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We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the
chemical formula A2BB�O6, where the B� atom has a 4d1 or 5d1 electronic configuration and forms a face-
centered-cubic lattice. The combination of the triply degenerate t2g orbital and strong spin-orbit coupling forms
local quadruplets with an effective spin moment j=3 /2. Moreover, due to strongly orbital-dependent exchange,
the effective spins have substantial biquadratic and bicubic interactions �fourth and sixth order in the spins,
respectively�. This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with
dominant octupolar order, a ferromagnetic phase with magnetization along the �110� direction, and a nonmag-
netic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures.
All these phases have a two-sublattice structure described by the ordering wave vector Q=2��001�. We
consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a non-
magnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-
liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven
by lattice distortions. Existing and possible future experiments are discussed in light of these results.
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I. INTRODUCTION

In magnetic Mott insulators with quenched orbital degrees
of freedom, weak spin-orbit coupling �SOC� only leads to a
small correction to the usual spin-exchange Hamiltonian in
the form of single-site anisotropy and Dzyaloshinskii-Moriya
interactions.1,2 In the presence of strong SOC, however, a
completely different physical picture emerges, in which spin
itself is not a good quantum number, and magnetic aniso-
tropy is usually large. Generally, strong SOC is common in
the lanthanides, in which the relevant 4f electrons are very
tightly bound to the nucleus. The tight-binding shields the
electrons from crystal fields, which tend to split the orbital
degeneracies involved in SOC, and moreover reduces ex-
change, which also competes with SOC.

While more rare, strong SOC is becoming an increasing
focus in d-electron systems, in which electrons are more de-
localized than in the lanthanides, and more diverse phenom-
ena can be expected. For instance, strong SOC can be ex-
pected in 5d transition-metal compounds, which have large
intrinsic atomic SOC due to their high atomic weight. In this
category, many Ir-based magnets have been studied
recently.3,4 Lighter transition metals may also exhibit strong
SOC if competing effects such as crystal fields and exchange
are suppressed, e.g., by choosing crystal structures with
high-symmetry and well-separated magnetic ions, respec-
tively. An example of this type is the “spin-orbital liquid”
state observed in the Fe-based spinel FeSc2S4,5–7 which is
believed to be driven by SOC.8–10

In this paper, we consider the case of insulating magnetic
ordered double perovskites. Structurally, ordered double per-
ovskites �with the chemical formula A2BB�O6� are derived
from the usual perovskites ABO3 by selectively replacing
half the B ions with another species, denoted B�. We focus
on the case in which the B ions are nonmagnetic and the B�
ones are magnetic. Because of the difference in the valence
charges and ionic radius between B and B� ions, the mag-
netic B� ions form an face-centered-cubic �fcc� lattice struc-
ture with a lattice constant double of the original cubic one.
Many ordered double perovskites incorporate strong intrinsic
SOC, as B� ions are commonly 4d and 5d transition metals.
Moreover, the large B�-B� separation weakens exchange,
similarly to FeSc2S4. Here, we construct an appropriate mi-
croscopic model for the most quantum of these materials �a
list may be found in Table I�, in which the magnetic ion
contains a single unpaired S=1 /2 spin.

The physics is strongly influenced by the combination of
the orbital degeneracy of the t2g multiplet, which acts as an
effective �=1 orbital angular moment. Due to strong SOC,
this combines with the S=1 /2 spin to induce an effective
total angular momentum j=3 /2 description of the system.
Moreover, due to the orbitally dependent exchange, the in-
teraction of these j=3 /2 contains large biquadratic �fourth
order in spin operators� and triquadratic �sixth order in spin
operators� interactions. These support exotic phases not eas-
ily found in systems with dominant bilinear spin exchange.

Analysis of the microscopic model shows that the strong
SOC enhances quantum fluctuations and leads to several in-
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teresting phases: �1� an unconventional antiferromagnet �de-
noted AFM� in which the magnetic octupole and quadrupole
moments rather than the dipole moment are dominant, �2� an
unusual noncollinear ferromagnet 110 �denoted FM110� with
a doubled unit cell and magnetization along the �110� axis,
�3� a �biaxial� “spin nematic” phase with quadrupolar order
but unbroken time-reversal symmetry and, more specula-
tively, �4� a possible quantum-spin-liquid �QSL� phase.
Phases �1�, �2�, and �4� are low-temperature phases and per-
sist as ground states, while the spin nematic, phase �3�, oc-
curs in a broad intermediate temperature range below the
paramagnetic state but above any magnetic ordering tem-
perature.

States with magnetic multipole order are more often ob-
served in f-electron systems where crystal-field effects are
less important than SOC.19 As a consequence, the atomic
wave functions are total angular momentum eigenstates, in
which the spin and orbital degrees of freedom are highly
entangled. This leads to highly non-Heisenberg exchange be-
tween the local moments, which is described by interaction
of higher magnetic multipole operators. Such interactions
may drive multipolar order, as suggested, for instance, in
URu2Si2.20 Recently this has been suggested to also occur in
d-electron systems with unquenched orbital degeneracy and
sufficient SOC.21 We find a similar mechanism at work in the
AFM phase.

A ferromagnetic state is not in itself unusual, though such
is relatively uncommon in insulators. However, cubic ferro-
magnets with an easy axis oriented along the �110� direction
is quite uncommon. This can be understood from the Landau
theory for a ferromagnet: the usual fourth-order cubic aniso-
tropy term favors either �100� or �111� orientation, depending
upon its sign, but never �110�. To obtain a �110� easy axis,
one requires sixth-order or higher terms to be substantial,
making this rare indeed. Remarkably, such �110� anisotropy
has been observed in experiments on Ba2NaOsO6.18

Both the above states, when heated above their magnetic
ordering temperatures, allow on symmetry grounds for an
intermediate phase which is time-reversal symmetric but
with quadrupolar order—the spin nematic. Applying the
mean-field theory �MFT� at T�0, we indeed find such a

phase in a broad range of parameter space. While spin nem-
atic states have been suggested previously in NiGa2S4,22–26 it
has not been established in that material. The mechanism for
quadrupolar order here is much more transparent and robust
than in that case.

The above three phases, while somewhat unconventional,
may be obtained within a mean-field analysis. A QSL state,
however, cannot be described by any mean-field theory, and
is considerably more exotic. The search for a QSL, which is
a state in which quantum fluctuations prevent spins from
ordering even at zero temperature, is a long-standing prob-
lem in fundamental physics.27 Since the possibility of a QSL
was suggested by Anderson in the early 1970s,28 this has
been an active area for theory and experiment. Despite the
current maturity of the theory for QSL,29 the experimental
confirmation of the existence of such an exotic phase is still
elusive. Very commonly geometrical frustration is thought to
be a driving mechanism for QSL formation, and conse-
quently most research �both theoretically and experimen-
tally� has been devoted to systems of this type, such as
triangular,30 kagome,31 hyperkagome,3,32,33 and pyrochlore
lattices.34

Here we suggest a different route, in which quantum fluc-
tuations are enhanced primarily by strong SOC, rather than
geometrical frustration.35 In fact, the magnetic ions in or-
dered double perovskites reside on a fcc sublattice, which
can be viewed as edge-sharing tetrahedra, and is somewhat
geometrically frustrated. Without strong SOC, however, this
frustration is weak, and indeed the classical Heisenberg an-
tiferromagnet on the fcc lattice is known to magnetically
order into a state with the ordering wave vector 2��001�.36

The tendency of the simple fcc antiferromagnet to order may
be partially attributed to its large coordination number �z
=12�, which leads to mean-fieldlike behavior. By contrast,
strong SOC induces effective exchange interactions very dif-
ferent from Heisenberg type, with strong directional depen-
dence that may make a QSL more favorable. To make this
suggestion more concrete, we propose a natural wave func-
tion for a QSL in our model, and discuss the physical prop-
erties of such a state.

We now outline the main results of the paper, and how
they are presented in the following sections. In Sec. II, we

TABLE I. A list of ordered double perovskites. Note the discrepancy in Curie-Weiss temperature and �eff may originate from the
experimental fitting of data at different temperature range.

Compound B� config. Crystal structure
�CW

�K�
�eff

��B� Magnetic transition Frustration para. f Ref

Ba2YMoO6 Mo5+�4d1� Cubic −91 1.34 PM down to 2 K f �45 11

Ba2YMoO6 Mo5+�4d1� Cubic −160 1.40 PM down to 2 K f �80 12

Ba2YMoO6 Mo5+�4d1� Cubic −219 1.72 PM down to 2 K f �100 13

La2LiMoO6 Mo5+�4d1� Monoclinic −45 1.42 Short-range AFM TN�20 K f �2 13

Sr2MgReO6 Re6+�5d1� Tetragonal −426 1.72 Spin glass, TG�50 K f �8 14

Sr2CaReO6 Re6+�5d1� Monoclinic −443 1.659 Spin glass, TG�14 K f �30 15

Ba2CaReO6 Re6+�5d1� Cubic to tetragonal �at T�120 K� −38.8 0.744 AFM TN=15.4 K f �2 16

Ba2LiOsO6 Os7+�5d1� Cubic −40.48 0.733 AFM TN�8 K f �5 17

Ba2NaOsO6 Os7+�5d1� Cubic −32.45 0.677 FM TN�8 K f �4 17

Ba2NaOsO6 Os7+�5d1� Cubic �−10 �0.6 FM TN=6.8 K f �4 18
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show that strong SOC leads to an effective j=3 /2 local mo-
ment on each B� site. We write down a model Hamiltonian
which includes three interactions: nearest-neighbor �NN�
AFM exchange, J, NN FM exchange, J�, and electric qua-
drupolar interaction, V. These interactions are all projected
down to the effective j=3 /2 manifold, which induces many
terms beyond the usual quadratic exchange. Indeed, because
of the four-dimensional basis of spin-3/2 states, the resulting
Hamiltonian can be thought of as an anisotropic � matrix
model.37 We then discuss the symmetry properties of the
projected Hamiltonian. Surprisingly, we find that, in the limit
of vanishing FM exchange, the Hamiltonian has a “hidden”
global SU�2� symmetry despite its complicated appearance.

In Sec. III, we consider the mean-field ground states of
the model, characterized by local �single-site� order param-
eters. In Sec. III A we begin by considering the more acces-
sible limit in which strong uniaxial single-site anisotropy
�due, e.g., to a tetragonal distortion of the crystal� lifts the
“orbital” fourfold degeneracy of j=3 /2 quadruplets down to
easy-axis or easy-plane Kramer’s doublets. In these limits,
the effective Hamiltonian in the reduced phase space is
mapped onto that of an XXZ antiferromagnet which can be
understood even without mean field theory. Next, in Sec.
III B, we carry out T=0 mean-field theory for the case of
cubic symmetry. Here we find the AFM state and two ferro-
magnetic states �the FM110 state and another state with a
�100� easy axis�. The T=0 mean-field phase diagram is
shown in Fig. 1. Finally, having described the situations with
strong and vanishing single-site anisotropy, we determine in
Sec. III C the mean-field phase diagram for intermediate an-
isotropy.

In Sec. IV we identify the multipolar order parameters of
the three ordered phases and analyze the T�0 behavior by
mean-field theory. Here we find the quadrupolar phase and
discuss several phase transitions which occur. We also dis-
cuss the behavior of the magnetic susceptibility in different
parameter regimes.

In Sec. V, we consider quantum effects beyond the mean-
field theory. First, we carry out a spin-wave calculation,
which determines the collective mode structure, and also
shows that in the regime where nearest-neighbor antiferro-
magnetic exchange is dominant �small J� and V� quantum
fluctuations are large and may destabilize the ordered AFM
phase. Therefore, we consider possible nonmagnetic ground
states, both of valence-bond solid �VBS� and QSL type. We
formulate a slave-fermion theory with four-component spin
S=3 /2 fermions, in such a way that at mean-field level the
hidden SU�2� symmetry is preserved and the correct ground
state, the analog of a singlet in the usual Heisenberg model,
is obtained for a single pair of nearest-neighbor sites. The
corresponding mean-field theory naturally includes the in-
trinsic spatial anisotropy of the strong SOC limit. We analyze
two different mean-field ansatze with zero and � flux. In
both cases the mean-field Hamiltonian respects all the sym-
metries of the original spin Hamiltonian. The �-flux state is
found to have lower mean-field energy. For both states, the
spinons are at quarter filling, leading to a spinon Fermi sea.
There is no Fermi-surface nesting and we expect that this
spinon Fermi surface should be stable against weak pertur-
bations. Predictions based on the picture of spinon Fermi
surface are made. Finally in Sec. VI, we compare our theo-
retical prediction with current experimental findings and sug-
gest further directions for theory and experiment.

II. MODEL AND SYMMETRY

A. Spin-orbit interaction and hybridization of atomic orbitals

The magnetic ions B� �Os7+, Re6+, and Mo5+� found in the
ordered double perovskites in Table I all have one electron in
the triply degenerate t2g multiplet. The atomic spin-orbit in-
teraction projected down to the t2g triplet is written as

Hso = − �l · S , �1�

in which the total angular momentum quantum numbers of
these operators are l=1, S=1 /2. The effective orbital angu-
lar momentum l comes from the projection of orbital angular
momentum L onto the t2g triplets,

Pt2g
LPt2g

= − l . �2�

Here Pt2g
=�a=yz,xz,xy�a�	a� is the projection operator to the t2g

manifold. The eigenstates of lz with eigenvalues m=0, 	1
and Sz with eigenvalues 
= 	1 /2
 ↑ ,↓, written in terms of
the usual t2g states are

�0,
� = �dxy

 �, �	1,
� =

� �dyz

 � − i�dxz


 �
�2

. �3�

This interaction favors j=3 /2 �j= l+S� quadruplets over
j=1 /2 doublets by an energy separation 3� /2. In the strong
spin-orbit interaction limit, the local Hilbert space is re-
stricted to four low-lying states

�d�� = �
m,


Cm

� �m,
� , �4�

where �= 	3 /2, 	1 /2 is the jz eigenvalue and

AFM

FM110

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

J�

V

FIG. 1. �Color online� Mean-field T=0 phase diagram for the
model Hamiltonian in Eq. �27�. AFM denotes the “antiferromag-
netic” ground state given by Eqs. �39� and �40�, FM110 denotes the
ferromagnetic ground state with an easy axis oriented along �110�,
given by Eq. �51�. The FM100 state, which is ferromagnetic with
easy axis along �100� appears in the narrow band between the two
phase boundaries. In the figure, J=1.
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Cm

� = �l = 1,S =

1

2
;m,
�l = 1,S =

1

2
; j =

3

2
,�
 �5�

is a Clebsch-Gordan coefficient. In the materials under con-
sideration, � is indeed a very large energy scale �fraction of
an electron volt�, justifying the strong SOC limit.

