
Variational cluster approach to ferromagnetism in infinite dimensions and in
one-dimensional chains

Matthias Balzer and Michael Potthoff
I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany

�Received 16 July 2010; revised manuscript received 20 September 2010; published 30 November 2010�

The variational cluster approach �VCA� is applied to study spontaneous ferromagnetism in the Hubbard
model at zero temperature. We discuss several technical improvements of the numerical implementation of the
VCA which become necessary for studies of a ferromagnetically ordered phase, e.g., more accurate techniques
to evaluate the variational ground-state energy, improved local as well as global algorithms to find stationary
points, and different methods to locate the magnetic phase transition. Using the single-site VCA, i.e., the
dynamical impurity approximation �DIA�, the ferromagnetic phase diagram of the model in infinite dimensions
is worked out. The results are compared with previous dynamical mean-field studies for benchmarking pur-
poses. The DIA results provide a unified picture of ferromagnetism in the infinite-dimensional model by
interlinking different parameter regimes that are governed by different mechanisms for ferromagnetic order.
Using the DIA and the VCA, we then study ferromagnetism in one-dimensional Hubbard chains with nearest-
and next-nearest-neighbor hopping t2. In comparison with previous results from the density-matrix renormal-
ization group, the phase diagram is mapped out as a function of the Hubbard-U, the electron filling, and t2. The
stability of the ferromagnetic ground state against local and short-range nonlocal quantum fluctuations is
discussed.
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I. INTRODUCTION

Itinerant ferromagnetism of nanometer-sized transition-
metal systems deposited on nonmagnetic surfaces has at-
tracted much attention recently. It is a fascinating physical
but also technological vision to control the geometrical ar-
rangement of the nanosystem on the atomic scale while
studying its magnetic properties with atomic resolution.1

This provokes distinct and exciting questions. It is highly
interesting, for example, to understand how many atoms are
necessary and how these atoms should be arranged geometri-
cally to ensure a stable ferromagnetic state.

One important issue for magnetic nanosystems is their
stability against thermal fluctuations.2 This is mainly deter-
mined by anisotropies which give rise to energy barriers and
thereby can stabilize a magnetic state on time scales exceed-
ing relevant observation times.1,2 Anisotropic contributions
to the total energy of a magnetic system can be several or-
ders of magnitude higher at a surface or for a small cluster or
chain as compared to a three-dimensional bulk of the same
material. Nevertheless, the anisotropy strength is usually still
much smaller than the exchange coupling and can thus be
safely disregarded for the question of whether or not a fer-
romagnetic ground state is existing.

The stability of a ferromagnetic ground state is, therefore,
a matter of quantum fluctuations. Opposed to antiferromag-
netic order, for example, the order parameter is a conserved
quantity in the case of ferromagnetism. It is thus mainly the
quantum fluctuations of the paramagnetic state which are
important and which the spin-polarized state is competing
with.

The ground state of itinerant systems,3 such as monatomic
chains of 3d transition metals,4 is of particular interest from
a theoretical point of view. There is a subtle interplay be-
tween the kinetic energy of the itinerant electrons and their

Coulomb interaction, including on-site and off-site parts,
such as Heisenberg exchange, as well as intraorbital and in-
terorbital terms, such as Hund’s exchange. Besides this, geo-
metrical constraints come into play additionally. Even for a
bulk system, however, and even for the most elementary
models of itinerant ferromagnetism, such as the Hubbard
model,5–7 there is no simple and comprehensive physical pic-
ture for the mechanism that drives ferromagnetic order.8–10

The physical reason which hampers a straightforward un-
derstanding of itinerant ground-state ferromagnetism prob-
ably consists in the fact that the ordering and actually the
formation of local magnetic moments is a strong-coupling
phenomenon and thus in general not capable by perturbative
techniques. This is opposed to antiferromagnetic order, for
example,11 Slater or band antiferromagnetism is accessible
by weak-coupling approaches, Heisenberg or local-moment
antiferromagnetism emerges in effective low-energy models.

It is therefore important to recognize that the same prob-
lems already show up in the Hubbard model on infinite-
dimensional lattices. This limit, however, is rigorously acces-
sible by dynamical mean-field theory �DMFT�,12–15 and
many insights concerning itinerant ferromagnetism could be
obtained in this way.16 First of all, quantum fluctuations are
recognized as essential. This means that a static mean-field
approach, like Hartree-Fock �HF� theory, cannot grasp the
main physics and largely overestimates the tendency to col-
lective ordering. Further, ferromagnetism requires a strong
local Coulomb interaction and must therefore be investigated
by nonperturbative means.17–19 In addition, however, subtle
details of the noninteracting electronic structure are likewise
important, e.g., a strong asymmetry of the local density of
states �DOS�.20–22 Nonlocal parts of the Coulomb interaction,
a nonlocal ferromagnetic Heisenberg exchange coupling, for
example, do affect the magnetic ground-state phase diagram
but are found to be of lesser importance as compared to the
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Hubbard-U in general. Finally, ferromagnetic order strongly
competes with antiferromagnetism and is realized away from
half filling.

While DMFT can be regarded as the optimal theoretical
framework to deal with strong local quantum fluctuations
and to understand their effect on itinerant ferromagnetism, it
is still a mean-field approach. This means that the feedback
of nonlocal two-particle, e.g., magnetic, excitations on the
one-particle spectrum and also on the thermodynamics is ne-
glected. It is presently unclear, as how severe this approxi-
mation must be regarded when studying low-dimensional
systems, for example. Spin-charge separation,23 to mention a
prominent example of a nonlocal quantum effect in one-
dimensional chains, cannot be described by DMFT. As con-
cerns ferromagnetic order in one-dimensional itinerant sys-
tems, however, there is reason to be more optimistic that
DMFT may capture the essential physics. Namely, magnetic
correlations and thus the feedback of magnetic correlations
on the ground state can be expected to become less important
for fillings well below half filling. At and around half filling
antiferromagnetic correlations dominate anyway. In fact, nu-
merically exact studies by means of the density-matrix renor-
malization group �DMRG� for the t1-t2 one-dimensional
Hubbard model24–26 yield a ground-state ferromagnetic
phase diagram which shows striking similarities with the
DMFT results and confirm the main qualitative results listed
above.

This situation has motivated the present study which em-
ploys the variational cluster approach �VCA� �Refs. 27 and
28� to investigate the ferromagnetic ground-state phase dia-
gram of the infinite- and the one-dimensional Hubbard
model. The VCA is a thermodynamically consistent29 cluster
mean-field approach which determines the electron self-
energy by exploiting a general variational principle.30–32 Dif-
ferent approximations can be constructed by the choice of
different reference systems that define the space of test self-
energies for the variational principle. In this way, single-site
mean-field approximations, very close to the DMFT, as well
as cluster approximations can be constructed which include
the local but also nonlocal quantum fluctuations, respec-
tively. The cluster approximations can be understood as sim-
plified but consistent variants of the cellular DMFT.33,34

By comparison with previous DMFT and DMRG results
it should be possible to answer the following interrelated
questions: How sensitive is a ferromagnetic state on a one-
dimensional chain to local quantum fluctuations? What af-
fects its stability more, local or short-range nonlocal fluctua-
tions? Is a single-site mean-field approach sufficient to
predict stable ferromagnetic phases? How much does it im-
prove compared to a purely static approach? Does an inclu-
sion of short-range nonlocal fluctuations improve the predic-
tive power? Answers to these questions are particularly
important for future studies of magnetic nanosystems in
more complex geometries such as clusters, coupled chains,
etc., and including more orbitals per sites since those systems
are in most cases not accessible to an exact numerical treat-
ment via the DMRG.

