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We compute a number of universal amplitude ratios in the three-dimensional Ising universality class. To this
end, we perform Monte Carlo simulations of the improved Blume-Capel model on the simple cubic lattice. For
example, we obtain A+ /A−=0.536�2� and C+ /C−=4.713�7�, where A� and C� are the amplitudes of the
specific heat and the magnetic susceptibility, respectively. The subscripts + and − indicate the high- and the
low-temperature phase, respectively. We compare our results with those obtained from previous Monte Carlo
simulations, high- and low-temperature series expansions, field theoretic methods, and experiments.
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I. INTRODUCTION

In the neighborhood of a second-order phase transition
various quantities diverge, following power laws. For ex-
ample, in a magnetic system, the correlation length �, the
magnetic susceptibility �, and the specific heat C behave as

� � f��t�−�, � � C��t�−�, C � A��t�−�, �1�

where t= �T−Tc� /Tc is the reduced temperature. The
symbol�means asymptotically equal; corrections vanish as
t→0. Critical exponents such as �, �, and � are universal.
That means, they take exactly the same value for all systems
in a given universality class. A universality class is charac-
terized by the spacial dimension of the system, the range of
the interaction and the symmetry of the order parameter. For
reviews on critical phenomena and its modern theory, the
renormalization group �RG�, see for example, Refs. 1–4.

While individual amplitudes such as f+, f−, C+, C−, A+,
and A− depend on the details of the system, amplitude ratios
such as f+ / f−, C+ /C−, and A+ /A− are universal. The indices +
and − indicate the high- and the low-temperature phase, re-
spectively. In addition to these simple ratios, there are also
more complicated universal combinations of amplitudes. The
combinations of the corresponding quantities are dimension-
less. This means that they have a combined critical exponent
that is equal to zero. Such amplitude ratios have been deter-
mined for a number of experimental systems and computed
by using various theoretical approaches such as the
	-expansion, perturbation theory in three dimensions �3D�
fixed, high- and low-temperature series expansions, and
Monte Carlo simulations. A summary of results is given in
Refs. 4 and 5. Here we study universal amplitude ratios in
the universality class of the three-dimensional Ising model
with short-range interactions, which is characterized by the
Z2 symmetry of the order parameter. This universality class
is supposed to be realized in a huge range of experimental
systems: binary mixtures, uniaxial magnets, or micellar sys-
tems; see Refs. 4 and 5.

At finite values of the reduced temperature, power laws
�Eq. �1�� are subject to corrections. For example, the mag-
netic susceptibility behaves as

� = C��t�−��1 + a��t�
 + bt + ¯� , �2�

where 
=��=0.524�4�.6 The amplitudes C�, a�, and b, in
general, depend on the parameters of the system. Already in
1982 the authors of Ref. 7 have demonstrated that for a
model that interpolates between the Gaussian and the Ising
model there is one value of the interpolation parameter,
where a� vanishes. Renormalization group predicts that the
zero of leading correction amplitudes is the same for all
quantities. In the following we shall call a model with a�

=0 an improved model. Studying improved models simpli-
fies the accurate determination of amplitude ratios using
Monte Carlo simulations or high- and low-temperature series
expansions. Here we simulate the improved Blume-Capel
model on the simple cubic lattice. For the definition of this
model see the next section. Our main motivation to perform
these simulations was to compute the energy density of the
bulk system in a large range of inverse temperatures. This
quantity is needed in our ongoing study of the thermal Ca-
simir effect in the three-dimensional Ising universality class.
Here we use the data generated for various quantities to up-
date the estimates of a number of universal amplitude ratios.
Computing universal amplitude ratios, we follow the strategy
of Refs. 8 and 9, where the spin-1/2 Ising model had been
studied and more recently,10,11 where we had studied an im-
proved model in the XY universality class in three dimen-
sions.

Our results are essentially consistent with previous Monte
Carlo studies8,12,13 and the most recent analysis of high- and
low-temperature series expansions.14 Typically we reduce the
error bars by a factor of two to three compared with these
studies. Estimates obtained by using field theoretic methods
are typically by a factor of ten less precise than those ob-
tained here.