Every operator expressed in terms of spin and orbitals
must therefore be projected into this subspace and its projec-
tion can be written in terms of j=3 /2 angular momentum
operator. For example,

P3/2SP3/2 =
1

3
j , �6�

P3/2lP3/2 =
2

3
j . �7�

Here P3/2 is the projection operator into the j=3 /2 quadru-
plets. Furthermore, for the magnetic moment M for electrons
in atomic d orbitals, we have

M 
 P3/2�2S + �− l��P3/2 = 0. �8�

The vanishing magnetic moment is quite remarkable and par-
tially explains why the compounds have small magnetic mo-
ments in comparison with spin-1

2 systems without orbital de-
generacy.

In reality, the measured magnetic moments are nonzero
because the atomic 4d or 5d orbitals strongly hybridize with
p orbitals at the oxygen sites that form an octahedron sur-
rounding each B� site. For instance, for Ba2NaOsO6, the hy-
bridization energy is estimated to be of the order of electron
volts18,38 and comparable to the energy gap between Os d
and O p states. For this reason, it is more appropriate to think
in terms of molecular orbitals with mixed d and p character.
For example, molecular xy orbitals are written as

�Di,xy

 � =

�di,xy

 � + r�pi,xy


 �
�1 + r2

, �9�

where �di,xy

 � is the state corresponding to one electron in the

xy orbital and spin 
 on site i, and �pi,xy

 � is a linear combi-

nation �with xy symmetry� of states that have a singlet on the
dxy orbital and one hole on an oxygen site,

�pi,xy

 � =

1

2
��pi+êx,y


 � + �pi+êy,x

 � + �pi−êx,y


 � + �pi−êy,x

 �� , �10�

where êx,y are real-space vectors from the B� site to neigh-
boring oxygen along x or y directions. The mixing parameter
r is of order tdp /
, where tdp is the hopping matrix element
between d and p orbitals and 
 is the gap to oxygen p states.
In the limit of strong spin-orbit interaction, we must project
into four low-lying molecular orbitals which are a superpo-
sition of the four atomic states with j=3 /2 and p states

�Di,�� = �
m,


Cm

� �Di,m


 � . �11�

While the atomic magnetic moment in Eq. �8� vanishes, there
is a nonzero contribution to the molecular M from holes in p
orbitals. After taking the projection into j=3 /2 states, the

coupling of the molecular orbital to a magnetic field reads

HZ = − g�Bh · j , �12�

where g=r2 / �3�1+r2�� is the Landé factor and �B is the
Bohr magneton.

B. Exchange interactions and electric quadrupolar interaction

In the last section, we discussed the effect of strong spin-
orbit interaction in determining the local degrees of freedom
and pointed out that every operator must be projected into
the j=3 /2 quadruplets. In this section, we introduce the in-
teractions between the local moments and discuss the me-
chanics of the projection.

The first interaction to consider is nearest-neighbor anti-
ferromagnetic exchange, through the virtual transfer of elec-
trons through intermediate oxygen p orbitals. These pro-
cesses are strongly restricted by symmetry. For example, in
XY planes, only electrons residing on dxy orbitals can virtu-
ally hop to neighboring sites via px and py orbitals of the
intermediate oxygen sites. The exchange path and relevant
orbitals are depicted in Fig. 2. Alternatively, one can interpret
this process as kinetic exchange between molecular Dxy or-
bitals, which are mixtures of the transition metal d state and
p states on the neighboring four oxygen �see Eq. �9��. As a
consequence, the antiferromagnetic exchange interaction can
be written Hex-1=Hex-1

XY +Hex-1
YZ +Hex-1

XZ , where

Hex-1
XY = J �

	ij��XY
�Si,xy · S j,xy −

1

4
ni,xynj,xy� , �13�

where the sum is over nearest-neighbor sites in the XY
planes, and the corresponding terms for YZ and XZ planes
are obtained by the obvious cubic permutation. Here the op-
erators Si,xy and ni,xy denote the spin residing on xy orbital
and orbital occupation number at site i, respectively. In terms
of spin and orbital angular momentum operators acting on
site i,

Si,xy = Si�1 − �li
z�2� , �14�

ni,xy = 1 − �li
z�2, �15�

Throughout this paper, we use the subindices �i ,xy� to de-
note the site and orbitals, superindex ��=x ,y ,z� to denote
the spin component, and capital letters �XY, XZ, YZ� to de-
note the planes. With these definitions, we note that the

x

y

O

O

B

B
′

B
′

dxy

dxz

pz

px

xy

z

FIG. 2. �Color online� Left graph: the NN AFM exchange path
�B�-O-O-B��; right graph: The NN FM exchange path with inter-
mediate orthogonal p orbitals at O sites.
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single occupancy condition at each site, which defines the
Mott insulating state, becomes

ni,xy + ni,xz + ni,yz = 1. �16�

Moreover, from Eq. �15�, orbitally resolved spins satisfy

Si,xy + Si,yz + Si,xz = Si. �17�

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the spin
transfer through orthogonal orbitals at the intermediate oxy-
gen sites in the exchange path, as shown in Fig. 2. For two
sites i , j in the XY plane, this ferromagnetic exchange is
written as

Hex-2,ij
XY = − J��Si,xy · �S j,yz + S j,xz� + 	i ↔ j��

−
3J�

4
�ni,xy�nj,xz + nj,yz� + 	i ↔ j�� , �18�

where the xy orbital only interacts with yz and xz orbitals at
neighboring sites. Applying the single-occupancy constraint,
the nearest-neighbor ferromagnetic exchange interaction can
be simplified, up to a constant, to

Hex-2
XY = − J� �

	ij��XY
�Si,xy · �S j,yz + S j,xz� + 	i ↔ j��

+
3J�

2 �
	ij�

ni,xynj,xy . �19�

Microscopically, J� /J�O�JH /Up�, where JH and Up are
the Hund’s coupling and Hubbard Coulomb interaction at the
oxygen site, respectively.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries an electric quadru-
pole moment, and the interaction between these moments
may not be negligible because of the long spatial extent of
the molecular orbitals. Calculating the direct electrostatic en-
ergy between all possible orbital configurations for two elec-
trons residing in neighboring sites in an XY plane, we obtain
the quadrupole-quadrupole interaction,

Hquad,ij
XY = Vni,xynj,xy −

V

2
�ni,xy�nj,yz + ni,xz� + �i ↔ j��

−
13V

12
�ni,yznj,yz + ni,xznj,xz�

+
19V

12
�ni,yznj,xz + ni,xznj,yz� . �20�

Here V�0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the mag-
nitude of the electric quadrupole and a is the lattice constant
of the fcc lattice, we have V=9�2Q2 /a5. In general, the main
contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of V.
Using the single-occupancy constraint in Eq. �16� and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

Hquad
XY = �

	ij��XY
�−

4V

3
�ni,xz − ni,yz��nj,xz − nj,yz�

+
9V

4
ni,xynj,xy� , �21�

in which we have ignored an unimportant constant.
The minimal Hamiltonian for the cubic system contains

all three of these exchange interactions in addition to the
on-site SOC,

H = Hex-1 + Hex-2 + Hquad + Hso. �22�

Since we are interested in the limit of strong spin-orbit inter-
action, we need to project H onto the j=3 /2 quadruplets at
every site. As an example, we write down the projection for
Si,xy and ni,xy,

S̃i,xy
x =

1

4
ji
x −

1

3
ji
zji

xji
z, �23�

S̃i,xy
y =

1

4
ji
y −

1

3
ji
zji

y ji
z, �24�

S̃i,xy
z =

3

4
ji
z −

1

3
ji
zji

zji
z, �25�

ñi,xy =
3

4
−

1

3
�ji

z�2, �26�

in which, Õ
P3/2OP3/2. Spin and occupation number op-
erators for other orbitals can be readily generated by a cubic
permutation. After the projection, the minimal Hamiltonian
reduces, up to a constant, to

H̃ = H̃ex-1 + H̃ex-2 + H̃quad. �27�

As one may notice, the projected Hamiltonian contains
four-spin and six-spin interactions in addition to the usual
quadratic two-spin interactions if it is expressed in terms of
the effective spin moment ji. One can view these multiple
spin terms as the interaction between magnetic multipoles
�quadrupole and octupole� at different sites. Such multipolar
Hamiltonians are much less familiar than the usual quadratic
exchange forms and some caution should be used. In particu-
lar, experience with similar models shows that such interac-
tions can magnify quantum effects, for instance, leading to
the appearance of a quadrupolar phase in the biquadratic
case.23 Hence, the naive classical approximation—replacing
j’s by classical vectors—is inadvisable, and we will proceed
differently below.

C. Symmetry properties of the Hamiltonian

Before we move on to discuss the ground state of the

Hamiltonian H̃ in Eq. �27�, we need to have some under-
standing about its symmetry properties. We start from the

NN AFM exchange interaction H̃ex-1. The latter has an ap-
parent cubic space-group symmetry. The total angular mo-
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mentum J=�iji is not conserved, �H̃ex-1 ,J��0. Neverthe-

less, H̃ex-1 surprisingly has a hidden SU�2� symmetry. The
three generators of this global continuous symmetry are de-
fined as follows:

G� = �
i

Gi
� = �

i
�7

6
ji
� −

2

3
�ji

��3� �28�

with �=x ,y ,z. One can readily check that these generators

commute with H̃ex-1,

�G�,H̃ex-1� = 0, �29�

and satisfy the SU�2� algebra,

�G�,G�� = i����G�. �30�

In addition, the Casimir operator G2 also commutes with

H̃ex-1. The physical meaning of these generators is easy to
see if one expresses Gx,y,z in matrix form. For a single site,

Gi
x = −

1

2�
1

1

1

1
� =

1

2
�− 
x�14 � �− 
x�23, �31�

Gi
y =

1

2�
− i

i

− i

i
� =

1

2
�
y�14 � �− 
y�23, �32�

Gi
z =

1

2�
− 1

1

− 1

1
� =

1

2
�− 
z�14 � �
z�23, �33�

in which the empty matrix entries are zero and we have
expressed these generators as the direct sum of two Pauli
matrices, one ��14� for the subspace of ji

z= 	3 /2 states and
the other ��23� for the subspace of ji

z= 	1 /2 states. One
intuitive way to think about these SU�2� generators is that
they transform the spin components in the ji

z= 	3 /2 sub-
space together with ji

z= 	1 /2 subspace. This is a global

symmetry of H̃ex-1.

Now we consider the other two interactions, H̃ex-2 and

H̃quad. We find that the electric quadrupole-quadrupole inter-

action H̃quad also commutes with G. On the other hand, the

ferromagnetic exchange interaction H̃ex-2 breaks this SU�2�
symmetry; thus

�H̃,G� � J�. �34�

For J��J ,V, we have an approximate continuous symmetry.

III. MEAN-FIELD GROUND STATES

In this section, we study the ground state of the model

Hamiltonian H̃ in Eq. �27�. We begin in Sec. III A by getting

some intuition from considering a perturbed model with
strong easy-axis or easy-plane anisotropy. This starting point
also has experimental motivation as several ordered double
perovskites in Table I develop such anisotropies that are
driven by lattice distortions. Armed with the understanding
of the anisotropic cases, we proceed to analyze the case of
cubic symmetry using mean-field theory in Sec. III B. We
consider briefly intermediate strength anisotropy in Sec.
III C.

In general, Curie-Weiss mean-field theory consists of de-
coupling all intersite interactions to obtain self-consistent
single-site Hamiltonians. At zero temperature, this is equiva-
lent to assuming a product form for the wave function, i.e.,

��� = � i��i� , �35�

where the product is over sites and ��i� is an arbitrary j
=3 /2 ket. One calculates the mean-field ground-state energy
as the expectation value of the Hamiltonian in this state and
minimizes it. Thus the mean-field approximation can also be
considered as a simple variational one.

A. Case with strong anisotropy

In this section, we add to the Hamiltonian H̃ in Eq. �27� a
strong anisotropic term,

Hani = − D�
i

�ji
z�2, �36�

in which, D can be positive or negative, representing easy-
axis or easy-plane anisotropy, respectively. Although this in-
teraction is anisotropic in spin space, it still respects the hid-
den global SU�2� symmetry.

1. Easy-axis anisotropy

Let us start with easy-axis anisotropy D�0. Assuming
the anisotropy is very strong D�J ,J� ,V and D��, which
favors ji

z= 	3 /2 states, we can safely project the Hamil-

tonian H̃ into the latter two-dimensional �2D� subspace. We
then obtain the effective Hamiltonian

Heff-1 = �
	ij��XZ,YZ

�� J

4
+

J�

2
�Ti · T j − J�Ti

zTj
z�

+ N�−
J

4
+

3J�

2
+

11V

12
� , �37�

where we have introduced pseudospin-1/2 operators Ti act-
ing on the basis ji

z= 	3 /2 with Ti
z= 	1 /2 corresponding to

ji
z= 	3 /2, respectively. And N is the total number of sites.