A second and likewise important goal of our study is to
advance the variational cluster approach. Its evaluation re-
quires the repeated calculation of the self-energy of the ref-

erence system for different one-particle parameters which
serve as variational parameters. At zero temperature the nu-
merical solution has to be performed using exact-
diagonalization techniques. It is then clear that the quality of
the approximation is limited by the exponential growth of the
reference system’s Hilbert space, i.e., by the limited number
of sites that can be taken into account. However, an increas-
ing number of sites in the reference system at the same time
means that the number of variational parameters increases.
To study ferromagnetic phases, the number of parameters is
doubled because of the additional spin dependence of each of
the parameters. The variationally determined ground-state
energy becomes decreasingly sensitive with each additional
variational degree of freedom considered. This tightens the
need for extremely accurate computations. Here our goal is
to present and discuss different technical improvements of
the VCA.

The paper is organized as follows: In the following Sec. II
we briefly review the theoretical concept and then address
the different technical issues important for a reliable numeri-
cal evaluation in Sec. III. Results for the Hubbard model in
infinite dimensions and in one dimension are presented and
discussed in Sec. IV, and a summary of the main conclusions
is given in Sec. V.

II. VARIATIONAL CLUSTER TECHNIQUE

We consider the single-band Hubbard model5–7 in one di-
mension with nearest- and next-nearest-neighbor hopping t1
and t2, respectively �except for Sec. IV B�. Using standard
notations, the Hamiltonian reads

H = − t1 �
�ij�,�

ci�
† cj� − t2 �

��ij��,�
ci�

† cj� + U�
i

ni↑ni↓, �1�

where � · � and �� · �� restrict the independent sums over lattice
sites i and j to nearest and next-nearest neighbors, respec-
tively. �= ↑ ,↓ is the spin projection. The strength of the
on-site Hubbard interaction is given by U. In the following
we consider finite Hubbard chains consisting of L sites and
assume periodic boundary conditions. Unless stated differ-
ently, we set t1=1 to fix the energy scale.

Calculations are performed using the27,28 VCA which is a
quantum cluster mean-field approach based on the self-
energy functional theory30–32 �SFT�. Central to the SFT is the
self-energy functional

���� = Tr ln�G0
−1 − ��−1 + F��� , �2�

which provides an exact functional relation between the self-
energy � �with elements �ij���n�� and the grand potential �
of Eq. �1� at temperature T and chemical potential �. Fur-
thermore, ln denotes the main branch of the complex loga-
rithm, and Tr�T�nexp�i�n0+�tr with tr being the trace over
the spatial degrees of freedom and 0+ a positive infinitesimal
which ensures convergence of the sum over fermionic Mat-
subara frequencies �n. G0 is the free single-particle Green’s
function of the model which can be assumed to be known.
The functional F��� is formally defined as the Legendre
transform of the Luttinger-Ward functional ��G� which in
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turn is defined diagrammatically35 or through a functional
integral.36

The self-energy functional is constructed such that it be-
comes stationary at the exact �physical� self-energy of the
model system Eq. �1�,

����� = 0. �3�

Due to the fact that F��� is not known explicitly, an approxi-
mation must be employed to make use of this variational
principle. The idea of the SFT is to restrict the variation of
the self-energy in Eq. �3� to a subspace of trial self-energies
which is spanned by the exact self-energies of a certain ref-
erence system. On this subspace, the self-energy functional
can be evaluated exactly, provided that the reference system
has the same interaction part as the original model and pro-
vided that an exact �numerical� computation of the test self-
energies is possible �see Refs. 30–32 for details�. Generi-
cally, a reference system is a finite Hubbard cluster with the
same Hubbard-U but with its one-particle parameters �hop-
ping and on-site energies� serving to parametrize the test
self-energies. Usually, one selects a limited number of one-
particle parameters as variational parameters �= ��1 , . . . ,�s�.
Then, the stationarity condition �3� is approximated requiring
the function

���� � ������� �4�

to be stationary, i.e., ����� /��=0.
For the present study of the one-dimensional Hubbard

model, we consider chains with Lc	5 correlated sites as
reference systems. One additional uncorrelated �bath� site is
attached to each correlated site �i.e., ns=2 local degrees of
freedom�, see Fig. 1. Physically, this means to take retarda-
tion effects into account, i.e., with this choice of the refer-
ence system, local �temporal� fluctuations are included to
some degree. Local fluctuations are treated exactly in the
limit of ns=
 only, i.e., for a continuum of bath degrees of
freedom �see Ref. 32�. This would correspond to the �cellu-
lar� dynamical mean-field approach.34 It has been demon-
strated in various contexts,37–40 however, that the main effect
of local correlations is already accounted for with ns=2, i.e.,
the essential step is the one from a plain VCA �no bath sites�
to an ns=2-VCA while more bath sites give secondary cor-
rections. This is important since only a finite �small� number

of sites can be treated when using an exact-diagonalization
technique at temperature T=0 to compute the chain self-
energy. Physically, the main point is that the ns=2 reference
systems already allow for a local �Kondo-type� singlet for-
mation to screen the local magnetic moments. A nonlocal
singlet formation is possible for reference systems with Lc
�2. This describes the feedback of nonlocal magnetic cor-
relations on the single-particle excitation spectrum. The de-
gree to which, quite generally, spatial correlations are ac-
counted for by the VCA is controlled by the choice of Lc,
ranging from a �dynamical� single-site mean-field approxi-
mation for Lc=1 over cluster mean-field approaches to the
exact solution that is �in principle� obtained with Lc=
.

For a given reference cluster �Fig. 1�, we treat the on-site
energies of the correlated and of the bath sites, �c and �b, as
variational parameters. This ensures thermodynamic
consistency29 with respect to the particle density n. Even
within the approximation, exactly the same result is obtained
for n which either can be determined via a � derivative of
the SFT grand potential at stationarity or via a frequency
integral over the one-electron spectral density corresponding
to G= �G0

−1−��−1 with the optimal self-energy. Furthermore,
to control the temporal fluctuations, the hybridization V is
considered as variational parameter �see Fig. 1�. For the
present study it is important to allow for a possible spin
dependence of all variational parameters to have thermody-
namical consistency with respect to the magnetization in ad-
dition. As a simplifying but excellent39 assumption to limit
the number of parameters, �c, �b, and V are taken to be site
independent, and the hopping parameters within the refer-
ence chain are fixed at their original values, i.e., t1�= t1 and
t2�= t2.

Calculations are performed for the grand canonical en-
semble keeping the chemical potential � fixed. Due to the
discrete energy spectrum of the finite reference cluster, and
due to the U�1� symmetry of the cluster Hamiltonian H�,
however, the cluster ground state reveals a fixed total particle
number N� within finite � ranges. Therefore, the cluster elec-
tron density n�=N� / �2Lc� is a discontinuous function of �
which would give rise to discontinuous behavior of the self-
energy and thus of all observables. This fact elucidates the
second major motivation for introducing one bath site per
correlated site: bath sites serve as charge reservoirs. The en-
tries i , j of the self-energy �ij���� are restricted to the cor-
related sites, and for a half-filled cluster, i.e., n�=1 or N�
=2Lc, the electron density on the correlated sites can vary in
the entire range from nc�=0 to nc�=2 �see Ref. 39 for a de-
tailed discussion�. This is important not only for studies of
density dependencies but also for ferromagnetic phases. With
the help of the bath sites, an arbitrary and continuous varia-
tion of the cluster magnetization m�=nc↑� −nc↓� can be
achieved in the same way. We will comment on this in the
discussion of the results below.

III. NUMERICAL EVALUATION

While we are interested in the thermodynamical limit L
→
, the actual calculations are performed for finite but large
Hubbard chains �Hamiltonian H, Eq. �1�� with typically L

1t’

2t’

εb

εc
V

L =1c L =4c

FIG. 1. �Color online� Examples for reference systems with Lc

correlated sites �blue circles� and one additional bath site �red
circles� per correlated site generating single-site �mean-field� and
cluster approximations. The �spin-dependent� on-site energies �c

and �b as well as the �spin-dependent� hybridization V are opti-
mized. Hopping parameters t1� and t2� are kept fixed at their physical
values.
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=O�103� sites and assuming periodic boundary conditions.
The evaluation of the traces in the self-energy functional
thereby reduces to performing finite sums �see below�. Con-
vergence of the results for L→
 is checked by comparing
calculations for different L. It is convenient to consider the
reference system �Hamiltonian H�� as being composed of
Nk=L /Lc identical and disconnected clusters consisting of Lc
sites each, i.e., the sites of the reference system form a trans-
lationally invariant superlattice of Nk supersites. Via the self-
energy, this superlattice structure is also imposed on the ex-
pectation values of observables of the original model.