The outline of our paper is the following. First we define
the model and the observables that we have measured. Next
we discuss the update algorithm and give details of our simu-
lations. Using the data obtained, we extract numerical esti-
mates for various universal amplitude ratios. These estimates
are compared with those obtained in previous Monte Carlo
simulations, from high- and low-temperature series expan-
sions, field theoretic methods, and experiments. Finally we
conclude.
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II. MODEL AND OBSERVABLES

The Blume-Capel model is characterized by the reduced
Hamiltonian

H = − ��
�xy	

sxsy + D�
x

sx
2 − h�

x

sx, �3�

where the spin might assume the values sx� 
−1,0 ,1�. The
sites on the simple cubic lattice are denoted by x
= �x0 ,x1 ,x2� with xi=0,1 , . . . ,Li−1. In the following we shall
consider lattices with L=L0=L1=L2 in the high-temperature
phase and L0=2L, L1=L2=L lattices in the low-temperature
phase. Throughout we consider periodic boundary condi-
tions. The first sum in Eq. �3� runs over all pairs of nearest-
neighbor sites �xy	 on the lattice and �=1 /kBT is the
inverse temperature. The partition function is given by Z
=�
s�exp�−H�, where the sum runs over all spin configura-
tions. In the following we shall consider a vanishing external
field h=0. The parameter D controls the density of vacancies
sx=0. In the limit D→− vacancies are completely sup-
pressed and therefore the spin-1/2 Ising model is recovered.
In d�2 dimensions the model undergoes a continuous phase
transition for −�D�Dtri at a �c that depends on D. For
D�Dtri the model undergoes a first-order phase transition.
References 15–17 give for the three-dimensional simple cu-
bic lattice Dtri�2.006,2.05 and Dtri=2.0313�4�, respec-
tively.

Numerically it has been shown that on the line of second-
order phase transitions there is a value D� of the parameter
D, where leading corrections to scaling vanish. In Ref. 18 we
found D�=0.641�8�. One should note that little effort was
made to estimate the systematical error due to subleading
corrections to scaling. Recently we have determined D�

=0.656�20�,6 where now systematical errors are taken into
account. In Ref. 6 we have simulated the model at D
=0.641 and D=0.655 in the neighborhood of the critical
point. Using a standard finite-size scaling analysis we find

�c�0.641� = 0.38567122�5� , �4�

�c�0.655� = 0.387721735�25� �5�

as estimates of the inverse critical temperature. We also find
that the amplitudes of leading corrections at D=0.655 are
reduced by at least a factor of 30 compared with the spin-1/2
Ising model.

A. Energy density and the specific heat

Here, we define the energy density as minus the derivative
of the reduced free-energy density with respect to �

E =
1

V

�

��
ln Z =

1

V�
�xy	

sxsy� , �6�

where V=L0L1L2. The specific heat is the derivative of the
energy density with respect to �. One finds

C =
�E

��
=

1

V����xy	
sxsy�2� − �

�xy	
sxsy�2� . �7�

B. Magnetic susceptibility and the second-moment correlation
length in the high-temperature phase

The magnetic susceptibility � and the second-moment
correlation length �2nd are defined as

� =
1

V��x

sx�2� �8�

and

�2nd =� �/F − 1

4 sin2 �/L
, �9�

where

F =
1

V��x

exp�i
2�xk

L
�sx�2� �10�

is the Fourier transform of the correlation function at the
lowest nonzero momentum. In our simulations in the high-
temperature phase, we have measured F for the three direc-
tions k=0,1 ,2 and have averaged these three results.

C. Magnetization, the magnetic susceptibility, and the
correlation length in the low-temperature phase

The magnetization in presence of a magnetic field is de-
fined by

m�h,L� =
1

V�
x

sx� , �11�

where we assume, for simplicity, a fixed ratio L0 /L with L
=L1=L2. The spontaneous magnetization is then defined as

m�0,� = lim
h↘0

lim
L→

m�h,L� , �12�

where first the thermodynamic limit is taken. In a Monte
Carlo simulation it is too cumbersome to follow this route.
Note that m�0,L� at a finite value of L is, however, exactly
zero for symmetry reasons.

To avoid this problem, Binder and Rauch19 proposed the
following definition:

mrms�0,L� =
1

V���
x

sx�2� . �13�

Here, following Eqs. �20� and �21� of Ref. 20, we use

mABS�0,L� =
1

V��x

sx�� , �14�

which in the low-temperature phase converges faster than
mrms�0,L�.