In the reduced space, the original spin vector reduces to the
pseudospin in the following way:

�jx, jy, jz� ⇒ 3�0,0,Tz� . �38�

Notice that after this projection the interaction on the hori-
zontal bonds in XY planes disappear in the effective Hamil-
tonian Heff-1. This can be understood in terms of the original
orbital picture as the easy-axis anisotropy lifts the degen-
eracy of t2g triplets, favoring xz and yz orbitals to be occu-
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pied. As a result, the above effective Hamiltonian is operat-
ing on a bond-depleted fcc lattice, which is in fact a
unfrustrated bipartite bcc lattice.

In Heff-1 because of the in-plane anisotropy introduced by
the FM exchange, the ground state of Heff-1 is “antiferromag-
netically” ordered in the �Tx ,Ty� plane with an ordering wave
vector Q=2��001�. We denote this as the AFM state. The
corresponding mean-field ground state is just the direct prod-
uct,

������ = �
i

��i���� , �39�

where

��i���� =
1
�2
�� ji

z =
3

2

 + �− �2ziei�� ji

z =
3

2

� �40�

with an arbitrary phase �. The arbitrariness of the phase
comes from the U�1� symmetry of the projected effective
Hamiltonian Eq. �37�. However, as discussed in the previous
section, the continuous symmetry in the original Hamiltonian
is broken completely when J��0. Therefore, the U�1� sym-
metry of Hamiltonian in Eq. �37� is a by-product of the pro-
jection. Because we are in the subspace of jz= 	3 /2, the
orbital occupation is

�	ñi,yz�,	ñi,xz�,	ñi,xy�� = �1/2,1/2,0� . �41�

It is also important to note that the ground state in Eq. �40� is
not a conventional Néel state as it has a vanishing static
magnetic dipole moment,

	��ji��� = 0. �42�

The � dependence only shows up in the spin operators of a
specific orbital,

	��S̃i,yz��� = −
1

4
�− �2zi�cos �,sin �,0� , �43�

	��S̃i,xz��� =
1

4
�− �2zi�cos �,sin �,0� , �44�

	��S̃i,xy��� = �0,0,0� . �45�

2. Easy-plane anisotropy

Now we consider easy-plane anisotropy D�0. We also
assume the anisotropy is very strong �D��J ,J� ,V and �D�
��, which favors ji

z= 	1 /2 states and obtain the effective
Hamiltonian after projection into the ji

z= 	1 /2 subspace,

Heff-2 = �
	ij��XY

4

9
�JTi · T j + J�Ti

zTj
z� + �

	ij��XZ
� J

36
Ti · T j + J�

��−
1

6
Ti

xTj
x +

5

18
Ti

yTj
y +

1

6
Ti

zTj
z�� + �

	ij��YZ
� J

36
Ti · T j

+ J�� 5

18
Ti

xTj
x −

1

6
Ti

yTj
y +

1

6
Ti

zTj
z�� + N�−

J

4
+

3J�

2

+
11V

12
� . �46�

Here the pseudospin-1/2 operator T is acting on the subspace
of jz= 	1 /2 with Tz= 	1 /2 representing jz= 	1 /2, respec-
tively. In the reduced spin space, the original spin vector is
reduced to the pseudospin in the following way:

�jx, jy, jz� ⇒ �2Tx,2Ty,Tz� . �47�

We can now find the mean-field ground state of this
Hamiltonian. For an effective S=1 /2 model of this type, this
is equivalent to the classical approximation. Classically, we
can find the minimum-energy states by the Luttinger-Tisza
method. This amounts to looking for the eigenvalues of the
spin Hamiltonian regarded as a quadratic form and seeking a
classical spin solution which is built of a superposition only
of those eigenvectors which have minimum-energy eigenval-
ues. The result in this case is that, for 0�J��J, there are
two classes of solution, all collinear spin states. These are: �i�
states with Q=2��100� and the pseudospin axis in the yz
plane, and �ii� states with Q=2��010� and the pseudospin
axis in the xz plane. As for the easy-axis case, there is an
accidental degeneracy of spin orientations within the plane
normal to Q. Note that while the pseudospin orients freely
along a circle in this plane, the magnetization orients along
an ellipse due to the factor of 2 in Eq. �47�. One readily
expresses the ground state in the unprojected Hilbert space.
For example, taking Q=2��010� and pseudospin pointing
along x direction, then

��� = �
i

��i� �48�

with

��i� =
1
�2
�� ji

z =
1

2

 + �− �2yi� ji

z = −
1

2

� . �49�

This is once again an antiferromagnetic state, and to distin-
guish it from the one which obtains for Ising anisotropy, we
denote it AFM�. The defining difference of the AFM� and
the AFM state discussed previously is that, the former has a
nonzero dipole moment, while, at least within mean-field
theory, the latter does not.

B. Cubic case

Having understood the cases with strong easy-axis and
easy-plane anisotropies, let us now turn to the Hamiltonian

H̃ with cubic lattice symmetry in Eq. �27�. Both ground
states of the Hamiltonian with strong easy-axis or easy-plane
anisotropy comprise two-sublattice structure with an order-
ing wave vector equivalent to Q=2��001�. It is therefore
natural to guess that the same two-sublattice structure is also
obtained in the cubic case. While we have not proven this,
we have investigated more general mean-field ground states,
allowing for much larger unit cells, but found in every case
that the minimum energy is found for the two-sublattice con-
figuration. Therefore, in what follows, we assume the two-
sublattice structure with ordering Q=2��001� �which is
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equivalent to 2��100� and 2��010� in the cubic case�. We
make no further assumptions and minimize the energy with
respect to an arbitrary wave function on each of the two
sublattices. The resulting variational phase diagram is de-
picted in Fig. 1.

1. Antiferromagnetic state

In Fig. 1, for small J� /J and V /J, we find a phase, denoted
AFM, which is the natural continuation of the AFM phases
encountered in the anisotropic limits. Here, as in those cases,
the states on the two sublattices are simply related by a time-
reversal transformation, and indeed the ground state has the
same form as that found in the easy-axis case, Eqs. �39� and
�40�. The appearance of time-reversed pairs of sites is natu-
ral, since the largest interaction, H̃ex-1, is dominated by the
spin-spin exchange term. Interestingly, one finds that the
ground state has a continuous degeneracy: the phase � in Eq.
�40� can be arbitrary. Since the Hamiltonian with nonvanish-
ing J� has no continuous symmetry, this degeneracy appears
to be accidental. Since it has the same form as we found in
Sec. III A 1, we continue to use the label AFM here for this
state �and in Fig. 1�.

2. Ferromagnetic 110 state

With large J� /J and V /J, the orbital-orbital interaction has
more weight in the Hamiltonian H̃, and the nature of the
ground state changes. One should note that even the pure
orbital-orbital interaction is not trivial and classical since the
orbital occupation numbers no longer commute after projec-
tion down to the j=3 /2 quadruplets. However, in mean-field
theory one may still treat the expectation values classically.
Note that the largest terms in the orbital-orbital interaction
are those which are diagonal in the orbital basis, namely, the
second term in Eq. �19� and the second term in Eq. �21�. To
minimize the diagonal orbital interaction such as ñi,xzñj,xz, a
schematic recipe is to maximize ñi,xz while minimizing ñj,xz.
This is necessary because one cannot minimize both ñi,xz and
ñj,xz simultaneously, since, due to the single-occupancy con-
straint, the other diagonal terms such as ñi,yzñj,yz would then
be increased. Since the occupation numbers of the same or-
bital must be taken different on different sites, and these
occupation numbers are time-reversal invariant, the states on
the two sublattices cannot be time-reversed counterparts.
Consequently, there is a competition between the orbital-

orbital interactions �H̃ex-2 and H̃quad� and the nearest-

neighbor antiferromagnetic exchange interaction H̃ex-1. In
the large J� /J and V /J region, when the orbital interactions
dominate, we find however that time-reversal symmetry is
still broken, and since these states are not composed of time-
reversed pairs, the result is an uncompensated net ferromag-
netic moment.

In the majority of phase space, we find the ground state is
characterized by three parameters, r, �1, and �2,

��A�FM110 =
r

�2
�ei�1� jz =

1

2

 + ei��2−�1�� jz = −

1

2

�

+�1 − r2

2
�ei�2� jz =

3

2

 + � jz = −

3

2

� ,

�50�

��B�FM110 =
r

�2
�− e−i�1� jz =

1

2

 + iei��1−�2�� jz = −

1

2

�

+�1 − r2

2
�− ie−i�2� jz =

3

2

 + � jz = −

3

2

� ,

�51�

in which, “A” and “B” represent the two sublattices, and r,
�1, and �2 are determined by minimizing the mean-field
energy. Note that in Eq. �51� the three parameters r, �1, and
�2 are uniquely determined by J� /J and V /J. So the orbital
occupations can be readily generated,

�	ñA,yz�,	ñA,xz�,	ñA,xy��FM110 = �1

2
−

r2

3
−

r�1 − r2

�3
cos �1,

1

2

−
r2

3
+

r�1 − r2

�3
cos �1,

2r2

3
� ,

�52�

�	ñB,yz�,	ñB,xz�,	ñB,xy��FM110 = �1

2
−

r2

3
+

r�1 − r2

�3
cos �1,

1

2

−
r2

3
−

r�1 − r2

�3
cos �1,

2r2

3
� .

�53�

It is interesting to see the spin vectors of two sublattices

are symmetric about �11̄0� direction,

	jA�FM110 = r��3 − 3r2cos��1 − �2� + r cos�2�1

− 2�2�,�3 − 3r2sin��1 − �2� − r sin�2�1

− 2�2�,0� , �54�

	jB�FM110 = r�− �3 − 3r2sin��1 − �2� + r sin�2�1 − 2�2�,

− �3 − 3r2cos��1 − �2� − r cos�2�1 − 2�2�,0� ,

�55�

so the system has a nonvanishing net spin polarization, that
is

1

2
	jA + jB�FM110 =

r

2
��3 − 3r2�cos��1 − �2� − sin��1 − �2��

+ r�cos�2�1 − �2� + sin�2�1 − �2����1,

− 1,0� . �56�

This direction of polarization is equivalent to �110� by a 90°
rotation, so we denote this a FM110 state. It occupies the
corresponding region in Fig. 1.

3. Ferromagnetic 100 (FM100) state

Between the AFM and FM110 states, a narrow region of
intermediate phase intervenes �see Fig. 1�. Numerically we
find this phase is characterized by two parameters r1 and r2,
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��A�FM100 =
r1

�2
�� jz =

1

2

 + � jz = −

1

2

�

+�1 − r1
2

2
�� jz =

3

2

 + � jz = −

3

2

� , �57�

��B�FM100 =
r2

�2
�− � jz =

1

2

 + � jz = −

1

2

�

+�1 − r2
2

2
�− � jz =

3

2

 + � jz = −

3

2

� .

�58�

The parameters r1 and r2 are determined by J� /J and V /J
and in this intermediate phase r1�r2. A second ground state
is obtained then by interchanging r1 and r2. The orbital oc-
cupation numbers and spin vectors are given by

�	ñA,yz�,	ñA,xz�,	ñA,xy��FM100 = �1

2
−

r1
2

3
−

r1

�3
�1 − r1

2,
1

2
−

r1
2

3

+
r1

�3
�1 − r1

2,
2r1

2

3
� , �59�

�	ñB,yz�,	ñB,xz�,	ñB,xy��FM100 = �1

2
−

r2
2

3
+

r2

�3
�1 − r2

2,
1

2
−

r2
2

3

−
r2

�3
�1 − r2

2,
2r2

2

3
� , �60�

and

	jA�FM100 = �r1
2 + r1

�3 − 3r1
2,0,0� , �61�

	jB�FM100 = �r2
2 − r2

�3 − 3r2
2,0,0� . �62�

We see that the net spin polarization is along the �100� di-
rection. Due to cubic symmetry, all possible �100� directions
are possible. By analogy with the previous phase, we denote
this phase FM100. It occupies the narrow region shown in
Fig. 1.

4. Transitions

The intermediate FM100 state in Eq. �58� is smoothly
connected to the AFM state, which is obtained by setting
r1=r2=0. By contrast, it cannot be connected to the FM110
state. This indicates that the transition between FM100 to
AFM is continuous while the transition from FM100 to
FM110 is first order. Indeed, this can also be clearly seen
from the behavior of the spin and orbital order parameters
across these transitions �see Fig. 3�. Both the spin and orbital
order parameters jump when the system goes from FM100
phase to FM110 phase.

The approach to the line J�=0, while not a transition per
se, does represent a change in behavior. In particular, on this
line, the hidden SU�2� symmetry is restored, and new ground
states may be obtained from the above three phases by SU�2�
rotations. This allows, for instance, for AFM states to de-
velop with nonvanishing magnetic dipole order in the ground
state. However, for arbitrarily small J� the SU�2�-induced
degeneracy is broken and the results quoted above hold.
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FIG. 3. �Color online� Upper graph: ñxy versus V; middle graph: ñxz and ñyz versus V; and lower graph: the net spin polarization per site
versus V. In all three graphs, J=1 and J�=0.2, and T=0. The assignment of A and B sublattices is arbitrary. Here we take the choice given
in the text.
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C. Intermediate anisotropy

We briefly address here the evolution of the ground states
with increasing �D� between the cubic and strongly aniso-
tropic limits. For easy-axis anisotropy, D�0, this process is
relatively simple. The AFM phase �with Q=2��001�� is fa-
vored by this sign of anisotropy, and therefore, with increas-
ing D, it expands at the expense of the FM110 and FM100
states. Indeed, for very large D, ferromagnetic states occur
only for unphysically large J� and V.