The grand potential at zero temperature can be calculated
as31

���� = �� − �
k,n

�n��− �n�� + �
k,n

�n�k��− �n�k�� . �5�

Here, �� is the grand potential of the reference system and
�n� are the poles of the one-electron Green’s function of the
reference system. These can be calculated exactly by means
of the Lanczos approach.41 Note that the �n� do not depend
on the wave “vectors” k of the first Brillouin zone of the
superlattice as the clusters are disconnected, and thus the k
sum in the second term simply yields a factor Nk. �n�k� are
the poles of the �approximate� Green’s function of the model
Eq. �1�. Finally,  denotes the Heaviside function, and the �
dependence of �� and of the poles �n� and �n�k� is implicit.

There are several technical points which are essential for
a reliable numerical evaluation of the VCA and therewith for
the interpretation of the results. One of the major intentions
of the present paper is to show how one can efficiently deal
with the different finite-size effects in the evaluation of Eq.
�5�, in particular, close to a second-order phase transition,
and with the problem of finding stationary points in a high-
dimensional parameters space.

A. Exact frequency summation

The first problem consists in the infinite sums over Mat-
subara frequencies in Eq. �5�. For not too large reference
systems, this is performed conveniently and numerically ex-
act by means of the so-called Q-matrix technique.39,42 Let ��
be the diagonal matrix with the poles �n� of the cluster
Green’s function G� as diagonal elements. The Lehmann rep-
resentation of G� can then be written as

G���� = Q
1

� − ��
Q† �6�

with an appropriate weight matrix Q�i��,n. Note that QQ†

=1�Q†Q. Using this Lehmann representation in the defini-
tion Gk= �G0,k

−1 −��−1 of the Green’s function of the original
model, it is easy to see that the poles �n�k� of Gk then can be
obtained as eigenvalues of the matrix

M�k� = �� + Q†V�k�Q . �7�

Here V�k�=��k�− t� is the difference between the one-
particle parameters of the original and the reference system
where the matrix ��k� is the Fourier transform of t with re-
spect to the superlattice. In practice, the efficiency of the

Q-matrix technique is set by the dimension of M�k�, i.e., the
number of poles of G�, which, using Lanczos as a cluster
solver, typically amounts to O�100�. For Lc�8, the repeated
diagonalization of M�k� for all k, and for Lc�8 the Lanczos
diagonalization of H� represents the dominant contribution to
the necessary total CPU time, respectively.

B. Interpolative k summation

The k summation is much more tedious. From Eq. �5� it
can be read off that ���� is a nonanalytic function for finite
L. We first discuss the �approximate� one-electron excitation
energies �n�k� of the original system. A sign change of one
of the energies �n�k� as function of a variational parameter �i
causes a kink in ���� due to the  function. Such kinks
have a negligible relative weight in the k-sum and can be
ignored in the thermodynamic limit L→
 �if the interacting
density of states at the Fermi edge stays finite�. For finite L
and in regions of the parameter space where ���� is nearly
flat, however, the mentioned kinks may lead to artifacts or at
least to severe convergence problems for numerical tech-
niques to find stationary points, particularly if derivatives of
���� are required.

In principle, this finite-size effect can be controlled by
increasing the system size L and thereby the number of k
points Nk. Although the computational effort is only linear in
Nk, we found it to be much more effective to employ an
interpolation algorithm which artificially increases the num-
ber of k vectors while keeping the system size fixed. For two
adjacent k vectors k1 and k2, we interpolate between the ex-
citation energies �n�k1� and �n�k2� instead of calculating
�n�k� for intermediate k by diagonalization of M�k�. Simple
linear interpolation turns out to be sufficient. The effect is a
smoothing of the function ���� which considerably stabi-
lizes the subsequent optimization procedure without a sig-
nificant increase in the computational effort.

Which pairs of poles at k1 and k2 correspond to each
other, respectively, is actually unknown �as long as one does
not analyze the corresponding eigenvectors of M�k�� but for
practical purposes it is sufficient to sort the respective pole
sets and assume the nth pole at k1 to correspond to the nth
pole at k2, i.e., “level” crossing is excluded. If the number of
k points is sufficiently large, the interpolation procedure af-
fects contributions to the sum over k and n in the last term of
Eq. �5� only in those cases where �n�k� crosses zero. Simple
continuity arguments then show that a level crossing is un-
likely in those cases, i.e., the possible error of disregarding
level crossings is O�1 /Nk�. This simple idea can also easily
be generalized to higher dimensions.

As an example to illustrate the interpolation scheme we
show in Fig. 2 the self-energy functional as function of the
hybridization V for a reference system with Lc=2. Conver-
gence on the scale of the figure is obtained with Nk	1000
�red solid line�. As can be seen, a comparatively smooth
curve can also be obtained with Nk=100 original but addi-
tional 900 interpolated k points �dashed green line�. The
comparison shows that the trend of ��V� is essentially unaf-
fected by the interpolation scheme. This merely produces a
tiny overall shift of ��V� which is irrelevant for the determi-
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nation of minima and maxima. Using much less �yellow
dashed� or no interpolated k points �blue solid line� intro-
duces the above-mentioned kinks. For the example shown
here, where the SFT grand potential is rather flat, these kinks
would render a reliable determination of the optimal hybrid-
ization strength impossible.

C. Level crossing in the reference cluster

Let us now turn to the second possible source of a
nonanalytic behavior of ����, namely, a sign change of one
of the single-electron excitation energies �n� of the reference
system as a function of a variational parameter. Consider an
electron-removal process, for example. Here �n�=E0�N��
−En�N�−1�−�	0, where En�N�� is the nth excited eigenen-
ergy in the invariant subspace of H� with �total� particle
number N�. If, as a function of �, the excitation energy �n�
→0, the ground state of the reference system becomes de-
generate with an eventually new ground state in the N�−1
subspace. Hence, �n�=0 would indicate a level crossing and a
discontinuous change of the ground state of the reference
system. This in turn would induce a discontinuous change of
the self-energy and thus a discontinuity of the SFT grand
potential ���� which was unphysical for obvious thermody-
namical reasons. It is therefore of utmost importance to keep
N�=const, i.e., to ensure that the stationary point of the SFT
functional �and a finite environment in parameter space� al-
ways corresponds to the same N�. The same holds for z com-
ponent of the total spin.

In principle, one might try to ignore a sign change of �n�
as a function of the optimal �, i.e., as a function of a model
parameter, and formally calculate the self-energy from the
ground state of a subspace with given N�. Besides the fun-
damental problem that this would actually correspond to a

nonequilibrium situation, such a procedure also cannot work
in practice. As the above discussion has shown, �n�=0 would
then induce a strong kink in ���� which cannot be smoothed
unless extremely large reference clusters with Lc→
 are
considered.

D. Local optimization

Tracing a stationary point of ���� as a function of a
model parameter can be accomplished by a local technique,
i.e., assuming the stationary point �st to be close to a starting
point �0. A naive application of Newton’s method to find a
zero of ����� has turned out to be inefficient, however,
since equipotential surfaces ����=const are usually highly
anisotropic. Below we briefly describe our modified algo-
rithm which uses an adaptive local coordinate frame with a
directionally dependent calculation of partial derivatives.