The connected two-point correlation function is given by

G�x,y� = �sxsy	 − �sx	�sy	 . �15�

In the low-temperature phase, for h=0 we replace Eq. �15�,
using Eq. �14�, by

Glow�x,y��h=0 = �sxsy	 − mABS
2 �0,L� . �16�
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In order to project to zero-momentum states of the trans-
fer matrix, we consider the correlation function

G�r� = �S0Sr	 − �S0	�Sr	 �17�

of time slices

Sx0
=

1
�L1L2

�
x1,x2

s�x0,x1,x2�. �18�

Note that with this normalization, the correlation function
has a finite thermodynamic limit as L1 ,L2→. In the low-
temperature phase, for vanishing external field h=0 we re-
place �S0	�Sr	 by L1L2mABS

2 �0,L�.
The magnetic susceptibility can be written as

� = �
r=−



G�r� . �19�

The effective correlation length is given by

�ef f�r� = − 1/ln�G�r + 1�
G�r�

� . �20�

The exponential correlation length is defined as �exp
=limr→ �ef f�r�. Since the transfer matrix is positive and
symmetric, �ef f approaches �exp monotonically from below.
The second-moment correlation length is defined by

�2nd
2 =

�2

2d�
, �21�

where d=3 is the dimension of the system and

�2 = d �
r=−



r2G�r� . �22�

Note that in the thermodynamic limit, the definitions in Eqs.
�9� and �21� become equivalent. In the low-temperature
phase we have computed � and �2 by using Eqs. �19� and
�22�, respectively, in the following way. Up to a certain dis-
tance R we have used G�r� computed directly from the con-
figurations that we have generated. Since the relative statis-
tical error increases exponentially with the distance r, for r
�R we have used instead

G̃�r� = G�R�exp�−
r − R

�ef f�R�
� . �23�

In the following analysis we have used the data obtained by
choosing R�4�ef f�R�. We have checked that these results are
consistent with those obtained for R�3�ef f�R�.

III. SIMULATIONS

A. Monte Carlo algorithm

Analogous to Ref. 21, we have simulated the Blume-
Capel model using a hybrid of local updates and single clus-
ter updates.22 In the high-temperature phase we have used as
local update the heat-bath algorithm. With the local update
we run through the lattice in typewriter fashion. Running
through the lattice once is called one sweep in the following.

After two heat-bath sweeps we perform a certain number Ncl
of single-cluster updates. We have chosen Ncl to be roughly
one third of the number of lattice sites V divided by the
average size of a cluster. In the following we shall denote
two heat-bath sweeps followed by Ncl single-cluster updates
as one cycle of the update. In the high-temperature phase we
have used the cluster algorithm to compute improved estima-
tors of the magnetic susceptibility and the second-moment
correlation length.

In the low-temperature phase we have used a local Me-
tropolis update that is implemented in multispin coding
technique.23 Details of our implementation can be found in
Ref. 6. Here, after ten sweeps of the local update, we per-
formed Ncl single-cluster updates. Also here we have chosen
Ncl to be roughly one third of the number of lattice sites V
divided by the average size of a cluster. Here we denote ten
sweeps of the local update followed by Ncl single-cluster
updates as one cycle. In the low-temperature phase we did
not use cluster-improved estimators since they do not reduce
the statistical error significantly in this phase.

As random number generator we have used the SIMD-
oriented fast Mersenne twister algorithm.24

B. Simulations in the high-temperature phase

First we have checked which lattice sizes are needed to
keep the deviation from the thermodynamic limit smaller
than the statistical error of the observables that we measure.
Based on finite-size scaling theory,25 we expect that the de-
pendence of a singular observable A is given by