In the case of easy-plane anisotropy, D�0, the phase dia-
gram is more subtle. For weak �D�, the main effect is to break
the symmetry between the formerly equivalent �100� wave
vectors. In this case, states with minimal 	jz

2� are favored,
which prefers Q=2��100� ,2��010� rather than Q
=2��001�.

If we begin in the AFM state for D=0, this aligns the
pseudospin in the plane normal to this wave vector. The
phase degeneracy which obtains for the cubic case is broken
by the anisotropy and a definite alignment is obtained. More-
over, as states with jz= 	1 /2 are increasingly mixed into the
ground state, a nonvanishing dipole moment, proportional to
the pseudospin, is induced. The magnitude of this staggered
magnetization grows continuously with �D�, eventually as
D→−�, approaching the value obtained in Sec. III A 2. This
local moment is oriented in the plane normal to Q, and can
take values distributed over an ellipse in this plane. In the
large �D� limit, this ratio of the major �perpendicular to Q and
to z� and minor �z� axes of the ellipse approaches 2, corre-
sponding to the accidental degeneracy discussed in Sec.
III A 2. Because the state for nonzero D evolves smoothly
into this limit, and has a nonzero local moment, we denote it
an AFM� state, following the earlier notation.

Beginning in the FM110 state at D=0, one observes two
subsequent transitions. First, small �D� orients the magneti-
zation normal to Q. For concreteness consider Q=2��100�,
in which case one obtains a ferromagnetic magnetization of
the form m= �0,m1 ,m2�. For D=0−, m1=m2, but subse-
quently m2 decreases such that m2�m1. We denote this state
FM110�. An example for the orientation of net polarization
in the FM110� by varying V is given in Fig. 4. Eventually

once some critical anisotropy is reached, m2 vanishes con-
tinuously. At this point the magnetization is aligned along the
�010� axis. For yet larger anisotropy, eventually the ferro-
magnetic magnetization vanishes entirely, and the ground
state switches to the AFM� state. An example of the transi-
tions from FM110� to FM100 then to AFM� by varying the
easy-plane anisotropy D is given in Fig. 5.

Finally, starting in the FM100 state, the magnetization
immediately switches to the �010� direction. This is the same
phase as the intermediate phase observed starting from the
FM110 phase. Thus with further increase in anisotropy, the
ground state switches to the AFM� state.

One may also visualize the evolution of the ground states
with anisotropy by considering planar phase diagrams at
fixed D. With increasing positive D �Ising anisotropy�, the
AFM state is stabilized, and simply expands in the J�-V
plane, pushing the FM100 and FM110 states outward. For
increasing negative D, apart from the fact that the AFM and
FM110 states evolve into the AFM� and FM110� states, the
behavior is similar: the AFM� state expands at the expense of
the ferromagnetic states.

IV. MULTIPOLAR ORDERS AND T�0 BEHAVIOR

A. Order parameters

In this section, we extend the analysis of the previous
section to nonzero temperature. To do so, we employ the
usual extension of mean-field theory to include thermal fluc-
tuations. To characterize the phases encountered in this treat-
ment, it is natural to introduce several types of order param-
eter. First, on a single-site i, we may measure the dipole
moment, which is proportional to ji. However, we may also
measure the next two multipoles: the quadrupole moment,
proportional to

Qi
�� = 	ji

�ji
�� −

j�j + 1�
3

��� �63�

and the octupole moment

0.0 0.2 0.4 0.6 0.8

0.75

0.80

0.85

0.90

0.95

1.00

V

co
sΘ

FIG. 4. �Color online� The orientation of the net spin polariza-
tion for the FM110� phase, at T=0. � is angle between the net spin
polarization and nearest �110� direction. In the figure, J�=0.2, D
=−0.05, J=1. cos � increases from 1 /�2 for the FM100 phase to 1
for the FM110� phase as V goes through the phase transition point.
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D
FIG. 5. �Color online� The net polarization versus the easy-plane

anisotropy, at T=0. The upper curve �in red� is for the y component
of the net polarization. And the lower curve �in blue� is for the z
component of the net polarization. The ordering wave vector is Q
=2��100�. In the graph, J�=V=0.4 and J=1. When 0� �D��0.36,
the system is in FM110� phase; when 0.36� �D��0.41, the system
is in the FM100 phase; when �D��0.41, the system is in AFM�
phase.
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Oi
��� = 	ji

�ji
�ji

�� . �64�

A typical magnetic state has a nonvanishing local dipole mo-
ment, which inevitably induces some higher multipole order
parameters �see below�. However, one sometimes encounters
purely multipole states, in which 	ji

��=0 but Qi
�� and/or Oi

���

are/is nonvanishing.
The components of these tensor can be decomposed into

irreducible representations of the cubic group �characterizing
the symmetry of the ideal double perovskite structure�. This
decomposition is described fully in Table II. Here we note, in
particular, the two-dimensional �3 representation

Qi
3z2

=
1
�3

	3�ji
z�2 − j�j + 1�� ,

Qi
x2−y2

= 	�ji
x�2 − �ji

y�2� , �65�

which are analogous to the eg orbitals in atomic physics. The
remaining three independent components of Qi

�� �ji
xji

y + ji
y ji

x,
etc.� form a three-dimensional representation analogous to
the t2g orbitals but do not appear in our analysis.

Another important way to break up the tensor order pa-
rameters is into combinations which appear in the spin
Hamiltonian. Specifically, these are the orbital occupation
operators, ñi,yz , ñi,xz , ñi,xy, and the orbitally resolved spin op-

erators, S̃i,yz
� , S̃i,xz

� , S̃i,xy
� . These can be expressed in terms of

the multipoles describe above. For the occupation numbers,

ñi,yz =
1

3
+

1

6�3
Qi

3z2
−

1

6
Qi

x2−y2
,

ñi,xz =
1

3
+

1

6�3
Qi

3z2
+

1

6
Qi

x2−y2
,

ñi,xy =
1

3
−

1

3�3
Qi

3z2
. �66�

The orbitally resolved spins decompose as

S̃i,yz
x =

1

15
ji
x −

2

15
Ti,�

x ,

S̃i,yz
y =

2

15
ji
y +

1

15
Ti,�

y +
1

3�15
Ti,�

y ,

S̃i,yz
z =

2

15
ji
z +

1

15
Ti,�

z −
1

3�15
Ti,�

z ,

S̃i,xz
x =

2

15
ji
x +

1

15
Ti,�

x −
1

3�15
Ti,�

x ,

S̃i,xz
y =

1

15
ji
y −

2

15
Ti,�

y ,

S̃i,xz
z =

2

15
ji
z +

1

15
Ti,�

z +
1

3�15
Ti,�

z ,

S̃i,xy
x =

2

15
ji
x +

1

15
Ti,�

x +
1

3�15
Ti,�

x ,

S̃i,xy
y =

2

15
ji
y +

1

15
Ti,�

y −
1

3�15
Ti,�

y ,

S̃i,xy
z =

1

15
ji
z −

2

15
Ti,�

z . �67�

B. Cubic system: Phases

We first discuss the phases occurring in the cubic system
at T�0. The ground states discussed earlier are all stable to
small thermal fluctuations and hence persist at low tempera-
ture. Thus we expect, broadly speaking, an AFM and ferro-
magnetic �FM110/FM100� region at low temperature. Of
course, at temperatures much larger than J, one has a disor-
dered paramagnetic phase. Interestingly, an additional phase
appears at intermediate temperature. This is a nonmagnetic
quadrupolar ordered phase.

To see how this arises, we describe the mean-field proce-
dure and its results. Mean-field theory is formulated in the
usual way. We self-consistently decouple interactions be-
tween different sites i and j as follows:

Ôi · Ô j ⇒ Ôi · 	Ô j� + 	Ôi� · Ô j − 	Ôi� · 	Ô j� , �68�

where Ôi and Ô j are two operators at site i and j, respec-
tively. These operators are nothing but the orbital occupation
numbers and orbitally resolved spins, which are related to
the multipolar operators by Eqs. �66� and �67�. Decoupling
all pairwise interactions between sites in this way, we then

TABLE II. Multipole moments within a cubic �8 quartet. Bars
over symbols indicate the sum with respect to all the possible per-
mutations of the indices, e.g., jx�jy�2= jx�jy�2+ jyjxjy + �jy�2jx.
Adapted from Refs. 19 and 39.

Moment Symmetry Operator

Dipole �4 Mx= jx

My = jy

Mz= jz

Quadrupole �3 Q3z2
= �3�jz�2− j2� /�3

Qx2−y2
= �jx�2− �jy�2

�5 Qxy = jxjy /2

Qyz= jyjz /2

Qxz= jzjx /2

Octupole �2 Txyz=�15 /6jxjyjz

�4 T�
x = �jx�3− �jx�jy�2+ �jz�2jx� /2

T�
y = �jy�3− �jy�jz�2+ �jx�2jy� /2

T�
z = �jz�3− �jz�jx�2+ �jy�2jz� /2

�5 T�
x =�15�jx�jy�2− �jz�2jx� /6

T�
y =�15�jy�jz�2− �jx�2jy� /6

T�
z =�15�jz�jx�2− �jy�2jz� /6
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obtain a set of single-site problems for each j=3 /2. Note that
these single-site problems involve not just the usual Weiss
exchange field, but also “multipolar fields,” which act as
effective second- and third-order spin anisotropies. The
mean-field equations determine self-consistent values of the
orbital occupation numbers and orbitally resolved fields. As
it is straightforward to formulate the mean-field equations,
and solve them numerically, we do not give the details of
these calculations here.

A distinct class of solutions describes each phase. For the
antiferromagnetic phase, we find the following operators are
nonzero:

	ji� = 	 n�u1,u2,0� , �69�

	Qi
3z2

� = q , �70�

	Ti,�� = 	 t��u1,u2,0� , �71�

	Ti,�� = 	 t��− u1,u2,0� , �72�

where we have taken Q=2��0,0 ,1� for concreteness, and
the upper and lower signs refer to the A and B sublattices,
respectively. The parameters n, q, t�, and t� are positive at all
T�0 in the AFM phase. However, note that n vanishes in the
limit T→0, in agreement with the vanishing dipole moment
discussed earlier for the AFM ground state.

In the FM110 state, the nonzero expectation values are

	ji� = m�1,1,0� 	 n�1,− 1,0� , �73�

	Qi
3z2

� = q , �74�

	Qi
x2−y2

� = � q�, �75�

	Ti,�� = t��1,1,0� 	 t̃��1,− 1,0� , �76�

	Ti,�� = t��1,− 1,0� 	 t̃��1,1,0� , �77�

where again we took Q=2��0,0 ,1� and the upper/lower
signs refer to the A /B sublattices. In this case the parameters
m ,n ,q ,q� , t� , t̃� , t� , t̃� are all nonzero at temperatures within
the FM110 phase including T=0.

The third-ordered phase dominating the phase diagram is
the quadrupolar one �For the purposes of this section, we
ignore the FM100 phase, which extends into a narrow region
of ferromagnetic state with variable polarization direction at
T�0, as it occupies a very small volume of the phase dia-
gram�. In the quadrupolar state, there is only a single nonva-
nishing order parameter,

	Qi
x2−y2

� = � q�. �78�

Let us discuss the symmetries of these three states. In the
AFM and FM110 phases, time-reversal symmetry is broken.
However, the net magnetization vanishes in the AFM state.
In the AFM state, this is guaranteed by invariance under the
combined operations of translation �such as by �0,1/2,1/2�,
which interchanges the A and B sublattices� and time rever-

sal. No such symmetry can be combined with time reversal
in the FM110 case. Various point-group symmetries are also
present in the AFM and FM110 phases but we do not de-
scribe this in detail.

In the quadrupolar case, time-reversal symmetry is unbro-
ken, which is sufficient to require the dipolar and octupolar
order parameters to vanish. Only point-group symmetries are
broken by the quadrupolar order. Fourfold �C4� rotations
about the x or y axes, and threefold �C3� rotations about
�111� axes are broken in this state. While the C4 rotation
about the z axis is also broken, the combination of this C4
rotation and a translation exchanging the A and B sublattices
remains a symmetry of the quadrupolar state.

A standard classification scheme for quadrupolar states is
to examine the examine the eigenvalues of the Qi

�� matrix.
These must sum to zero because the matrix is traceless.
States in which there are only two distinct eigenvalues, i.e.,
eigs�Q�= �q ,q ,−2q� are called nematics, and correspond to
the situation in which one principal axis is distinguished
from the other two, which remain identical. In the most gen-
eral case, there are three distinct eigenvalues, i.e., eigs�Q�
= �q1 ,q2 ,−q1−q2�, with q1�q2. This is called a biaxial nem-
atic and is a state in which all three principal axes are dis-
tinct. The quadrupolar state obtained here is such a biaxial
nematic. Physically, the local susceptibility in this state takes
distinct values �local

xx ,�local
yy ,�local

zz for fields along each of the
axes. However, note from Eq. �78� that the quadrupolar order
parameter changes sign between the two sublattices. Thus we
should properly call this state an antiferrobiaxial nematic.
Due to the staggered ordering, the bulk susceptibility does
not distinguish all three axes. Instead, there are only two
distinct components, �xx=�yy ��zz. The difference between
the two components of the susceptibility serves as a simple
macroscopic means to observe quadrupolar ordering.