Let �n denote the set of variational parameters at iteration
step n. Assuming ���� to be approximately given by a qua-
dratic form, the next estimate is

�n+1 = �n − Hn
−1��������=�n

, �8�

where

Hn,ij =
 �2����
��i � � j



�=�n

�9�

is the Hessian at �n. A numerically stable evaluation of the
Hessian �and the gradient� is crucial here. This can be
achieved iteratively by principal axis transformation

Hn = UnDnUn
T. �10�

The diagonal matrix Dn contains the eigenvalues of Hn. New

coordinates �̃ are defined via the orthogonal transformation

�̃ = Un
T� . �11�

The Hessian for the next n+first step is calculated in the new
frame

H̃n+1,ij =
 �2���̃�

��̃i � �̃ j



�̃=�̃n+1

. �12�

Here ���̃�������̃��. Inverse transformation

Hn+1 = UnH̃n+1Un
T �13�

yields the new Hessian in the original frame which is re-
quired for the next iteration step. The main point is that in
principal coordinates we have

���̃� − ���̃st� =
1

2�
i

 �2���̃�

��̃i
2



�̃=�̃st

��̃i − �̃st,i�2 �14�

for � close to �st. Hence, H̃n+1 becomes almost diagonal and
can be calculated as a difference quotient using discrete steps
which depend on the principal direction,
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FIG. 2. �Color online� Self-energy functional ����V ,�c ,�b��
���V ,�c ,�b�, plotted versus the hybridization strength V while
keeping the on-site energies fixed at their optimal values, �c=
−0.14 and �b=−0.24. Calculation for t1=1 �this sets the energy
scale throughout the paper�, t2=0, U=4, �=−0.3 and using the
Lc=2 reference system. Solid lines represent calculations without
the interpolation method, dashed lines refer to calculations with a
total �original plus interpolated� number of poles Nk,int.
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��̃i = ���/H̃n,ii. �15�

Here �� is a suitably chosen constant. This implies that
partial derivatives along directions in parameter space where

���� is almost flat are computed with a large ��̃i while a

small ��̃i is used along directions where ���� is strongly
curved. This has turned out to be crucial for a numerically
stable algorithm.

E. Global optimization

As a prerequisite for a local method to trace a stationary
point, a global method must be available which is applicable
even if a reasonable starting point is not known. Except for
global minimization algorithms which can be applied to
minimize �������2, for example, there is no general global
technique to find stationary points in a multidimensional
space unfortunately.

In context of the SFT, however, there is an elegant solu-
tion to this problem since any local method can be converted
into a global one with the help of a crossover procedure as
has been pointed out in Ref. 43. The main idea is to modify
the original system by switching off the intercluster hopping
�in the same way as it is done in the reference system�. For
this truncated system, the VCA trivially yields the exact so-
lution, and the stationary point is trivially given by one-
particle parameters of the reference system which are equal
to those of the truncated one. One then adiabatically switches
on again the intercluster hopping in the truncated system,
i.e., one replaces tinter→�tinter and increases the parameter �
from �=0 to �=1. During this adiabatic process the station-
ary point of the reference system �st��� can be traced by
means of a local optimization method. Finally, �st=�st��
=1� is the stationary point of the original system.

Here, we present a variant of this crossover trick which
makes use of the fact that it has turned out to be easy to
globally find a stationary solution for the Lc=1 reference
system �i.e., for the dynamical impurity approximation
�DIA�� . An adiabatic crossover from the Lc=1 reference
system to an Lc�1 reference system can be performed then
by introducing a dimensionless parameter � to scale the
nearest-neighbor and next-nearest-neighbor hopping in the
reference system: t1�→�t1� and t2�→�t2�. For �=0 we recover
�Fig. 3� the mean-field solution, for �=1 we have the VCA
with Lc�1. This procedure can be applied to cross over
between two arbitrary reference systems. Examples are given
in Fig. 4.

For our calculations using the Lc=4 reference system, we
started from Lc=1 and have changed � from 0 to 1 in steps
of 0.05. An example is shown in Fig. 4. The crossover pro-
cedure can be done along two different routes, namely, from
Lc=1 to Lc=4 directly and, in two crossover steps, from Lc
=1 via Lc=2 to Lc=4. The resulting optimal variational pa-
rameters are the same for both routes as can be seen from the
figure. It is physically plausible that with increasing � and
cluster size, the values of the optimal parameters tend to
approach the “physical values” of the original system, i.e.,
V=0 and �c=0 while for Lc=1 stronger deviations are nec-

essary to partially compensate for the effect of the truncated
intercluster hopping.

F. Calculations at fixed density and magnetization

Self-energy-functional theory has originally been devel-
oped using the grand-canonical ensemble. At zero tempera-
ture, starting from a grand-canonical Hamiltonian with
chemical potential � and magnetic field B,

H = H − ��
i

�ni↑ + ni↓� − B�
i

�ni↑ − ni↓� , �16�

the SFT grand potential �=��� ,� ,B� is a function of the
variational parameters � �see Eq. �4�� and of � and B �and
other model parameters, such as U�. The variational param-
eters are fixed by ���� ,� ,B� /��=0 while, at the respective
stationary point, the derivatives with respect to � and B yield
the expectation values of the total particle number and mag-
netic moment

�N� = −
����,�,B�

��
, �M� = −

����,�,B�
�B

. �17�

We also define the electron density n=N /L=�i��ni�� /L and
the magnetization m=M /L=�i�z��ni�� /L with z↑,↓= �1.

L =2c L =4cL =1c L =4c

FIG. 3. �Color online� Crossover from the Lc=1 to the Lc=4
reference system �left� and from the Lc=2 reference system to the
one with Lc=4 �right�. Dashed lines represent intracluster hopping
parameters scaled by a factor �. It is assumed that a stationary point
of the SFT functional is known for the case where the intracluster
hopping parameters are switched off ��=0�. The stationary point is
traced locally while adiabatically switching on the hopping param-
eters, 0���1. This yields a stationary point for the respective
Lc�1 reference system ��=1�.
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To construct phase diagrams it is much more convenient,
however, to keep n instead of � fixed, e.g., to study U de-
pendencies at fixed density n. If there is no manifest particle-
hole symmetry �off half filling or for t2�0�, the correspond-
ing chemical potential is not known a priori. Furthermore, it
is highly desirable to perform calculations at fixed m instead
of B to search for a ferromagnetic phase. Starting from a
paramagnetic solution with m=0 and adiabatically increasing
m, one simply has to trace the solution and find the corre-
sponding B=B�m�. A spontaneous ferromagnetic solution is
then indicated by a finite m with B�m�=0. Clearly, with the
homogeneous magnetic field considered in Eq. �16� only ho-
mogeneous ferromagnetic order can be described. However,
the generalization to more complicated, e.g., noncollinear or-
der, is straightforward.

Consider the twofold Legendre transformation from the
grand potential � via the free energy F=�+�N to the Gibbs
energy G=�+�N+BM,

���,�,B� � F��,N,B� � G��,N,M� . �18�

At given N and M, the SFT Gibbs energy G�� ,N ,M� is
obtained from G�� ,� ,B ,N ,M����� ,� ,B�+�N+BM via
the original stationarity condition

�G

��
= 0 ⇔

��

��
= 0 �19�

and two additional conditions fixing � and B

�G

��
= 0 ⇔ �

i�

ni�� = N , �20�

�G

�B
= 0 ⇔ �

i�

z�ni�� = M . �21�

Hence, one simply has to consider � and B in addition to �
as variational parameters.

To illustrate the method we have performed VCA calcu-
lations using the Lc=1 reference system at fixed density n
=0.7 and different U close to a second-order phase transition,
see Fig. 5. The magnetization is treated as a given quantity.
The top panel shows the Gibbs free energy as function of m.
For U=19 this is a convex function as it is prescribed by
thermodynamic stability. Uc=19.7 marks a critical point
above which the Gibbs energy becomes thermodynamically
unstable within a certain range of magnetizations. As can be
seen in the top panel, the phase is locally unstable for
−0.18�m�0.18 where the Gibbs energy is concave. A ther-
modynamically stable state is obtained via a Maxwell con-
struction. This yields the solid line. Between −0.32�m
�0.32 the Gibbs energy is a constant which implies B
=�G /�M =0. Hence, an infinitesimal field B=0+ will pro-
duce a finite magnetization m=0.32. States with �m��0.32
can realized by macroscopy phase separation. We conclude
that Uc=19.7 marks a continuous transition from the para-
magnetic state to a state with spontaneous ferromagnetic or-
der. The function B�m� �lower panel in Fig. 5� can be dis-
cussed analogously. Local thermodynamic instability is
indicated by a negative slope, and instability with respect to
a Maxwell constructed state is indicated by the dashed line.

