_(w)
from the exact (dotted line) and /_;(w) obtained with the recon-
structed Sgipr(w) in Fig. 12.
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FIG. 14. Panel (a): f; values obtained with o, =0.01 and used
by GIFT to reconstruct s(w) as shown in panel (b). Panel (c): f;
values obtained with o, =0.05 and used by GIFT to reconstruct
s(w) as shown in panel (é). Panel (b): exact s(w) (dotted line) as in
Fig. 12 and reconstructed Sgrr(w) using the noisy observation of
f(7) in panel (a). Panel (d): exact s(w) (dotted line) as in Fig. 12 and
reconstructed Sgipr(w) using the noisy observation of f(7) in panel

(c).

one order of magnitude greater than what can be easily ob-
tained in typical QMC calculations of imaginary-time corre-
lation functions.

It is possible also to use GIFT with a limited information
on f(7), which corresponds as usual to f(7) values for a dis-
crete set of imaginary times, but without any added noise. In
this case the average procedure in Eq. (11) consists of an
average among models found compatible with one single set
F. The result of such GIFT multipeak reconstruction is
shown in the upper panel of Fig. 15. By comparing this result
with that shown in Fig. 12 it is possible to see that the two
Sarr(w) are very similar thus ruling out the necessity of
more accurate observations of f(7) at discrete imaginary
times in order to improve the GIFT performance. By main-
taining the noise level in fj to zero, we have also tried to
increase the amount of information by using /=240 number
of points in imaginary time with 67=1/640; the result of
such GIFT multipeak reconstruction is shown in the middle
panel of Fig. 15. No substantial improvement can be ob-
served with respect to the previous case in spite of an in-
creased computational cost. The computational cost of GIFT
is increased also by considering a wider space of model spec-
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FIG. 15. s(w) (dotted line) as in Fig. 12. Upper panel: recon-
structed Sgpr(w) from the exact f(7) (i.e., without noise) assumed
to be known for /=60 number of points in imaginary time with
6m=1/160, with Aw=0.25 and using in the fitness ®p« only the
first moment (i.e., ¥,=0 V n#1). Middle panel: reconstructed
Sgirr(w) from the exact f(7) (i.e., without noise) assumed to be
known for /=240 number of points in imaginary time with o7
=1/640, with Aw=0.25 and using in the fitness ®p+ only the first
moment (i.e., 7v,=0 V n#1). Lower panel: reconstructed
Sairr(w) from the exact f(7) (i.e., without noise) assumed to be
known for /=60 number of points in imaginary time with o7
=1/160, with Aw=0.1 and using in the fitness ®p« only the first
moment (i.e., y,=0 V n#1).

tral functions. In our last test we tried a GIFT multipeak
reconstruction without noise with Aw=0.1, the number of
bins in frequency space N,=1500 and the “quantization” of
spectral weight M=10* The result is shown in the lower
panel of Fig. 15; here the noise in Sgpp(w) is higher because
due to the computational cost of the GIFT strategy with this
parameters we have only averaged over A,=160 random
sets. Also in this case we found no substantial improvement
in Sgrr(w) as compared to the standard case.
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