C. Cubic system: Phase diagram and transitions

By solving the mean-field equations numerically, we have
determined the phase diagram for the cubic case. Parts of it
can be understood analytically. Suppose that the transitions
from the high-temperature normal phase to the quadrupolar
and AFM phases are second order. This appears to be always
true for the quadrupolar phase, while it true for the AFM for
most parameters, but weakly violated in some regions. With
this assumption, we can determine the critical temperatures
for these transitions by the usual condition of marginal sta-
bility �vanishing of the quadratic term in the Landau theory�
of the free energy. We find that the critical temperature for
the quadrupolar state is

Tc
quad =

43V + 18J� − 3J

18
�79�

and that for the AFM state is

Tc
AFM =

J + 10J� + �73J2 + 164JJ� + 100�J��2

36
. �80�

Without the assumption that the transitions are continuous,
the critical temperature could be higher. Thus Eqs. �79� and
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�80� give lower bounds for the transition temperatures,
strictly speaking. Extending the two-dimensional T=0 phase
diagram in Fig. 1 into a third dimension of temperature, the
quadrupolar phase occurs “above” the portion for which
Tc

quad�Tc
AFM, which implies V�Vc, with

Vc =
7J − 26J� + �73J2 + 164JJ� + 100�J��2

86
. �81�

The curve Vc�J�� defines an almost straight line in the 2D
phase diagram, as shown in Fig. 6. In fact, Eq. �81� slightly
underestimates Vc, as it assumes the normal to AFM transi-
tion is continuous, when it is in fact weakly first order in this
vicinity. However, the true Vc found numerically is only a
few percent larger. For V�Vc, no quadrupolar phase occurs.
Instead, the first ordering transition from high temperature is
into the AFM state. This is true even when the ground state is
ferromagnetic, so that in this case �when V�Vc� the system
first orders into the AFM state, and then at lower temperature
switches to the FM110 phase.

We now discuss the nature of the transitions. The quadru-
polar ordering transition is, as already mentioned, continuous
�see Figs. 7 and 8�. It is described by a single scalar order
parameter �equal to q� in Eq. �78��, for each of the three
�100� wave vectors, describing the associated staggered
quadrupole moment. Formally,

�a = �− 1�2xi
a
	Qi

x2−y2
� , �82�

where xi
1=xi , xi

2=yi , xi
3=zi. According to symmetry, the

Landau free energy for �a has the same form as that for an
O�3� magnetic transition with cubic anisotropy. Beyond
mean-field theory, this is believed to support a three-
dimensional transition in the O�3� universality class.

The transition from the normal to the AFM state is con-
tinuous in mean-field theory for small V �see Fig. 9�, becom-
ing weakly first order for larger V, close to Vc where the
intermediate quadrupolar phase emerges. The normal-AFM
transition is characterized, for each of the three wave vectors,
by a two-component primary order parameter, which could
be taken to be the two components of TA,� normal to Q. In
principle, the degeneracy of the ordering pattern within this
“XY” plane normal to Q is, as we have remarked, accidental,
and should be removed by additional effects. We do not,
however, observe this degeneracy lifting within mean-field
theory for the present model. With the degeneracy, the tran-
sition should be therefore described by the free energy for
some six-component order parameter. As we do not under-
stand the degeneracy lifting mechanism at present, we do not
attempt here to establish the true critical properties for this
transition �when it is continuous� with fluctuations taken into
account.

I

II

III
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

J�

V

FIG. 6. �Color online� Zero-temperature two-dimensional phase
diagram in the cubic case �same as Fig. 1�, overlaid with the regions
of different T�0 behavior. Dashed lines are obtained from mean-
field numerics. The solid line �in orange� is defined by Eq. �81�. In
region I, there is a single transition to the AFM state. In region II,
the system supports an intermediate-temperature quadrupolar or-
dered phase. The transition from the normal state to the quadrupolar
phase is second order. In this region, there is a first-order transition
to the AFM phase on further cooling, for parameters such that the
latter is the ground state. Otherwise, the lower temperature transi-
tion is to a ferromagnetic �predominantly FM110� state. In region
III, the system first turns from normal phase to the AFM state then
to a ferromagnetic �predominantly FM110� state on further cooling.

FIG. 7. �Color online� Temperature dependence of order param-
eters for J� /J=0.1 and V /J=0.3. For these parameters, there is a
continuous normal to quadrupolar transition, at T /J�0.65, fol-
lowed by a first-order transition to the AFM state at T /J�0.37. The
four order parameters plotted are: squares �red� �	TA,�−TB,��� /2,

circles �blue� 	QA
3z2

+QB
3z2

� /2, diamonds �yellow� �	jA− jB�� /2, and

triangles �green� 	QA
x2−y2

−QB
x2−y2

� /2. In the figure, J=1.

FIG. 8. �Color online� Temperature dependence of order param-
eters for J� /J=0.3 and V /J=0.3. For these parameters, there is a
continuous normal to quadrupolar transition, at T /J�0.85, fol-
lowed by a continuous quadrupolar to FM110 transition at T /J
�0.33. The four order parameters plotted are: squares �red� �	TA,�

−TB,��� /2, circles �blue� 	QA
3z2

+QB
3z2

� /2, diamonds �yellow� �	jA

+ jB�� /2, and triangles �green� 	QA
x2−y2

−QB
x2−y2

� /2. In the figure, J
=1.
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The quadrupolar to FM110 transition is continuous in
mean-field theory �see Fig. 8�. This could be anticipated by
examining the form of the order parameters in the FM110
phase. We note that the antiferrobiaxial nematic order param-
eter of the quadrupolar state is already nonvanishing in the
FM110 phase. Hence, we might naturally expect, upon heat-
ing, that thermal fluctuations first restore time-reversal sym-
metry, yielding the quadrupolar phase, before fully restoring
all symmetry in the normal state. To determine the nature of
the order parameter for this transition, note that the wave
vector and local anisotropy axes are already established in
the quadrupolar state. Hence the direction of the uniform and
staggered magnetizations are already determined, up to a
sign and interchange, above the transition. For instance, for
the quadrupolar state in Eq. �78�, with Q=2��001�, the uni-
form magnetization can lie along 	�110� and the staggered

magnetization along 	�11̄0�, or vice versa. Thus the symme-
try breaking from the quadrupolar to the FM110 state is de-
scribed by two Ising order parameters. We therefore expect
this transition, beyond mean-field theory, to be similar to that
of an Ashkin-Teller or similar models.

The quadrupolar to AFM transition appears strongly first
order �see Fig. 7�. This is in agreement with the expectations
of Landau theory, as the symmetry of the AFM phase is not
a subgroup of the symmetry of the quadrupolar one. In terms

of order parameters, this is evident since 	Qi
x2−y2

� is nonzero
in the quadrupolar phase but zero in the AFM one, while the
magnetic order parameters are zero in the quadrupolar phase
but nonzero in the AFM. Fine tuning of the free energy
would be required to arrange both these types of order to
change at the same temperature in a continuous fashion.

In region III one encounters a transition from the AFM to
FM110 state. This appears to be continuous in mean-field
theory �see Fig. 10�. One can understand this by noting that
the AFM solution can be regarded as a subset of the FM110
one, if the unit vector �u1 ,u2 ,0� is taken to be along �1,
−1,0�. Then the transition to the FM110 is described by the
emergence of a nonzero m. Like the normal to AFM transi-

tion, because we have not understood the degeneracy-
breaking mechanism in the AFM state, we do not attempt to
analyze this transition beyond MFT.

D. Effects of anisotropy

We now consider the effects of anisotropy on the T�0
phase diagram, focusing on the case of weak �D��J ,J� ,V.
We have already considered the effects of D on the AFM and
FM110 states in Sec. III B 4. We saw that easy-axis aniso-
tropy favors states with the wave vector Q parallel to the z
�easy� axis. This is because the anisotropy couples directly to

the Qi
3z2

field,

HD = − D�
i

�ji
z�2 = const −

D
�3

�
i

Qi
3z2

. �83�

Both the AFM and FM110 states have a nonzero and con-

stant expectation value of Qi
3z2

, which is maximized in this
orientation. Conversely, easy-plane anisotropy favors states
with the wave vector Q perpendicular to the z �hard� axis, for
the same reason.

We now repeat this analysis for the quadrupolar state.

Here the situation is more subtle because 	Qi
3z2

� vanishes in
the quadrupolar state. Moreover, the cubic rotations �e.g.,

	Qi
3x2

��, while not vanishing, give zero net contribution due
to the opposite signs on the A and B sublattices. This means
that the splitting of the different wave-vector states vanishes
at linear order in D. There is instead a quadratic contribution,
which, numerically, we find favors the states with Q parallel
to z �see Fig. 11�. Being quadratic in D, this same configu-
ration is favored for both the easy-axis and easy-plane cases.
Thus we have the interesting situation that for easy-plane
anisotropy, the wave vector orients parallel to z in the qua-
drupolar phase, but perpendicular to z in the low-temperature
phase. Note that the quadrupolar phase remains distinct from
the normal phase even with nonzero D, as it continues to
break symmetries, notably translational invariance.

FIG. 9. �Color online� Temperature dependence of order param-
eters for J� /J=0.2 and V /J=0.1. For these parameters, there is a
direct, continuous, normal to AFM transition, at T /J�0.38. The
three curves show: squares �red� �	TA,�−TB,��� /2, circles �blue�
	QA

3z2
+QB

3z2
� /2, and diamonds �yellow� �	jA− jB�� /2. Note: in this

figure and in Figs. 7, 8, and 10, the symbols are not the data points
�which are much more dense�—they simply label the different
curves. In the figure, J=1.

FIG. 10. �Color online� Temperature dependence of order pa-
rameters for J� /J=0.40 and V /J=0.05. For these parameters, there
is a continuous normal to AFM transition, at T /J�0.49, followed
by a continuous AFM to FM110 transition at T /J�0.34. The four
order parameters plotted are: squares �red� �	TA,�−TB,��� /2, circles

�blue� 	QA
3z2

+QB
3z2

� /2, diamonds �yellow� �	jA+ jB�� /2, and triangles

�green� 	QA
x2−y2

−QB
x2−y2

� /2. In the figure, J=1.
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E. Magnetic susceptibility

In this section, we discuss the magnetic response at T
�0, which is an important indicator, especially of the qua-
drupolar ordering transition. At high temperature, of course,
one observes Curie-Weiss behavior. For the general Hamil-
tonian with anisotropy D, there are two different Curie-Weiss
temperatures, for fields parallel and perpendicular to z,

�CW
zz = −

J

5
+

32J�

45
+

4D

5
,

�CW
xx = −

J

5
+

32J�

45
−

2D

5
. �84�

These are obtained from the high-temperature expansion of
the susceptibility up to O�1 /T2�. These expressions may be
useful in extracting exchange constants from experiment. In-
terestingly, if one calculates the powder average susceptibil-
ity, the contributions of the anisotropy cancel at this order
and the Curie-Weiss temperature measured in this way is
independent of D. It is also interesting to note that, in the
region of larger V /J and small J� /J, one obtains a ferromag-
netic ground state with an antiferromagnetic �negative�
Curie-Weiss temperature.

On lowering temperature, the susceptibility shows distinct
behaviors in the different parts of the phase diagram. We
focus here for simplicity on the cubic system, starting with
region I. Here the susceptibility displays the usual cusp as-
sociated with antiferromagnetic order, at the normal to AFM
transition. The inverse susceptibility is plotted in Fig. 12 for
J�=V=0.1J, in the midst of region I. It shows a minimum at
the transition, and pronounced curvature below the transition

temperature, saturating to a large constant value in the T
→0 limit. We note that the large zero-temperature suscepti-
bility is not related to gapless excitations, but is a general
consequence of strong SOC, and should be expected in all
parameter regimes of this model.

Next consider region II. Here, one observes a cusp at the
normal to quadrupolar transition. This cusp is, however,
rather different from the one just mentioned. Specifically, it
is not a minimum of 1 /�, and instead separates two distinct
“Curie-Weiss” regimes in which 1 /� is linear but with dif-
ferent, positive, slopes �i.e., different effective magnetic mo-
ments�. The presence of a lower temperature Curie-Weiss
regime is a signature of quadrupolar order. This is because
the quadrupolar mean field splits only the point-group degen-
eracy of the spins, but preserves a local Kramer’s doublet.
This doublet gives rise to a Curie law. An example is plotted
in Fig. 13. As the quadrupolar order lowers the symmetry of
the system to tetragonal, we see actually two different effec-
tive moments in susceptibility parallel to the wave vector Q
��zz� and perpendicular to it ��xx=�yy�. We observe that the
effective magnetic moment seen in �xx is typically enhanced
in the quadrupolar phase, while it is suppressed in �zz, both

FIG. 11. Temperature dependence of the free-energy difference
between states with wave vector parallel and perpendicular to the
Ising axis, in the presence of a weak anisotropy �D�=0.05. Here
J� /J=V /J=0.3. Solid line: 
F=F�Q � ẑ ;D=0.05�−F�Q� ẑ ;D
=0.05�. Dotted line: 
F=F�Q � ẑ ;D=−0.05�−F�Q� ẑ ;D=−0.05�.
One sees that in the quadrupolar phase, both signs of anisotropy
favor the wave vector aligned with the z axis. In the FM110 phase,
however, this is favored only for D�0. For D�0 �easy-plane an-
isotropy�, the state with wave vector normal to z is preferred. Note
also that the energy difference is much larger in the FM110, con-
sistent with the expected linear and quadratic dependence on D in
FM110 and quadrupolar phases, respectively. In the figure, J=1.
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FIG. 12. �Color online� Inverse susceptibility at the normal to
AFM transition for J�=V=0.1J. Blue �upper� curve: 1 /�xx and red
�lower� curve: 1 /�zz. In the figure, J=1.
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FIG. 13. �Color online� Inverse susceptibility for J�=0.2J and
V=0.3J. Blue �lower� curve: 1 /�xx, red �upper� curve: 1 /�zz, and
yellow �middle� curve: 1 /�powder. For these parameters the quadru-
polar transition is at T /J�0.75, and the ferromagnetic transition is
at T /J�0.23. In the figure, J=1.
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relative to the isotropic effective magnetic moment in the
normal phase.