Finally, the same physics can be seen by looking at the free
energy �at T=0 equal to the ground-state energy E= �H�
−BM� given as a function of B �see inset for U=21�. Note
that m can be computed as a derivative of G or via an inte-
gration of the spin-dependent local density of states which,
due to the thermodynamical consistency of the SFT, yields
the same result.

It is interesting that the mean-field �Lc=1� approach
yields a critical interaction Uc=19.7 which is rather close to
the numerically exact result Uc=18.5 obtained via density-
matrix renormalization group.25 Characteristic for a mean-
field approach is the square-root behavior of the order pa-
rameter m�U� close to the critical point, m��U−Uc. This
can be seen in Fig. 6, where the magnetization is displayed
as function of U for fixed density n=0.7. The inset shows a
linear trend of m2 close to Uc.

G. Ferromagnetic susceptibility

For the calculations of m�U�, as displayed in Fig. 6, the
simultaneous optimization of eight variational parameters is
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FIG. 5. �Color online� Gibbs free energy G �per site� and the
external magnetic field B as functions of the magnetization m. Cal-
culations have been performed at fixed density n=0.7 for t1=1, t2
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required, namely the spin-dependent on-site energies �c and
�b, the spin-dependent hybridization strength V plus � and B.
The number of parameters can be reduced if one is interested
in the phase boundaries only. Rather than tracing a sponta-
neously symmetry-broken solution, a second-order critical
point can be found from the divergence of a suitably defined
susceptibility. Here we consider the homogeneous static
magnetic susceptibility �=−�1 /L� �2F /�B2. The most obvi-
ous way to calculate � is to apply a small external homoge-
neous magnetic field B and to look at the linear response m,
i.e., �=limB→0 m /B. For this case, it is convenient to con-
sider B as fixed which implies that only seven variational
parameters �for Lc=1 or Lc=2� have to be taken into ac-
count. The result for the Lc=1 reference system is shown in
Fig. 7 �green lines�. The divergence of � at Uc=19.7 is con-
sistent with the Uc extracted from the order parameter in Fig.
6. As it is typical for a mean-field approach �−1 �see inset� is
a linear function of U close to Uc. The same holds for Lc
=2. Again this has to be expected as critical phenomena
should not depend on the reference cluster size.

For the calculation of the susceptibility, a variational op-
timization of spin-dependent variational parameters is actu-
ally not necessary as was recognized by Eder.44 This can be
seen in the following way. Consider the free energy F
=F�� ,B� �Eq. �18�� where we suppress the N dependence in
the notation. Due to the stationarity conditions,
�F�� ,B� /��=0, the optimal � can be considered as a func-
tion of B, i.e., �=��B�. Therefore,

d

dB

�F

��
���B�,B� = 0. �22�

Carrying out the differentiation, we find

�2F

�� � �
���B�,B�

d��B�
dB

+
�2F

�B � �
���B�,B� = 0. �23�

This is a linear set of equations which can be solved by
matrix inversion to get

d��B�
dB

= − � �2F

�� � �
�−1 �2F

�B � �
. �24�

Now, the susceptibility is given by �=−d2F���B� ,B� /dB2.
Hence

� = −
d

dB
� �F���B�,B�

��

d��B�
dB

+
�F���B�,B�

�B
� . �25�

Using Eq. �22� and the stationarity condition once more, we
see that the first term does not contribute, and thus

� = −
�2F��,B�
�� � B

d��B�
dB

−
�2F��,B�

�B2 , �26�

where d��B� /dB can be eliminated using Eq. �24�. Conse-
quently, for the calculation of � it is sufficient to consider a
paramagnetic state and to optimize spin-independent varia-
tional parameters only. This strongly reduces the computa-
tional effort. Once a paramagnetic stationary point is found,
partial derivatives according to Eqs. �24� and �26� have to
calculated with spin-dependent parameters � in a final step.
The resulting � as a function of U is shown in Fig. 7 as the
blue lines.

A third way to determine the susceptibility is to keep the
magnetization m fixed at a small value and vary the field B to
optimize the Gibbs energy G, see red line in Fig. 7. Here, a
divergence of � is indicated by B�m�0�=0. This calculation
involves spin-dependent parameter optimization and to take
the field B as a variational parameter in addition.

Finite-size effects play a crucial role for the calculation of
the susceptibility in the critical regime. It turns out that the
numerically most expensive calculation where the magneti-
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zation is kept fixed is most stable against finite-size effects.
On the scale of Fig. 7 converged results are obtained for a
comparatively moderate system size of L=4000 sites.

IV. RESULTS AND DISCUSSION

A. Ferromagnetism in the Hubbard model

Applying the Hartree-Fock approximation to the single-
band Hubbard model, one is lead to the Stoner criterion,45

U�0�0� � 1, �27�

for the existence of a ferromagnetic instability. Therewith,
the calculation of the free �U=0� local density of states
�DOS� �0��� at the Fermi edge �=0 can give first insights
where ferromagnetism is likely to occur. Conceptually, how-
ever, the Hartree-Fock approach is a static mean-field theory,
and quantum fluctuations are neglected altogether. If at all,
reliable results can be derived for the extreme weak-coupling
regime where ferromagnetism is unlikely to occur.

Despite the simplicity of the Hubbard model, only a few
rigorous results on ferromagnetism are available.46–48 The
Mermin-Wagner theorem49,50 excludes spontaneous breaking
of the SU�2� symmetry for finite temperatures and dimen-
sions lower then three. For the one-dimensional case and
nearest-neighbor hopping, Lieb and Mattis51 have shown that
the ground state for any even number of electrons is always
a nonmagnetic singlet independent of U. A ferromagnetic
ground state is also excluded in the low-density limit n�0
irrespective of U as has been argued by Kanamori.7 His
T-matrix approach, however, must be based on the assump-
tion that weak-coupling perturbation expansion converges.
Lieb52 has shown that a ferromagnetic ground state is ex-
cluded for a bipartite lattice with nearest-neighbor hopping at
half-filling n=1 any U�0 independent of the dimensional-
ity. As has been demonstrated by Nagaoka53 the ground state
of the half-filled model with one hole added is fully polar-
ized for U=
 on bipartite lattices �for fcc and hcp lattices
with negative hopping integrals� in three or higher dimen-
sions. While criteria for the stability of the fully polarized
state for thermodynamically relevant dopings could not be
obtained,54–56 it is possible to reduce the parameter space left
for a stable Nagaoka state in the thermodynamic limit by
different variational approaches.57,58 Mielke and Tasaki59–62

proved the stability of ferromagnetism for special lattices,
such as the Kagomé lattice, for which there are dispersion-
less parts of the Bloch band �flat-band ferromagnetism�. In
these systems the Fermi sea is degenerate with ferromagnetic
states for U=0, and ferromagnetism becomes stable for U
�0. Müller-Hartmann63 has considered the one-dimensional
model with a next-nearest-neighbor hopping such that the
free band has two degenerate minima. In the low-density
limit a metallic ferromagnetic ground state is obtained due to
ferromagnetic exchange in a corresponding effective two-
band model. Similarly, Tasaki64 constructed a one-
dimensional Hubbard model with next-nearest-neighbor hop-
ping which has a ferromagnetic �insulating� ground state at
quarter filling and sufficiently strong U.