A�L,�� = A�,���1 + gA�L/������ , �24�

where we have ignored corrections to scaling. In the absence
of a massless mode, as it is the case here,

gA�L/�� � cA exp�− L/�� �25�

for large values of L /�. At D=0.655 and �=0.372 we have
simulated lattices with the linear lattice sizes L=18, 20, 22,
24, 26, 28, 32, 40, and 48 to check the size dependence of
the observables. In total these simulations took about 6 days
of CPU time on single core of a Quad-Core Opteron�tm�
2378 CPU �2.4 GHz�. Our results are summarized in Table I.
We give the number of update cycles �stat�, the number of
single-cluster updates Ncl per update cycle and the estimates
of the energy density E, the magnetic susceptibility �, and
the second-moment correlation length �2nd. We have fitted
these results with the ansatz A�L�=A��+cA exp�−L /�exp�,
where we have taken �exp=3.09394�13�, which is the result
for the exponential correlation length that we have obtained
for L=48. Skipping the data for L=18 we get an acceptable
�2 /degree of freedom �dof�. for all three quantities. The re-
sult for the thermodynamic limit A�� is given in the last row
of Table I. The correction amplitudes are cE=0.114�3�,
c�=−21.2�1.1�, and c�2nd

=−1.28�8�. This means that the de-
viation from the thermodynamic limit is of the same size as
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the statistical error that we have reached here for L /��10
for all three quantities that we have studied.

In the following simulations we have chosen L�10�2nd
throughout. Since for most of our simulations L is clearly
larger than 10�2nd and the relative statistical error of the mag-
netic susceptibility and the second-moment correlation
length is larger than that of the results discussed above, we
expect that deviations from the thermodynamic limit can be
safely ignored.

In the case of D=0.655 we have simulated at 201 differ-
ent values of � starting from �=0.25 up to �=0.3872. For
each value of � we have performed 500000 update cycles. At
�=0.3872 we have simulated an L=300 lattice and find
�2nd=26.698�7�. In the case of D=0.641 we have only simu-
lated at 12 different values of � from �=0.3827, where
�2nd=8.8993�7�, up to �=0.3849, where �2nd=20.859�3�.
Here, for the two smallest values of � we performed about
3�106 update cycles and about 1.5�106 for the larger ones.
The simulations in the high-temperature phase at D=0.655
and 0.641 together took about 1 year of CPU time on a single
core of a Quad-Core Opteron�tm� 2378 CPU �2.4 GHz�.

C. Simulations in the low-temperature phase

Also here we have checked which lattice sizes are needed
to keep deviations from the thermodynamic limit sufficiently
small to be safely ignored. To this end, we performed simu-
lations at �=0.405 using the linear lattice sizes L=12, 16,
20, 24, 30, and 40. These simulations took about 3 weeks of
CPU time on a single core of a Quad-Core Opteron�tm� 2378
CPU �2.4 GHz�. Our results for the various observables are
summarized in Table II. Starting from L=20 the results are
consistent among each other.

Below we followed the recommendation of Ref. 8 and
have used lattices with L�20�2nd. Given the observations
made here, this is surely a safe choice.

In the case of D=0.655 we have simulated 64 different
values of � starting from �=0.3884, where �2nd
=11.687�45� up to �=0.42, where �2nd=1.0293�7�. In addi-
tion we have simulated at 85 values of � up to �=0.60,
where we have only measured the energy density. In the case
of D=0.641 we have simulated at 12 different values of �
starting from �=0.3866, where �2nd=9.589�19�, up to �
=0.3899, where �2nd=4.3749�34�. In total these simulations

TABLE I. The energy density E, the magnetic susceptibility �, and the second-moment correlation length
�2nd at D=0.655 and �=0.372 for various linear lattice sizes L. Furthermore we give the number of update
cycles �stat� and the number of single cluster updates Ncl per update cycle. In the last row we give the result
of our extrapolation to the thermodynamic limit, as discussed in the text.

L Stat /106 Ncl E � �2nd

18 50 200 0.492029�5� 24.4851�18� 3.07593�13�
20 40 300 0.491812�5� 24.5198�17� 3.07794�13�
22 35 400 0.491721�4� 24.5405�16� 3.07910�12�
24 30.9 500 0.491678�4� 24.5469�15� 3.07945�11�
26 32.4 700 0.491658�3� 24.5502�13� 3.07963�10�
28 20 1000 0.491643�4� 24.5532�14� 3.07985�11�
32 10 1000 0.491635�5� 24.5538�18� 3.08000�13�
40 7.5 2500 0.491633�4� 24.5532�14� 3.07994�11�
48 5 2000 0.491633�4� 24.5545�15� 3.08008�12�
 0.4916314�17� 24.5549�7� 3.08000�5�

TABLE II. Estimates for the energy density E, the magnetization m, the magnetic susceptibility �, the
second-moment correlation length �2nd, and the exponential correlation length �exp at D=0.655 and �
=0.405 for various linear lattice sizes L. The results for � and �2nd are obtained with R=4 and correspond-
ingly, �exp is approximated by �ef f�6�, since 4�exp�6. Furthermore we give the number of update cycles �stat�
that we have performed. This number includes the factor 64 of copies of the system that we have simulated.
In all cases we have performed two single-cluster updates for each update cycle.