At still lower temperature, one encounters the ferromag-
netic phases. Here of course the susceptibility for the easy
directions diverges. Focusing on the dominant FM110 phase,
one sees that since the easy direction is in the �001� plane
selected by the quadrupolar order, �zz does not diverge, but
�xx and �yy do.

V. BEYOND MEAN FIELD: SPIN WAVES AND
NONMAGNETIC GROUND STATES

In Sec. V A, we obtained the mean-field phase diagram.
Here we consider quantum effects beyond mean field. We
first consider spin-wave fluctuations and obtain the collective
mode spectrum in linear spin-wave theory. From this, we
obtain the quantum correction to the order parameter, and, in
the ideal case of J�=V=0, we will see that this is very large
and invalidates the mean-field theory in the vicinity of this
parameter regime. This suggests the possibility of very dif-
ferent states dominated by quantum fluctuations. We then
explore this possibility, considering some candidate nonmag-
netic ground states of our model.

First, we consider the quantum ground states of pairs of
sites, unveiling a pseudosinglet structure, analogous to the
S=0 singlet ground states for pairs of antiferromagnetically
interacting spins with SU�2� symmetry. This leads naturally
to the possibility of “valence-bond” states built from these
pseudosinglets. We consider both a static, VBS state, and
states in which the valence bonds are fluctuating, in which
case we obtain a QSL state.

Very little theoretical work has been done on QSL states
in systems with strong spin-orbit coupling, i.e., with strongly
broken SU�2� symmetry. As such, the structure of possible
QSL states in the present model requires particular investi-
gation. Guided by the pseudosinglet structure, and the hidden
SU�2� symmetry of the model, we construct candidate QSL

states for the full Hamiltonian, H̃ex-1, by a slave-particle
technique.

A. Spin waves

In the previous two sections, we have discussed the state
phase diagram based on mean-field theory. Here, we perform
a linear spin-wave analysis, which perturbatively describes
the effect of quantum fluctuations on the various phases ob-
tained so far, and also predicts the structure of collective
modes, which might, e.g., be observed in inelastic neutron
scattering. Finally, because we have not explored the full
space of mean-field states, the calculation also provides an
important check that the phases we have found are at least
metastable.

The conventional Holstein-Primakoff �HP� transformation
for spin-S operators cannot be directly applied for the three
variational ground states because none of the three states is a
fully polarized state for any projection of the spin angular
momentum operator j. This is especially severe for the AFM
state, for which the spin expectation value simply vanishes.
Instead, we formulate an “SU�4� spin-wave theory,” by re-

writing the Hamiltonian, Eq. �27�, in a bilinear form in terms
of the 15 generators of the SU�4� group. To do so, we intro-
duce, for any local basis for the single-site Hilbert space
��n�� ,n=1,2 ,3 ,4, the complete set of operators40

Sm
n = �m�	n� . �85�

These SU�4� generators obey the algebra �Sm
n ,Sk

l �=�nkSm
l

−�mlSk
n. We can then use the HP transformation for the gen-

erators of SU�4�. In this transformation, one selects a particu-
lar state in the four-dimensional basis to be the vacuum and
introduces three bosons associated with excitations to the
three other states. For the AFM phase, the classical ground
state is given by Eq. �40�. Hence we take, on the A sublattice
�zi integer�, the basis

�1�A =
1
�2

��3/2� + ei��− 3/2��, �2�A = �1/2� ,

�3�A = �− 1/2�, �4�A =
1
�2

��3/2� − ei��− 3/2�� , �86�

while for sublattice B �zi half integer�,

�1�B =
1
�2

��3/2� − ei��− 3/2��, �2�B = �− 1/2� ,

�3�B = �1/2�, �4�B =
1
�2

��3/2� + ei��− 3/2�� . �87�

The Hamiltonian H̃ in Eq. �27� in this basis has a quadratic
form,

H̃ = �
	ij�

Cklmn�i, j�Sk
l �i�Sm

n �j� , �88�

where the coefficients Cklmn�i , j� �which are straightforward
to obtain, so we do not give them explicitly� depend linearly
on J, J�, and V.

To introduce the HP transformation on sublattice A �B�,
we choose �1� as the vacuum which is annihilated by three
“magnon” annihilation operators an �bn�, n=2,3 ,4. One can
think these three bosons as descending from mixed spin and
orbitals fluctuations of the Hamiltonian before the P3/2 pro-
jection. The HP transformation is defined as,41 for i in the A
sublattice,

S1
1�i� = M − �

n�1
an

†�i�an�i� , �89�

Sn
1�i� = an

†�i��M − �
l�1

al
†�i�al�i� �n � 1� , �90�

Sn
l �i� = an

†�i�al�i� �l,n � 1� , �91�

while for i in the B sublattice, the same formula holds with
an�i� replaced by bn�i�. In the above equations M is defined
as the number of columns in the Young tableaux for the
representation of SU�4�. In our case �fundamental represen-
tation�, we must set M =1. In the generalization to arbitrary
M, the classical limit where the classical ground state be-
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comes exact is M→�. However, we apply this HP transfor-
mation directly for M =1. Inserting this into Eq. �88�, we
expand it to obtain a quadratic form in the bosonic operators.
The constant term in the expansion gives the classical
ground-state energy,

EAFM

N
= M2�−

J

2
+ J� +

11V

12
� , �92�

independent of the phase �. The quadratic terms lead to
quantum corrections. Defining the Fourier transform of the
bosonic operators, the spin-wave Hamiltonian can be orga-
nized in the form �kHk with

Hk = �Ak
† A−k ��Fk Gk

†

Gk Fk
�� Ak

A−k
† � , �93�

where Ak= �a2k ,a3k ,a4k ,b2k ,b3k ,b4k� is the vector of mag-
non annihilation operators and Fk and Gk are 6�6 matrices.
This spin-wave Hamiltonian can be diagonalized by standard
methods.42

For the AFM ground state, Eq. �40�, we obtain a gapless
magnon mode, as depicted in Fig. 14. This gapless mode is
associated with the continuous accidental degeneracy and in-
deed occurs for arbitrary �. By contrast, in the FM110 and
FM100 phases, one observes a gap for all the spin wave
modes �see Figs. 15 and 16�. The gap in the FM110 phase
increases with J�, as expected since this corresponds to in-
creasingly violated SU�2� symmetry. In all cases, the modes
are all well defined with positive real frequencies, indicating
the stability of the phases in the classical sense: i.e., that we
have properly found local energy minima of the mean-field
theory.

Finally, having obtained the spin-wave modes, we can
evaluate the quantum corrections. It is most interesting to
consider the reduction in the order parameter by quantum
fluctuations. We can define this by considering the probabil-
ity to find a given spin in its mean-field ground state. This is
nothing but the vacuum state of the HP bosons. Hence this
probability is given, for a site on the A sublattice, by

Pgs�i� = 	1 − �
n�1

an
†�i�an�i�� . �94�

This quantity is directly analogous to the staggered magne-
tization in the usual HP treatment of a quantum antiferro-
magnet. We therefore denote 
M =1− Pgs�i�
=�n�1	an

†�i�an�i��. This is obtained, at T=0, by integrating
the zero-point contribution to the boson number from each
spin-wave mode. The quadratic spin-wave Hamiltonian is
diagonalized by a Bogoliubov transformation Qk,

�Ck,C−k
† �T = Qk�Ak,A−k

† �T, �95�

in which, Ck= �c1k ,c2k ,c3k ,c4k ,c5k ,c6k�, and Qk is a 12
�12 matrix. From this we obtain the quantum correction


M =
1

N �
n�1

��
i�A

an
†�i�an�i� + �

i�B

bn
†�i�bn�i��

=
1

2� 1

N�
k

�
i=1

6

�Q†Q�ii − 3� . �96�
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FIG. 14. �Color online� Spin-wave spectrum for the AFM phase
at J�=0.1 and V=0.2 along �001� momentum direction and J=1.
There is one low-lying gapless mode. The fcc lattice constant is set
to be a=1 and the phase �=0 for the ground state in Eq. �40�.
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FIG. 15. �Color online� Spin-wave spectrum for the FM110
phase at J�=0.3 and V=0.2 along �001� momentum direction. The
lowest excitation mode has an energy gap 
=0.241 at k=0. In the
graph, J=1.
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FIG. 16. �Color online� Spin-wave spectrum for the FM100
phase at J�=0.1 and V=0.4 along �001� momentum direction. The
lowest excitation mode has an energy gap 
=0.0224 at k=0. In the
graph, J=1.
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Numerically, we find that this quantum correction is maxi-
mal for J�=V=0, and is given by 
M �1.7 at this point.
This is much larger than 1, implying that the fluctuations at
this point are large and that the mean-field theory is at least
quantitatively invalid. For increasing J� and V the correction
becomes significantly smaller and mean-field theory may be
reliable. In the vicinity of the J�=V=0, one may expect a
very different ground state, incorporating strong quantum
fluctuations. We explore some possible nonmagnetic ground
states in the remainder of this section.

B. Pseudosinglets in different planes

We start our analysis of nonmagnetic states by consider-
ing two sites in the XY plane, which interact with the Hamil-

tonian H̃ex-1
XY �i , j�. Remarkably, the ground state has a form

identical to an SU�2� spin singlet, if written in terms of
pseudospin-1/2 states jz= 	1 /2,

�XY�ij =
1
�2

��1

2



i
�−

1

2



j
− �−

1

2



i
�1

2



j
� . �97�

One may understand this result by writing down the pro-
jected spin and occupation number operators in xy orbitals,
in the basis of jz eigenstates �see Eq. �23��,

S̃xy =
1

3�0

�

0
� , �98�

ñxy =
2

3�0

I2

0
� . �99�

Here � is the vector of Pauli matrices and I2 is the 2�2

identity matrix. One may consider S̃xy as an effective spin-
1/2 operator in the subspace of jz= 	1 /2 states, which natu-
rally explains the SU�2� singlet in Eq. �97�.

For the XZ and YZ planes, one simply needs to apply a
cubic permutation to the results obtained for XY planes, or
more formally, apply a unitary transformation that rotates
about the �111� axis by 	2� /3,

S̃xz
�� = U†S̃xy

� U , �100�

S̃yz
�� = US̃xy

� U† �101�

with

U = exp�− i
2�

3

jx + jy + jz

�3
� . �102�

The upper indices ��= p��� and ��= p−1��� in Eqs. �100�
and �101� denote cyclic and anticyclic permutations of x ,y ,z,
respectively �i.e., p : �x ,y ,z�→ �y ,z ,x� with inverse
p−1 : �x ,y ,z�→ �z ,x ,y��. The two-site ground states in the XZ
and YZ planes are the pseudosinglets in the subspace of jy

= 	1 /2 states and jx= 	1 /2 states, respectively.

C. Valence-bond solid state

It is natural to consider a product state of such pseudos-
inglet “valence bonds” �also called “dimers”� as a candidate
�prototypical variational� nonmagnetic ground state. To do
so, we must divide the spins into two neighboring sublat-
tices, which will be paired. This by necessity breaks lattice
symmetries. Such a state is called a valence-bond solid, or
VBS, state. At the level of valence-bond product states,
many possible arrangements of the dimers are degenerate.
This degeneracy is artificial and will be broken if the wave
functions are improved. We will not investigate this in any
detail and just consider the simplest VBS state in which the
dimers form a “columnar” arrangement within a single �001�
plane, see Fig. 17.

The variational energy of such a state �actually any state
with a planar arrangement of dimers has the same energy� is
readily evaluated. We obtain the energy per site EVBS /N
= 	VBS�H̃ex−1�VBS� /N=−5 /12J=−0.42J. This is slightly
higher than the mean-field ground-state energy of the AFM
state, EAFM

MF /N=−J /2. However, the large quantum fluctua-
tions are expected to destabilize the latter state and perhaps
might stabilize the VBS one. So such a VBS state seems
competitive and may be considered as a possibility for future
exploration.

D. QSLs and fermionic mean-field theory

The most general approach that has been applied to de-
scribe QSL states is the slave-particle method, in which aux-
iliary fermions are introduced, and the ground state for the
spin system is described by some projection of a nominally
simple fermionic state into the physical spin Hilbert space.
This results, in the usual SU�2�-invariant case, in wave func-
tions which are composed of superpositions of products of
SU�2� singlets. Here, the appearance of two-site pseudos-
inglet ground states points to the possibility of applying a
similar fermionic mean-field theory. In this section, we

FIG. 17. �Color online� Columnar valence-bond solid �VBS�
state within an XY plane. The dashed square indicates the face of a
conventional cubic unit cell, while the solid lines connect the fcc
nearest neighbors within the plane, which form a 45° rotated square
lattice.
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implement this technique for the full antiferromagnetic ex-
change interaction.