B. Ferromagnetism in infinite dimensions

A comprehensive but approximate approach to ferromag-
netic order is provided by dynamical mean-field theory.12–14

In the past several studies have addressed the magnetic phase
diagram of the Hubbard model on infinite-dimensional lat-
tices where the DMFT becomes exact. At least two routes
toward ferromagnetic order could be identified: �i� On a
particle-hole symmetric hypercubic lattice ferromagnetism is
realized for very strong Coulomb interaction U and fillings
close to half filling.17–19 This is reminiscent of the Nagaoka
state.53 �ii� On the other hand, a moderate Hubbard-U is suf-
ficient for lattices with a free DOS exhibiting a pronounced
asymmetry.20–22 Here a ferromagnetic ground state is ob-
served in large regions of the U-n phase diagram. A simple
mechanism for ferromagnetic order is not apparent although
some understanding could be achieved9,10,21 by techniques
and arguments related to the Hubbard-I approach.5 The
Stoner criterion turns out to be inadequate. Furthermore, also
a realization of flat-band ferromagnetism62 can be found65 on
a Bethe lattice with infinite coordination.

We have performed calculations for different lattices, i.e.,
for different free DOS, respectively, using the self-energy-
functional approach for a reference system with one corre-
lated and one bath site only, i.e., Lc=1, see Fig. 1. This is
referred to as the DIA in the following. Let us recall that the
DIA with an infinite number of bath sites would exactly cor-
respond to DMFT.30 While local quantum fluctuations are
treated exactly within DMFT, the DIA is much simpler and
includes some local fluctuations only. However, due to the
presence of the bath site it allows for the formation of a local
�Kondo-type� singlet. Our goal is here to test the DIA by
comparing with available DMFT results for the ferromag-
netic phase. This serves as a benchmark of the approxima-
tion. Furthermore, as a computationally cheap method, the
DIA allows for a more comprehensive study of the phase
diagram.

We start with the first route �i� toward ferromagnetism and
consider fillings close to half filling and very strong Cou-
lomb interaction. Here we can compare with DMFT results
by Zitzler et al.18 which have been obtained using the nu-
merical renormalization group �NRG� as an impurity solver.
The calculations have been carried out for the hypercubic
lattice in infinite dimensions. Using the same conventions as
in Ref. 18, the free DOS is given by

�0��� =
1

��
e−�2

. �28�

The variance of the Gaussian DOS �2=0.5 sets the energy
scale.

The results are displayed in Fig. 8. For very strong U the
DMRG-NRG data predict an almost fully polarized ferro-
magnetic state at low dopings �=1−n. Note that as a conse-
quence of the tails of the free DOS, the ground state cannot
be fully polarized in a strict sense.66 However, this exponen-
tially small scale cannot be expected to be visible in the data.
With increasing doping the system undergoes a continuous
phase transition to the paramagnet at a critical doping �c
=14.6%. The result of the DIA agrees well with the full
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DMFT and likewise predicts a continuous transition from a
fully polarized state to the paramagnetic phase. On the res-
caled plot in Fig. 8, the agreement is even quantitative. How-
ever, the critical doping for the phase transition ��c=0.185�
is significantly overestimated as compared to DMFT-NRG
��c=0.146�. As this means a stronger tendency toward ferro-
magnetism, one may conclude that the DIA underestimates
the effect of local quantum fluctuations.

The DIA results are consistent in themselves. The magne-
tization m can be calculated via the spectral theorem from
the spin-dependent one-electron spectral function, or as the
derivative of the optimal grand potential with respect to an
external magnetic field. Both computations yield the same
result as has been checked numerically and as is clear from
the formalism.29 We also checked numerically that the Lut-
tinger sum rule is fulfilled. Within the DIA this must be
respected67—in the paramagnetic but also in the ferromag-
netic state. In the spin-polarized metallic phase there are two
Fermi surfaces with Fermi-surface volumes for �= ↑ ,↓

VFS,� = �
k

�� − ��k� − ���0�� , �29�

where ��k� is the Bloch band dispersion and ����� the
k-independent self-energy. The Luttinger theorem then reads
as

VFS,�=! �N�� = L�
−


0

d������ . �30�

For a local and real self-energy, the interacting local DOS
can be written as �����=�0��+�−������, and the Luttinger
sum rule reads �=�0�+���0�. Here �0� is a �spin-

dependent� chemical potential of the noninteracting system
such that the spin-dependent particle numbers are the same
as for the interacting system.

Next we consider the second route �ii� toward ferromag-
netism and consider a moderate Hubbard-U but a free DOS
with a pronounced asymmetry. Here we can compare with
the results of Wahle et al.21 who employed the Hirsch-Fye
quantum Monte Carlo �QMC� method as an impurity solver
for DMFT. Calculations have been performed for finite but
low temperatures and could be extrapolated to extract a
ground-state U-n phase diagram which is shown in Fig. 9
�points�. The Bloch band dispersion ��k� enters the DMFT
�and also the DIA� via the free DOS only. Hence, instead of
specifying the lattice structure and the hopping parameters,
one can likewise start from a certain model free DOS as
input for the DMFT calculation. This has the advantage that
the effect of the asymmetry of the free DOS can be studied
systematically. In Ref. 21 the following model free DOS has
been considered,

�0��� = c
�D2 − �2

D + a�
. �31�

Here, a is a parameter which controls the asymmetry while
the variance stays constant. One can continuously tune the
DOS from the symmetric case a=0, corresponding to the
semielliptic DOS of the Bethe lattice with infinite coordina-
tion, over an asymmetric DOS with more and more spectral
weight peaked in the vicinity of the lower band edge, to a
DOS with an inverse square-root divergence at the band edge
for a=1 eventually. Furthermore, in Eq. �31�, c= �1
+�1−a2� / ��D� is a normalization constant, and D is the half
bandwidth which is set to D=2 to fix the energy scale. The
DMFT-QMC results in Fig. 9 correspond to a strongly asym-
metric DOS characterized by a=0.98.

As is obvious from Fig. 9, a ferromagnetic ground state is
realized in large areas of the phase diagram. For low fillings
a moderate Hubbard-U is sufficient for ferromagnetism. With
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increasing n the phase boundary Uc�n� increases. Note that
large U values cannot be accessed easily within the Hirsch-
Fye QMC approach. It appears that this phase diagram is
ruled by a mechanism that is completely different from the
Nagaoka mechanism that has been suggested to rule the
physics in case �i�. Contrary to the results shown in Fig. 8,
ferromagnetism becomes more likely with increasing doping
�=1−n and persists down to very small fillings.

Figure 9 also shows the result of our DIA calculation for
a=0.98 �solid line�. Again, we find a convincing qualitative
agreement with the full DMFT. The phase boundary Uc�n�
shows the same trend but is systematically shifted toward
higher interaction strengths. We attribute this difference
partly to the very sensitive dependence of the results on the
asymmetry parameter. This can be seen in Fig. 10 where the
result for the ground-state phase diagram from DIA calcula-
tions for different asymmetry parameters a is given. It is
obvious that for a close to unity a tiny change of a and thus
of the free DOS results in a strong shift of the critical U.

Using the DIA one can easily trace the evolution of the
phase diagram as a function of the asymmetry parameter. As
can be see from Fig. 10, Uc�n� can be very small for a→1,
i.e., for the case where the free DOS diverges at the lower
band edge. For a�1 the critical interaction becomes large
and eventually Uc→
 for n→0. With increasing n, how-
ever, the phase boundary soon develops a minimum at nmin

and then becomes an increasing function of n. This minimum
is located at low fillings for asymmetry parameters close to
unity but then shifts to higher fillings for a less asymmetric
free DOS. At the same time, Uc�nmin� increases strongly. For
a=0.5 we find nmin	0.9, and the ferromagnetic phase is
confined to a small filling range close to half filling and very
strong Coulomb interaction.