L Stat /106 E m � �2nd �exp

12 640 1.063260�12� 0.514811�5� 4.4891�4� 1.5483�3� 1.6056�6�
16 320 1.063467�11� 0.514997�5� 4.4317�4� 1.5271�3� 1.5778�7�
20 320 1.063487�8� 0.515010�3� 4.4281�4� 1.5258�3� 1.5759�6�
24 190 1.063474�8� 0.515005�3� 4.4283�4� 1.5259�4� 1.5761�8�
30 130 1.063482�7� 0.515008�3� 4.4284�4� 1.5258�4� 1.5762�8�
40 32 1.063474�9� 0.515004�4� 4.4277�7� 1.5243�7� 1.5729�15�
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in the low-temperature phase took about 10 years of CPU
time on a single core of a Quad-Core Opteron�tm� 2378 CPU
�2.4 GHz�.

IV. UNIVERSAL AMPLITUDE RATIOS

First we have computed the ratio of the amplitudes of the
magnetic susceptibility in the high- and the low-temperature
phases. To this end one could fit the data for the magnetic
susceptibility with an ansatz like Eq. �2� for the data in the
high- and the low-temperature phases separately. Using the
results for C+ and C− obtained this way one could compute
the ratio C+ /C−. Instead, following Ref. 8 we use a different
strategy. The amplitude ratio can be defined as

C+

C−
= lim

t↘0

��t�
��− t�

. �26�

Following this definition, we have first calculated the ratio
��t� /��−t� at finite values of t=�c−�. To this end, we have
computed for the values �low, where we have simulated in
the low-temperature phase corresponding values �high=2�c
−�low. Here we made no effort to simulate exactly at these
values of �high. Instead we interpolate between the values
that we have simulated. To this end, we take the �−��high
��+ which are closest to �high. We compute c����
=�������c−����, using �=1.23719.6 Then we linearly in-
terpolate to get an estimate of c��high�. Finally we compute
���high�=c��high���c−�high�−�. Since we have simulated a
large number of � values, the systematical error introduced
by this interpolation should be negligible. In Fig. 1 we have
plotted our results for ��t� /��−t� as a function of t. From RG
theory we expect that

��t�
��− t�

=
C+

C−
+ at
 + bt + ct
� + dt2
 + et� + ¯ , �27�

where a and, in particular, d should be small here, since D
=0.655 is a good approximation of D�. Following Ref. 26

�=1.05�7�. Therefore the term ct
� can be hardly discrimi-
nated from the analytic correction bt. The term et� is caused

by the analytic background of the magnetic susceptibility.
Figure 1 suggests that ��t� /��−t� is essentially a linear func-
tion of t. Therefore, the terms explicitly given in Eq. �27�
should be sufficient to fit ��t� /��−t�. In particular, we have
fitted our data with the ansätze

��t�
��− t�

=
C+

C−
+ bt , �28�

��t�
��− t�

=
C+

C−
+ at
 + bt , �29�

��t�
��− t�

=
C+

C−
+ at
 + bt + et� �30�

using 
=0.524 and �=1.23719. Using these ansätze we have
performed a large number of fits. Below we give the results
of those fits that include a maximal number of data points
under the condition that �2 /dof is close to one. The fits are
done using our data for D=0.655 if not stated otherwise.
Fitting the data that satisfy t�0.005 with the ansatz Eq. �28�
we get C+ /C−=4.7089�14�, b=12.0�4�, and �2 /dof
=24.6 /20. Fitting all available data for D=0.641 with ansatz
Eq. �28� we get C+ /C−=4.7145�21�, b=11.4�9�, and
�2 /dof=9.6 /8. Using ansatz Eq. �29�, fitting data with t
�0.019 we get C+ /C−=4.718�2�, a=−0.43�6�, b=15.6�3�,
and �2 /dof=55.8 /53. Fitting the data that satisfy t�0.022
with the ansatz Eq. �30� we get C+ /C−=4.712�6�, a=
−0.05�30�, b=8.7�4.9�, e=12.3�8.2�, and �2 /dof=66.6 /57.
As our final result we quote

C+

C−
= 4.713�7� , �31�

which is chosen such that it covers all results, including their
error bars, of the fits quoted above. We have estimated the
error due to the uncertainty of �c by redoing some of the fits
using ratios computed with �high=2��c+error�−�low. We
find that it is clearly smaller than the error quoted above.