We first introduce the auxiliary fermionic creation opera-
tors, whose quanta we call “spinons,”40

���i = f i�
† �vacuum�, � = 1, . . . 4, �103�

where for convenience we have relabeled the states jz

= 3
2 , 1

2 ,− 1
2 ,− 3

2 by �=1,2 ,3 ,4, respectively. The physical Hil-
bert space is constructed from states with one fermion at
each site, which imposes the constraint

�
�=1

4

f i�
† f i� = 1. �104�

In this notation, the spin and number operators become

S̃i,xy ⇒ Fi
†S̃i,xyFi, �105�

ñi,xy ⇒ Fi
†ñi,xyFi, �106�

where on the right-hand side it is to be understood that the
matrices in Eqs. �98� and �99� act on the vector of spinon
operators

Fi = �f i1, f i2, f i3, f i4�T. �107�

Similar expressions can readily be written for operators in
XZ and YZ planes. Thus the Hamiltonian in terms of spinons
reads

H̃ex-1
XY �ij� = J��Fi

†S̃i,xyFi� · �Fj
†S̃ j,xyFj�

−
1

4
�Fi

†ñi,xyFi� · �Fj
†ñj,xyFj��

=
2J

9 �
�,�=2,3

�− f i,�
† f j,�f j,�

† f i,� + f i,�
† f j,�f j,�

† f i,�

− f i,�
† f i,����� , �108�

in which, ��� ·�����=2��������−�������� has been used.
Similar spinon Hamiltonians can also be written down for
XZ and YZ planes. When we write down the full antiferro-
magnetic exchange Hamiltonian and sum over XY, YZ, and
XZ planes, we find that the single-site terms, which are qua-
dratic in spinon operators, sum up to a constant once we
impose the single occupancy constraint. We are then left with
the terms that are quartic in spinon operators.

We now follow the standard procedure of slave-particle
mean-field theory to decouple the quartic terms in the spinon
Hamiltonian and write down a mean-field ansatz. We start

with the exchange Hamiltonian in the XY plane, H̃ex-1
XY .

We require a mean-field ansatz for the fermionic bond
expectation values, 	f i�

† f j��. Noting the structure of the two-
site pseudosinglet in this plane, we choose an ansatz which
reproduces a quantum ground state of this type. Specifically,

�ij;�� 
 	f i�
† f j�� = �ij�Ixy���, 	ij� � XY �109�

with

Ixy = �0

I2

0
� . �110�

Note that, by construction, this expectation value is invariant
under the hidden SU�2� symmetry. The �ij on the XZ and YZ
planes are determined by symmetry

�ij;�� 
 	f i�
† f j�� = �ij�Ixz���, 	ij� � XZ,

�ij;�� 
 	f i�
† f j�� = �ij�Iyz���, 	ij� � YZ, �111�

and

Ixz = U†IxyU , �112�

Iyz = UIxyU
† �113�

with the unitary transformation introduced in Eq. �102�.
We then arrive at the mean-field Hamiltonian

HMF
XY = − J̃ �

	ij��XY
���ijFj

†IxyFi + H.c.� − 2��ij�2�

+ �
i

�i�Fi
†Fi − 1� �114�

with J̃
2J /9. Here �i are the Lagrange multipliers related
to the single-occupancy constraint in Eq. �104�. HMF

XZ and
HMF

YZ can be readily written down using Eqs. �111� and �112�.

1. Uniform spin liquid

As discussed in Sec. II, the antiferromagnetic exchange
Hamiltonian has a hidden global SU�2� symmetry,

�G� ,H̃ex-1�=0. It is easy to find that the full mean-field
Hamiltonian we have here respects this hidden global SU�2�
symmetry. We seek a quantum-spin-liquid ground state
which does not break any symmetries of the original Hamil-
tonian. Translational invariance imposes �i=�=const. First
we consider the ansatz for a uniform spin liquid,

�ij = � ji = � , �115�

for i , j nearest neighbors on the fcc lattice. This naturally
respects point-group and time-reversal symmetries. The
Hamiltonian in Eq. �114� is then diagonalized by Fourier
transform

f��k� = �
j

e−ik·Rj f j�. �116�

We find

HMF = �
�=1,2

�
k

���k�� f̃�+
† �k� f̃�+�k� + f̃�−

† �k� f̃�−�k�� + 12NJ̃�2,

�117�

where �=1,2 label doubly degenerate bands with dispersion
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�1,2�k� 
 J̃��̃1,2�k� = − 2J̃��CxCy + CyCz + CzCx

	 �Cx
2Cy

2 + Cy
2Cz

2 + Cz
2Cx

2 − CxCyCz�Cx + Cy + Cz�� .

�118�

Here Cx=cos�kx /2�, Cy =cos�ky /2�, and Cz=cos�kz /2�. The
double degeneracy of the two bands is due to Kramer’s de-
generacy since ji is a spin-3/2 operator and the Hamiltonian
has time-reversal symmetry.

The ground-state wave function at the mean-field level is
described by a Fermi sea of spinons,

��MF� = �
�=1,2

�
k

f̃�+
† �k� f̃�−

† �k��vacuum� , �119�

for all k below the Fermi surface. The mean-field ground-
state energy per site is

EMF

NJ̃
= 2� �

�=1,2
� d3k

�2��3��� − �̃��k���̃��k� + 12�2,

�120�

where the integral is over the first Brillouin zone of the fcc
lattice and the dimensionless chemical potential � is fixed by
the quarter-filling condition,

2 �
�=1,2

� d3k

�2��3��� − �̃��k�� = 1. �121�

The wave function in Eq. �119� must be Gutzwiller projected
into the physical Hilbert space with one spinon per site,

��� = Pni=1��MF� . �122�

Here we simply evaluate the ground-state energy at the
mean-field level. Minimizing Eq. �120� with respect to the
parameter �, we find

�� = −
1

12 �
�=1,2

� d3k

�2��3��� − �̃��k���̃��k� �123�

and

EMF

N
= −

8

3
J����2. �124�

The spinon density is at quarter filling for ��−1.58J. The
mean-field energy for the uniform spin-liquid state is then
EMF

�0� /N�−0.041J.

2. �-flux spin liquid

We now consider the ansatz for the �-flux spin-liquid
state illustrated in Fig. 18. In order to preserve time-reversal
symmetry, the phase of the �ij at each bond can only assume
the values 0 or �. We divide the fcc lattice into four cubic
lattices

r j
A = �0,0,0� + R j ,

r j
B = �1/2,1/2,0� + R j ,

r j
C = �0,1/2,1/2� + R j ,

r j
D = �1/2,0,1/2� + R j ,

where R j is a unit vector in the cubic lattice with lattice
parameter a=1. We denote by FjA the vector of spinon anni-
hilation operators at site j of sublattice A and similarly for
the other sublattices. We assign �ij =+� to the bonds connect-
ing sites in sublattice A to all its nearest neighbors in sublat-
tices B, C, D, and �ij =−� to the bonds connecting two sites
that belong to sublattices B, C, or D. In other words, this
ansatz corresponds to assigning −� to the three bonds in the
BCD base of each tetrahedron in the fcc lattice and +� to the
three bonds connecting the BCD base to the A vertex. As a
result, there is � flux through every triangle and zero flux
through every square in the fcc lattice. While this ansatz is
clearly invariant under point-group transformations about A
sites, it is also invariant under lattice translations, despite the
fact that this permutes the four sublattices. This is because
the corresponding changes in �ij can be removed by a gauge
transformation. For instance, the gauge transformation

FjA → − FjA, FjB → − FjB,

FjC → FjC, FjD → FjD, �125�

exchanges the signs of �ij between sublattices A and B. It
follows that the �-flux ansatz is invariant under point-group
symmetries about any site of the fcc lattice and therefore
respects all symmetries of the original Hamiltonian.

Minimizing the energy for the mean-field Hamiltonian
with four sublattices, we find eight doubly degenerate bands
for the �-flux state. Quarter filling is reached for dimension-
less chemical potential ��−1.68J. The mean-field energy is

EMF

NJ̃
= 2��

�=1

8 � d3k

�2��3��� − �̃��k���̃��k� + 12�2,

�126�

where the integral is over the reduced Brillouin zone of the
cubic lattice. We find EMF

��� /N=−0.053J. This is lower than

 
!

" #

FIG. 18. �Color online� Conventional unit cell of the fcc lattice
divided into four sublattices. The ansatz for the �-flux state corre-
sponds to assigning hopping amplitude +� to the bonds represented
by solid lines and −� to the bonds represented by the dashed lines.
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the energy for the uniform state. We may also compare this
to the mean-field energy of a VBS state �it is not so mean-
ingful to compare these slave-particle mean-field energies
directly to the variational energies quoted earlier for the
Weiss mean-field and VBS states�. For a mean-field VBS
state, we take �ij nonzero only on a set of nonoverlapping
dimers. In this case, we obtain EVBS

MF /N=−1 /18J�−0.055J.
This is slightly lower than the QSL states, but we expect that
the energy of the spin-liquid states will be lowered by the
Gutzwiller projection, since the latter is known to enhance
spin-spin correlations.43

We note that both spin-liquid states have Fermi surfaces
which are not nested and have no obvious instabilities. The
states are also stable against bond anisotropy which enhances
the hopping in a given plane. Perturbations to NN AFM ex-
change, such as next-nearest-neighbor interactions, will in
general require more general ansatze for the bond matrix �ij.
Nonetheless, as long as the perturbations are in some sense
small, the �ij assumed in Eq. �109�, in which hopping in a
given plane occurs predominantly for two out of four spinon
species, should be a good starting point for approximations.

VI. DISCUSSION

In this paper, we have introduced and analyzed a model to
describe localized electrons in a 4d1 or 5d1 configuration on
an fcc lattice, in which strong spin-orbit coupling and the t2g
orbital degeneracy combine to produce an effective j=3 /2
description. The model contains three interactions—nearest-
neighbor antiferromagnetic and ferromagnetic exchange, and
electric quadrupolar interactions—and in addition may in-
clude the effect of structural anisotropy. We obtain the
�Weiss� mean-field phase diagram, which includes three
main phases, which all have a two-sublattice Q=2��001�
structure. In all the phases, large multipolar order parameters
in addition to the usual magnetic dipolar order are present.
Most remarkably, we find a broad regime of time-reversal
invariant but quadrupolar ordered phase at intermediate tem-
peratures. A spin-wave analysis indicates that quantum fluc-
tuations are strong when nearest-neighbor antiferromagnetic
exchange is dominant, and in this case, we suggest possible
quantum-spin-liquid and valence-bond solid phases.

A. Experimental ramifications

The theory developed here can be applied and tested in a
multitude of ways. Here we discuss a few of the main ex-
perimental properties which might be measured. First, there
is the spatial symmetry breaking of the ordered phases. All
the ordered states, at least in the cubic case, break lattice
symmetries, and, in particular, double the unit cell. This can
be tested in experiments such as neutron and x-ray scatter-
ing.

We discuss in some further detail the most intriguing case
of the quadrupolar phase, which is nonmagnetic. It consti-
tutes a type of real �time-reversal invariant� orbital ordering.
It leads to a spontaneous splitting of the local quadruplet,
breaking it down to an elemental Kramer’s doublet. As such,
this is not entirely distinct from a Jahn-Teller effect, in which

ionic motions would lead to such splitting. In particular, even
though in our model atomic displacements are not involved
in an essential way, they would be expected at least to re-
spond to the orbital order. In principle, this could be mea-
sured by scattering �x rays or neutrons� which accurately
measure the crystal structure and symmetry. From the order
parameter description of the quadrupolar phase, we can ob-
tain the corresponding space group and crystal structure pa-
rameters to be sought in such a measurement. In particular,
we find that the quadrupolar ordered phase corresponds to
the tetragonal space group P42 /mnm �number 136�. In this
space group, apart from the doubling of the unit cell, one
finds that all the A sites, B sites, and B� sites remain equiva-
lent. However, the oxygen are no longer equivalent, but split
into three classes, occupying the 4e, 4f , and 4g Wyckoff
positions. Each of these positions has one degree of freedom
which is not fixed by symmetry. Physically, the oxygen re-
mains constrained to the simple cubic axes of the perovskite
reference unit cell but may move by different amounts along
each of the three axes. This is two more degrees of freedom
than is found in the cubic Fm3̄m �number 225� space group,
in which the oxygen maintain an ideal octahedron equidis-
tant from each B �or B�� site. While symmetry requires these
structural changes, we do not have at present an estimate for
their magnitude, which could be weak if coupling to the
lattice is not strong.

Another quantity we have already discussed in Sec. IV E
is the magnetic susceptibility, which shows signatures of the
quadrupolar and ordering transitions. One complication is
that the susceptibility is in many cases highly anisotropic and
one may not be sure what component�s� are being measured
in practice. Specifically, one may expect, if the system is
ideal and fully in equilibrium, that the broken symmetry or-
der parameters can be reoriented by the magnetic field, in
such a way that they minimize the free energy. This will
typically favor orientations which maximize the magnetic
susceptibility. For instance, in the quadrupolar phase for cu-
bic symmetry, this is an orientation with Q perpendicular to
the field. However, such reorientation involves motion of
domain walls and very large numbers of spins, and can easily
be prevented by pinning or at least be incomplete in practice.
Thus some diversity of behavior may be expected in experi-
ment, as well as possibly hysteretic behavior even in the
nonmagnetic state.

When the crystal is noncubic, one may explore the influ-
ence of single-ion anisotropy on the magnetic susceptibility.
A naive application of Eq. �84� would immediately imply
that single-ion terms do not contribute to the Curie-Weiss
temperature as measured in the powder susceptibility. How-
ever, we caution that these equations hold only in the true
high-temperature regime, in which T� �D�. If T is smaller
than or comparable to �D�, higher-order terms in the high-
temperature expansion are nontrivial, and a nonvanishing fit-
ted Curie-Weiss temperature may result from D alone. Let us
consider the powder susceptibility �̄ for independent ions
�i.e., neglecting exchange�. One has

�̄ =
�zz

3
+

2�xx

3
=

3

4T
+

tanh D/T
2D

, �127�

in units of g2�B
2 . We then suppose a linear fit to 1 / �̄ versus T

is made over a narrow region in the neighborhood of the
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temperature Tfit and extrapolated to find the Curie-Weiss
temperature as the intercept of the horizontal axis. The result
is

�CW�Tfit� = −

2Tfit�Tfit sinh�2D

Tfit
� − 2D�

D�3 cosh�2D

Tfit
� + 7� . �128�

Note that the fitted Curie-Weiss temperature is always nega-
tive, and is independent of the sign of D. It reaches a maxi-
mum in magnitude �at fixed D� of �CW�−0.18�D� when
Tfit�0.88�D�, and only approaches zero very slowly when
Tfit� �D�: �CW�− 4D2

15Tfit
. Conversely, at a fixed fitting tem-

perature, the maximum achievable Curie-Weiss temperature
is �CW�−0.26Tfit, when �D�=1.84Tfit.