It appears that the two routes toward ferromagnetism �Na-
gaoka vs asymmetry of the free DOS� are linked continu-
ously. For even smaller asymmetry parameters a�0.5 ferro-
magnetism disappears completely. The symmetric case a=0
corresponds to a Bethe lattice with infinite coordination with
a symmetric free DOS. Here a ferromagnetic state cannot be
stabilized. This is again consistent with full DMFT �NRG�
calculations.65 Obviously, the stability of the ferromagnetic
state not only depends on the asymmetry a but is also
strongly affected by the detailed form of the symmetric free
DOS since, as has been discussed above, for the symmetric
Gaussian free DOS corresponding to the hypercubic lattice,
there is again a ferromagnetic phase close to half filling. It is
an open question whether the latter can really be attributed to
the Nagaoka mechanism. On one hand, the Nagaoka mecha-
nism needs closed loops on the lattice which are present for
the hypercubic one but absent for the Bethe lattice. On the
other hand, the DMFT is sensitive to the lattice structure via
the free DOS only.

Concluding, we find that the DIA gives qualitatively reli-
able results for the ferromagnetic ground-state phase diagram
in all cases studied, as has been corroborated by the compari-
son with different full DMFT calculations. A reference sys-
tem with a single bath site appears to be sufficient to capture
the main physics although quantitatively there is a tendency
to overestimate the range where ferromagnetism is possible.
While local quantum fluctuations are included in the DIA in
a very simple way only, the approximation allows for the
formation of a local �Kondo-type� singlet. Together with the
internal thermodynamical consistency of the approach and
with the fact that Luttinger’s sum rule is respected, this en-
sures a rough but reliable estimate of the mean-field phase
diagram for ferromagnetic order.

C. Ferromagnetism in one-dimensional chains

Ground-state ferromagnetism in the one-dimensional
Hubbard model is restricted by the Lieb-Mattis theorem51

which excludes a finite order parameter in case of nearest-
neighbor hopping only, irrespective of the interaction U. In-
cluding a next-nearest-neighbor hopping t2, however, ferro-
magnetism is proven to exist for U=
 in the limit t2→0
�t2�0� for all densities.68–70 This limit has to be contrasted
to the limit t1=0, but finite t2 �two-chain model� where the
Lieb-Mattis theorem applies again. In the low-density limit,
the ground state is ferromagnetic for t2�−1 /4 at U=
.63

With a finite next-nearest-neighbor hopping, ferromagnetism
occurs in a rather large part of the U-n phase diagram as has
been demonstrated by DMRG calculations of Daul and
Noack.24,25

To study the effect of local and of short-range nonlocal
quantum fluctuations on the stability of the ferromagnetic
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ground state and to test the predictive power of mean-field
and cluster mean-field approaches, we have applied the DIA
and the VCA �see Fig. 1� to the model with t2�0. Note that
a finite t2 translates into an asymmetric free DOS and that
t2�0 implies magnetic frustration with respect to antiferro-
magnetic order. We exclusively consider t2�0 �t1=1 sets the
energy scale� which implies that ferromagnetic order is ex-
pected to show up for fillings below half filling.

We first check whether or not the Lieb-Mattis theorem is
respected by the most simple DIA. To this end, DIA calcu-
lations have been performed to map out the U-t2 phase dia-
gram at a fixed filling n=0.5 �quarter filling�. Calculations
are done using chains with up to 8000 sites. The critical
interaction for ferromagnetic order Uc is determined by the
divergence of the paramagnetic susceptibility. � is calculated
by using a finite but small external field �B=0.01�. The val-
ues for Uc obtained in this way are checked for selected t2 by
calculating the external field for a given small magnetization
�m=0.01�. Deviations are small, i.e., invisible on the scale of
the figures discussed below, and can be neglected.

The resulting phase diagram is shown in Fig. 11. The DIA
predicts a Uc which varies strongly with �t2�. To be able to
display the results for 0�U�
 and −
� t2�0 in a single
picture, nonlinear scales for t2 and U have been used. The
effective bandwidth defined as Weff=�2t1

2+2t2
2, i.e., the stan-

dard deviation of the free DOS, and t1 are chosen as the
relevant scales for U and t2.

In both cases where the Lieb-Mattis theorem holds, for
t2=0 and t2→
 the DIA predicts Uc→
, i.e., the absence of
ferromagnetic order. On the other hand, the static mean-field
theory is clearly at variance with the exact theorem as can be

seen from Fig. 11 where the green line �HF/Stoner� displays
the divergence of the Hartree-Fock susceptibility as deter-
mined from the Stoner criterion. Note that the discrepancy
between the DIA and the HF results is drastic except in the
vicinity of t2	−0.3 ��t2� / ��t1�+ �t2��	0.23� where the chemi-
cal potential of the noninteracting system coincides with a
Van Hove singularity in the free DOS. Here the Stoner cri-
terion correctly predicts the ferromagnetic instability of the
ground state.

As one cannot expect that the Lieb-Mattis theorem is re-
spected rigorously within a mean-field approach, we also
performed calculations for different fillings. In fact, for n
=0.4 a divergence of the susceptibility is found for t2=0.
However, the large critical value for the interaction, Uc
	30, indicates that the violation of the Lieb-Mattis theorem
is “weak” in the sense that it occurs for extremely strong
interactions only.

The comparison with Hartree-Fock theory tells us that
local quantum fluctuations are very important. On the other
hand, the comparison with VCA results shows that nonlocal
fluctuations are not important in first place. For example, for
t2=0 and for a very strong interaction, U=104, we find a
divergence of the susceptibility at a critical filling n=0.49
within the DIA while n=0.42 within the VCA for Lc=2. This
is the correct trend as the critical filling must vanish for Lc
→
 due to the Lieb-Mattis theorem. As compared to the
improvement of the DIA with respect to static mean-field
theory, however, this appears as marginal.

In most cases we find the phase transition to be discon-
tinuous. Figure 12 gives an example. Here the homogeneous
magnetic field B is shown as a function of the magnetization
m for t2=−0.34 and U=0.43. This corresponds to �t2� / ��t1�
+ �t2��	0.25 and U / �U+Weff�	0.22. Spontaneous ferromag-
netism requires a finite order parameter m at B=0. There are
three solutions: �i� the paramagnetic state at m=0 which
shows a positive susceptibility �=�m /�B, �ii� a thermody-
namically unstable ferromagnetic solution with negative �,
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and �iii� a stable ferromagnetic solution with ��0 and m
=0.20. The point �t2� / ��t1�+ �t2��	0.25 and U / �U+Weff�
	0.22 is just the transition point as can be seen from the
area under the B�m� curve, i.e., from the Maxwell construc-
tion, but is somewhat below the point which is plotted in Fig.
11 and at which the susceptibility � diverges: Uc / �Uc
+Weff�	0.24.

This explains itself in Fig. 13 where the Gibbs free ener-
gies and the magnetizations of the three solutions are shown
for fixed t2 as a function of U. Note that for T=0 and B=0
the Gibbs free energy is the ground-state energy: G=E. It
can be seen that the thermodynamically unstable solution
always has the highest Gibbs free energy. The actual phase
transition therefore takes place at the interaction strength U
=0.43 where the Gibbs free energies of the �stable� ferro-
magnetic and of the paramagnetic solutions are crossing.
This is consistent with the Maxwell construction in Fig. 12
since the difference in the Gibbs free energies of the para-
magnet and the ferromagnet is given by

�G = GFM − GPM = �
PM

FM

B�m�dm . �32�

On the phase boundary �G=0. The divergence of �, how-
ever, is related to the continuous vanishing of the order pa-
rameter of the unstable solution at Uc=0.49 �see Fig. 13,
bottom�. Note, that on the scale used in Fig. 11 the difference

between Uc and the true �first-order� transition points is al-
most invisible.

The t2 range in which the transition is continuous is
marked as the shaded area in Fig. 11. In addition, the figure
shows the t2 dependence of the interaction strength at which
the fully polarized �Nagaoka� state becomes unstable as com-
pared to the paramagnetic state. This line crosses the phase
transition line �diverging �� at �t2�	0.10 �corresponding to
�t2� / ��t1�+ �t2��	0.09� and �t2�	0.39 �corresponding to
�t2� / ��t1�+ �t2��	0.28�. This implies that for �t2��0.39 and for
�t2��0.09 the first-order transition is a transition from the
paramagnetic to the fully polarized ferromagnetic state while
in all other cases the magnetization jumps to a nonsaturated
value at the respective transition point. Our DIA results are
consistent with the DMRG calculations of Daul26 which
yield a second-order transition at t2=−0.2 and a first-order
transition at t2=−0.8 for quarter filling.