Next we have computed the amplitude ratio

f2nd,+

f2nd,−
= lim

t↘0

�2nd�t�
�2nd�− t�

. �32�

The calculation is analogous to that of the ratio C+ /C−.
Therefore we abstain from giving details and directly quote
our final result

f2nd,+

f2nd,−
= 1.939�5� . �33�

Next we have computed the RG-invariant quantity

Qc =
f2nd,+

3 B2

C+
, �34�

where B is the amplitude of the spontaneous magnetization
in the low-temperature phase. To this end, we have first
evaluated r=�2nd

3 /� for all values of � that we have simu-
lated in the high-temperature phase. In particular, we have
computed the statistical error of this combined quantity using

0 0.005 0.01 0.015 0.02
t

4.7

4.8

4.9

5

(t
)/

(-
t)

χ
χ

FIG. 1. We plot the ratio ��t� /��−t� as a function of t=�c−�
computed from our data for D=0.655. For a discussion see the text.
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the Jackknife method. Then we have computed

Qc = lim
t↘0

r�t�m2�− t� �35�

in the same fashion as we have computed C+ /C− and
f2nd,+ / f2nd,− above. As our final estimate we quote

Qc = 0.3293�2� . �36�

The renormalized coupling in the low-temperature phase
is given by

u� =
3C−

f2nd,−
3 B2 = lim

t↗0

3��t�
�2nd

3 �t�m2�t�
. �37�

In Fig. 2 we plot 3��t� /�2nd
3 �t�m2�t� as a function of −t.

Since only quantities in the low-temperature phase are
involved, there should be no analytic correction. However,
since 
��1 we kept a term bt in our ansatz. Based on vari-
ous fits we arrive at the final estimate

u� = 14.08�5� . �38�

Now let us consider the ratio �exp /�2nd. It turns out that it
is difficult to determine the exponential correlation length
accurately in the low-temperature phase. The time slice cor-
relation function behaves as

G�r� = c1 exp�− r/�1� + c2 exp�− r/�2� + ¯ . �39�

Since the ratio �1 /�2=1.83�3� �Ref. 27� is rather small, the
effective correlation length �ef f, Eq. �20�, converges only
rather slowly to �exp. On the other hand, the relative statisti-
cal error of G�r� increases exponentially. Therefore very
large distances that are needed to get a small deviation of �ef f
from �exp are not accessible. As compromise, we have taken
�ef f�R� with R�4�ef f�R� as our final estimate. To check the
systematical error introduced this way, we have compared
our result with that for R�3�ef f�R�. As our final estimate we
quote

fexp,−

f2nd,−
= 1.020�5� . �40�

Here the error should cover both the systematical deviation
of �ef f from �exp as well as systematical errors due to sub-
leading corrections that are not included in our fits. In order
to get more precise results for �exp and as a consequence for
fexp,− / f2nd,− a variational analysis of a large set of correlation
functions, as it has been done in Ref. 27 would be useful.
Furthermore the method of Ref. 28 to reduce the variance of
correlation functions could help to compute G�r� accurately
at large distances r.

Ratios that involve the specific heat

In order to compute amplitude ratios that involve the spe-
cific heat, we have analyzed our data for the energy density
which can be accurately determined in the simulation. In the
case of the energy density we have to separate the analytic
background and the singular part, which is needed here. In
the neighborhood of the critical point, the energy density
behaves as

E = Eb + Es, �41�

where the analytic background can be Taylor expanded
around the critical point

Eb��� = Ens + Cns�� − �c� + dns�� − �c�2 + ¯ . �42�

The singular part is given by

Es = a��t�−��1 + b��t�
 + ct + ¯� . �43�

In a first step we have analyzed data generated in relation
with Ref. 6 for cubic systems with a linear size up to L
=360 and periodic boundary conditions directly at the criti-
cal point. At the critical point the energy density behaves as