B. Materials survey

We now turn to a discussion of specific materials which
have been studied experimentally.

1. Ba2YMoO6

We begin with the material Ba2YMoO6, which has been
suggested experimentally to be an exotic “valence-bond
glass” or to have a “collective spin-singlet” ground state. The
expected separation between the j=3 /2 and j=1 /2 states in
this material is over 2000 K so that the effective j=3 /2
description used here should be excellent. Two recent experi-
mental papers12,13 observed an unusual behavior of the mag-
netic susceptibility, with two Curie regimes, such that 1 /� is
linear both above 100 K and below 50 K. Moreover, the
magnetic specific heat shows a peak around 50 K, with Ref.
12 estimating the total magnetic entropy approximately equal
to R ln 4, as expected for j=3 /2. Both these results suggest
the existence of some single-ion anisotropy, which would
explain the existence of two Curie regimes because it splits
the fourfold degeneracy of the j=3 /2 states but leaves a
twofold Kramer’s doublet at temperatures below �D�, which
still gives a Curie signal. However, the cubic symmetry ob-
served experimentally seems to rule out such an explanation.
Moreover, the form of the powder susceptibility in Refs. 12
and 13 is qualitatively different from that expected for either
fixed easy-plane or easy-axis anisotropy.

These difficulties are resolved if one considers the possi-
bility of spontaneous anisotropy, which indeed is the primary
characteristic of the quadrupolar ordered state. For example,
the mean-field susceptibility for the cubic model with J�
=0.2J , V=0.3J is plotted in Fig. 13. At temperatures above
the FM110 phase, one indeed observes two Curie regimes in
the susceptibility, with a larger Curie constant at low tem-
perature, as seen in the experiments. The kink in � coincides
with the quadrupolar ordering transition, and there is a peak
in the specific heat at this temperature, also as observed in
experiment. The theoretical specific heat has a second peak
at lower temperatures, associated with magnetic ordering and
exhaustion of the unsplit Kramer’s doublet. We suggest that
this peak is below the lowest temperatures measured, or per-
haps is avoided due to disorder, and the spins falling out of

equilibrium at low temperature. The fact that the Curie-Weiss
temperature extracted below 50 K is only −2.3 K corrobo-
rates the notion that any magnetic ordering may be too low
to observe or be obscured by the effects of disorder.

2. La2LiMoO6

La2LiMoO6 is monoclinic, the deviation from cubic sym-
metry arising primarily from rotations of the octahedra. The
local coordination of the Mo sites is nearly perfectly octahe-
dral with a weak tetragonal compression. The nature of crys-
tal field effects, if significant, is unclear at present. Magneti-
cally, the susceptibility shows, such as Ba2YMoO6, two
apparent Curie regimes, separated by a kink at approximately
150 K. However, opposite to that material, La2LiMoO6
shows a smaller effective moment at low temperature com-
pared to high temperature. In addition, the high-temperature
Curie-Weiss temperature is �CW�−45 K, significantly
smaller than the kink temperature. Irreversibility distinguish-
ing the behavior of the zero field coupling or field coupling
susceptibility appears below 25 K.

The appearance of two Curie regimes again suggests ei-
ther fixed or spontaneous magnetic anisotropy setting in
around 150 K. However, the reduction in the effective mo-
ment below the kink in �−1 is puzzling. We did not find this
behavior in the powder susceptibility within our model with
or without anisotropy modeled by D. As remarked above,
however, the actual nature of the crystal-field anisotropy in
La2LiMoO6 is unclear. If it is significant and different in
form from the D term, this might explain the behavior.
Single-crystal studies would be helpful in elucidating the
situation.

3. Sr2CaReO6 and Sr2MgReO6

Sr2CaReO6 and Sr2MgReO6 have distorted perovskite
structures, with monoclinic and tetragonal symmetry,
respectively.14,15 Experimentally, the materials are notable
for their very high antiferromagnetic Curie-Weiss tempera-
ture, −�CW�400 K. Susceptibility and specific-heat mea-
surements show anomalies suggestive of freezing and/or
short-range ordering at 14 K and 50 K, for Sr2CaReO6 and
Sr2MgReO6, respectively. Two possible interpretations of
this behavior are: �1� the Curie-Weiss temperature is domi-
nated by strong exchange but fluctuations largely suppress
ordering, or �2� the Curie-Weiss temperature is due largely to
single-ion effects, and the true exchange scale is comparable
to the observed anomalies in � and cv.

In the former scenario, the key question is why these two
materials show so much larger exchange than do the other
compounds in this family. From the point of view of this
work, attributing the Curie-Weiss temperature to exchange
alone would imply J is actually comparable to the SOC, so
that the projection to j=3 /2 may even be suspect. The Curie-
Weiss temperatures are sufficiently large that one may sus-
pect that the 5d electrons are not so well localized and the
system is close to a Mott transition. It would be interesting to
measure their optical properties to address this possibility.

The latter explanation seems possible, as both materials
show significant deviations from the cubic structure:
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Sr2CaReO6 is monoclinic while Sr2MgReO6 is tetragonal.
The actual distortions of the octahedra are rather small in
both cases, the Re-O distance varying by only about 0.02 Å
at room temperature. However, there are significant rotations
and tilts of the octahedra, and crystal-field splittings of the
j=3 /2 quadruplet are certainly allowed. Examination of the
Re-O bond lengths suggests easy-axis anisotropy. From Eq.
�128�, we see that, in principle, a negative Curie-Weiss tem-
perature could be attributed to D. However, from the present
model we cannot obtain such a large value, which in these
two materials is comparable or larger than the fitting tem-
perature. Nevertheless, we may imagine that some combina-
tion of exchange and single-ion anisotropy may conspire to
produce the observed behavior.

If we assume a large easy-axis anisotropy, we would then
expect, based on the analysis in Sec. III A 1, to have an AFM
ground state. The anomalies might be related to this order-
ing. Experimentally, spin freezing and irreversibility is ob-
served but without clear signs of long-range ordering. The
experimentalists caution that, due to the small magnetic mo-
ment of the Re6+ ions, a small ordered component could not
be ruled out in either material.14,15 Indeed, in the AFM state,
a very small moment is expected, due to the primacy of
octupolar order.

While this is promising, we note that it is likely that sev-
eral effects not in our model play a role. First, the structure
of the materials is not a simple compression of the cubic
structure and so the crystal fields might have a significantly
different form from the simple D term. This is especially true
in Sr2CaReO6, which has the more distorted monoclinic
structure. Second, in Sr2MgReO6, the Re-O-Mg bond angles
are very different in the XY plane �160°� and normal to it
�180°�,14 so substantial spatial anisotropy in the exchange
couplings may be present. This is not included in our model.
Also in Sr2MgReO6, the ZFC and FC susceptibility actually
diverge already around 300 K, which suggests a high degree
of disorder in this material, which might be responsible for
converting the AFM to a glassy state.

One indication supporting an antiferromagnetic ground
state is the observation, in Sr2CaReO6, of a T3 magnetic
contribution to the specific heat, in contrast to the usual lin-
ear one characteristic of a spin glass. The T3 behavior would
naturally be expected from spin waves in the AFM state,
which as we have noted displays gapless spin waves, at least
in the semiclassical approximation. Such T3 behavior might
even persist if the AFM order had a finite correlation length,
due to Halperin-Saslow modes,44 as recently postulated in
NiGa2S4.45 A T-linear specific heat was observed in
Sr2MgReO6, albeit with a small coefficient.14 As we have
already remarked, however, this material is likely to be more
disordered, consistent with the more conventional spin-
glasslike specific heat.

While these considerations seem reasonable, they are
hardly definitive. Further studies, particularly on single crys-
tals, would be most helpful in clarifying the physics of these
materials.

4. Ba2CaReO6

In Ba2CaReO6, there is a structural transition from a high-
temperature cubic phase to a low-temperature tetragonal one,

with a doubled unit cell, at T=120 K.16 The experimentalists
have fitted the low-temperature structure to the I4 /m space
group. From this fit, they found an elongation along the c �or
z� axis but a slight compression of the ReO6 octahedra. One
may consider two possibilities. Either this is indeed the cor-
rect symmetry, in which case it must have structural origin
not related to the 5d electrons, or this transition in fact co-
incides with the quadrupolar ordering described here, which
also gives a tetragonal state with the same unit cell. The
P42 /mnm space group was not considered in Ref. 16.

A small, negative Curie-Weiss temperature �CW=−39 K
was measured by fitting the susceptibility in the high-
temperature cubic phase, indicating that J� should be not too
large. A predominantly antiferromagnetic ordering transition
was observed at T=15 K, which is consistent with our ex-
pectations in the small J� and V regime �recall that an anti-
ferromagnetic state is expected both with and without single-
ion anisotropy in this parameter range�. It would be
interesting to compare the predicted magnetic structure in the
AFM or AFM� phase with experiment, by carrying out
neutron-scattering and NMR measurements.

5. Ba2NaOsO6

Ba2NaOsO6,18 is one of only two examples in this class in
which single-crystal experiments have been performed, to
our knowledge. A transition at T=6.8 K was found to a fer-
romagnetic state with easy axis along a �110� direction.
Within the experimental resolution, the material was found to
remain cubic down to the lowest measured temperature. A fit
to Curie-Weiss behavior found a negative Curie-Weiss tem-
perature, −13��CW�−10 K, depending upon field orienta-
tion. We note that this is compatible with Eq. �84�, and sug-
gests that the material is in the regime of larger V and
smaller J�. In this region, we expect a high-temperature qua-
drupolar transition, well above the ferromagnetic state.
While no such transition is observed in the experiment, the
magnetic specific heat of such a transition may be masked by
the lattice contribution at higher temperature, and the signa-
ture in susceptibility may be subtle.

Several other indications are in favor of this scenario.
First, the susceptibility continues to display pronounced an-
isotropy, favoring the �110� direction, up to at least 200 K,
well above the ferromagnetic transition. This would indeed
be expected in the quadrupolar ordered state. Second, the
magnetic specific heat divided by temperature, integrated
over the peak up to about 15 K gives a magnetic entropy of
approximately R ln 2, which is only half the expected en-
tropy for the j=3 /2 quadruplet. This entropy may be re-
leased over a significantly higher temperature range, up to
the quadrupolar ordering transition. Third, the observation
itself of ferromagnetism with a �110� easy axis is a marked
success of our theory. This type of anisotropy is not natural
from the standpoint of Landau theory, within which cubic
anisotropy manifests itself at leading order as a term in the
free energy of the form v��Mx�4+ �My�4+ �Mz�4� �M is the
magnetization�, which, depending upon the sign of v, gener-
ates a �111� or �100� easy axis. A continuous Landau transi-
tion to the FM110 state is instead made possible by the fact
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that the quadrupolar order already breaks the cubic symme-
try in the paramagnetic state.

It would be interesting to further probe the system to es-
tablish in more detail the correspondence �or lack thereof�
with our theoretical predictions. The predicted tetragonal dis-
tortion of the cubic structure would be a natural quantity to
seek in experiment. This also manifests locally in the mag-
netism, since although the net magnetization is aligned with
the �110� axis, the local spin expectation values are not. This
might be measurable for instance by a local probe such as
NMR.

We note that the first-principles calculation in Ref. 46 also
points that the spin-orbit interaction is responsible for the
small magnetic moment observed in Ba2NaOsO6. This result
is consistent with our prediction. The authors attribute the
lack of structural distortion in the low-temperature ferromag-
netic phase to a cooperative effect of electron correlation and
SOC. Our predictions on the lattice distortion are based on a
symmetry analysis of the finite-temperature quadrupolar or-
dered phase. It would also be interesting to explore the finite-
temperature structure properties by first-principles methods.

6. Ba2LiOsO6

Ba2LiOsO6 has also been grown in single-crystal form.
The structure was determined to be cubic by x-ray diffraction
at room temperature.17 Aside from this diffraction data, only
bulk magnetic susceptibility results are available. One ob-
serves a negative Curie-Weiss temperature �CW�−40 K,
and an apparent antiferromagnetic transition at TN�8 K.
This appears largely consistent with the expected behavior in
region I of Fig. 6.

C. Comparison and future work

We are aware of only one other theoretical work studying
this class of materials. Lee and Pickett38 performed
electronic-structure calculations for Ba2NaOsO6 and
Ba2LiOsO6, emphasizing the role of SOC. We completely
agree with the conclusion that SOC plays a crucial role in the
magnetism. However, the magnetic structure and phase tran-
sitions were not addressed.

Our study is much more comprehensive, and gives a great
deal of guidance both for future theory and experiment.
Many experimental suggestions have already been made. In
particular, verification of the quadrupolar ordering transition
would be especially exciting. On the theoretical side, the
problem of the effects of quantum fluctuations in the small J�
and V limit remains rather open. It would be remarkable if a
spin-liquid or valence-bond solid state could be established
for this highly non-SU�2� symmetric and nominally “large”
spin j=3 /2 model. To do so would require some hard theo-
retical work applying more quantitative numerical methods
to our model Hamiltonian. A natural extension of this work
would be to consider the “higher spin” analogs of these ma-
terials, with 4d2 or 5d2 electronic states. As there is still
partial occupation of the t2g orbitals in this case, we expect
SOC again to play a dominant role, and interesting multipo-
lar physics is likely present.
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