For a systematic comparison of the results of the dynami-
cal impurity approach with DMRG data,25 we fix the next-
nearest-neighbor hopping to t2=−0.2 and map out the phase
diagram U vs filling n. The result is shown in Fig. 14 in
comparison with static mean-field theory. The phase diagram
turns out to be qualitatively similar to the result for infinite
dimensions �see Fig. 9�. The critical interaction Uc strongly
varies with n and becomes extremely large for fillings close
to half filling. Despite the simplicity of the reference system,
the agreement with the DMRG date is reasonable.

Within static mean-field theory, local magnetic moments
are formed in the ferromagnetic state only. This might be the
right picture for the low-density regime. For fillings n�0.5,
however, static mean-field theory fails to reproduce the phase
diagram as the tendency toward ferromagnetic order is over-
estimated drastically.

Opposed to static mean-field theory, the DIA allows for
local-moment formation already in the paramagnetic state
and captures the correlated mean-field physics of the para-
magnetic Mott transition at half filling.31,38,40 The high val-
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ues for the Hubbard interaction necessary to produce ferro-
magnetic order can be understood in a picture where the
ferromagnetic state evolves from a highly correlated para-
magnet with preformed but disordered local magnetic mo-
ments. With increasing U and with increasing fillings n the
local magnetic moments are more and more efficiently
screened by a collective �single-band� Kondo effect. The ten-
dency to screen the local moments counteracts the formation
of magnetic order and thus results in very strong critical
interactions. Such a mechanism is already included in the
DIA. From the reasonable agreement with the DMRG data
and the strong improvement with respect to static mean-field
theory, we therefore infer that this mechanism is essential.
While the correct Kondo scale cannot be captured with a
single bath site �ns=2�, the possibility to form a local singlet
within a thermodynamically consistent approximation ap-
pears to be a key ingredient to understand the phase diagram.

Besides a screening of the local moment by local fluctua-
tions, a screening by nonlocal fluctuations is conceivable.
This would lead to nonlocal singlets—or even to long-range
antiferromagnetic order. Consequently, such a mechanism is
expected to be effective for fillings close to half filling where
nonlocal antiferromagnetic correlations are important. Note,
however, that due to the Lieb-Mattis theorem the necessity to
include a finite t2 already suppresses antiferromagnetic order
by magnetic frustration to some degree. This might explain
that the effect of nonlocal fluctuations appears to be com-
paratively weak for intermediate fillings and significant for
fillings close to half filling only.

This can be seen in Fig. 15 where we compare the DIA
phase diagram with the results obtained from VCA calcula-
tions with finite clusters as reference systems: Lc=2–4 while
the description of the local degrees is unchanged �ns=2, one
bath site per correlated site�. For n�0.75 the critical inter-
action does not change much while for n=0.8, the critical U
is strongly reduced in the cluster approach. The VCA thereby
improves the agreement with the DMRG.

Although the step from Lc=1 to Lc�1 appears to be es-
sential close to half filling, the results of the cluster approach
have to be interpreted with some care since the expected
convergence with increasing cluster size can hardly be seen
for Lc	4. This reflects finite-size errors the size of which
can be estimated by comparing the results for different Lc
among each other. Within this �considerable� error there is
agreement with the DMRG results. On the other hand the
VCA, and more important even the DIA, is able to predict
the qualitatively correct trend for the phase diagram. It is
also important to note within the DIA it is much easier to
find, stabilize and trace magnetic solutions. For the clusters
with Lc�1 we have not been able to find solutions in the
entire filling range for reasons discussed in Sec. III C.

V. CONCLUSIONS

The self-energy-functional theory has been applied to the
Hubbard model in infinite and in one dimension to investi-
gate spontaneous ferromagnetic order. Using different refer-
ence systems generating different single-site and cluster
mean-field approximations, i.e., dynamical impurity and the
variational cluster approximations, it is possible to study the
effects of local and of short-range nonlocal quantum fluctua-
tions on the stability of the ferromagnetic ground state.

We find that local fluctuations are of crucial importance to
get a qualitatively correct phase diagram and to respect the
Lieb-Mattis theorem. Opposed to static mean-field theory,
ferromagnetic order quite generally requires substantially
higher interaction strengths and can be understood as evolv-
ing from preformed but disordered local magnetic moments.
The extremely large critical interactions found in one-
dimensional chains could then be attributed to the screening
of the local moments by local �Kondo-type� correlations
which becomes more and more effective for increasing fill-
ing or interaction strength. This local singlet formation, on a
qualitative level, is already included in the DIA. Singlet for-
mation due to nonlocal correlations, included in the VCA,
appears to be relevant for fillings close to half filling only
while a ferromagnetic ground state can be obtained in large
areas of the parameter space and down to the low-density
limit, in particular. The limited importance of �antiferromag-
netic� nonlocal correlations is of course interrelated with the
frustration of antiferromagnetic order due to a next-nearest-
neighbor hopping t2, with the Lieb-Mattis theorem, and, in
the case of infinite dimensions, with an asymmetric free
DOS. There is an obvious similarity of the magnetic phase
diagram of the one-dimensional model with the phase dia-
gram in infinite dimensions which again suggests that local
correlations play the predominant role for ferromagnetic or-
der.

This is of some importance for future investigations of
ferromagnetism in nanosized objects, e.g., chains or clusters
on nonmagnetic substrates, as it opens a route to study those
systems by �dynamical� mean-field methods which, as con-
cerns the system geometry, are more flexible than the
density-matrix renormalization group, for example. The situ-
ation may be contrasted, e.g., with the absence of long-range
antiferromagnetic order in one-dimensional systems which is
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caused by nonlocal quantum fluctuations. In the latter case
any mean-field approach would be questionable a priori.

The study of infinite-dimensional lattices using the DIA
has shown that the previously known parameter ranges that
are favorable for ferromagnetic order, namely, low to inter-
mediate fillings and moderate U in case of a strongly asym-
metric free DOS and fillings close to half filling and ex-
tremely strong U in case of a symmetric free DOS, are linked
continuously. This demonstrates the difficulty to find simple
“mechanisms” for ferromagnetic order in the Hubbard
model. Ferromagnetism should therefore be seen as a com-
plex phenomenon the description of which necessarily re-
quires nonperturbative and thermodynamically consistent
many-body techniques.

To study ferromagnetism within self-energy-functional
theory, at least six variational parameters have to be opti-
mized simultaneously, namely the spin-dependent one-
particle energies of the correlated and of the uncorrelated
sites and the spin-dependent hybridization strength in addi-
tion. Two more variational parameters must be considered
for calculations at fixed filling and magnetization which is
convenient for the construction of phase diagrams. This can
be accomplished by a number of technical improvements
concerning �i� an accurate treatment of k and frequency sum-
mations, �ii� optimization algorithms which adapt to the local
structure of the functional, �iii� global optimization algo-
rithms to find a stationary point of the functional. For the
calculation of the static and homogeneous paramagnetic sus-

ceptibility, an optimization of spin-independent parameters is
sufficient.

The comparison with dynamical mean-field theory and
with density-matrix renormalization-group calculations for
the infinite-dimensional and for the one-dimensional model,
respectively, has been essential to rate the approximations.
For both, infinite dimensions and one dimension, a simple
DIA turns out to be sufficient for a qualitative and rough scan
of the phase diagram. This might be sufficient in view of the
fact that the Hubbard and similar models themselves repre-
sent strong simplifications as compared to a real material. In
one dimension, a cluster approach including short-range cor-
relations, i.e., the VCA, appears to be necessary for fillings
close to half filling. A satisfactory convergence with increas-
ing cluster size, however, could not be obtained. For future
studies of more complicated low-dimensional geometries, we
therefore suggest to use the DIA in those ranges of the pa-
rameter space where there are no significant deviations from
results obtained by the cluster approach.
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