E = Ens + aL−3+1/��1 + cL−� + ¯� �44�

and the specific heat as

C = Cns + bL−3+2/��1 + dL−� + ¯� . �45�

Here we perform fits fixing �=0.63002�10� as obtained in
Ref. 6. Our final estimate is taken from fits without any
correction term and all lattice sizes that are larger or equal to
Lmin=24 taken into account. Systematic errors are estimated
by performing fits that include corrections with an exponent
that is either 0.832, 1.6, or 2. For D=0.655 we get

Ens = 0.602111�1� + 0.006�� − 0.63002�

+ 42��c − 0.387721735� �46�

and

a = 1.7490�5� + 14�� − 0.63002�

− 1800��c − 0.387721735� . �47�

We have redone the fits with slightly shifted values of the
input parameters � and �c to obtain the dependence of Ens
and a on these parameters. For the specific heat at D
=0.655 we get

0 0.005 0.01 0.015 0.02
-t

13.8

13.9

14

14.1

14.2

14.3

u(
t)

FIG. 2. We plot the ratio u�t�=3��t� /�2nd
3 �t�m2�t� as a function

of −t=�−�c computed from our data for D=0.655. For a discus-
sion see the text.
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Cns = − 19.1�1� − 1700�� − 0.63002�

− 1 300 000��c − 0.387721735� �48�

and

b = 25.30�5� + 1350�� − 0.63002�

+ 620 000��c − 0.387721735� �49�

from fits with Lmin=64. The error is dominated by system-
atical errors that we have estimated from fits that include
corrections to scaling.

For the energy density at D=0.641 we get

Ens = 0.604870�2� + 0.01�� − 0.63002�

+ 41��c − 0.38567122� �50�

and

a = 1.749�1� + 14�� − 0.63002�

− 1800��c − 0.38567122� . �51�

For the specific heat at D=0.641 we get

Cns = − 19.1�2� − 1700�� − 0.63002�

− 1 000 000��c − 0.38567122� �52�

and

b = 25.3�1� + 1350�� − 0.63002�

+ 500 000��c − 0.38567122� . �53�

Next we have analyzed our data for the thermodynamic
limit in the neighborhood of the critical point using the an-
satz

E��� = Ens + Cns�� − �c� + a��� − �c�1−� + dns�� − �c�2

+ b��� − �c�2−�, �54�

where Ens, Cns obtained above and �c=0.387721735�25� and
�=0.10994�30� �Ref. 6� are input parameters while a�, dns,
and b� are the five free parameters of the fit. Using the
results of these fits we have computed A+ /A−=−a+ /a− and
P= �1−A+ /A−� /�, which depends less on the input value for
� than A+ /A−.

Fitting all data for D=0.655 in the interval ��c
−0.004,�c+0.004� we get A+ /A−=0.53611�7�, P
=4.2195�6�, and �2 /dof=55.5 /51 using the central values of
the input parameters. For the interval ��c−0.0075, �c
+0.0075� we get A+ /A−=0.53614�3�, P=4.2192�3�, and
�2 /dof=165.7 /93. As a check we have also fitted with an
ansatz, where we have added a term ���−�c�3 compared
with the ansatz Eq. �54�. The results for A+ /A− and P change
little compared with those given above. It turns out that the
error of A+ /A− and P is actually dominated by the error
induced by the uncertainty of our input parameters, Ens, cns,
�c, and �. In order to estimate this error, we have repeated
the fits using shifted values of these input parameters. For
example, we have replaced Ens by �Ens+error�.

In order to check for the effect of leading corrections to
scaling, we have fitted all our data at D=0.641 using the
ansatz Eq. �54�. We find A+ /A−=0.53624�11�, P

=4.2183�10�, and �2 /dof=22.3 /19 using the central values
of the input parameters. This means that the results obtained
at D=0.641 and D=0.655 are fully consistent.

We arrive at the final estimates

A+

A−
= 0.536�2� , �55�

where the error is dominated by the uncertainty of �, fol-
lowed by the uncertainty of Cns. In contrast

P = 4.22�1� �56�

depends much less on the value of �. Its error is dominated
by the uncertainty of Cns. This different behavior of A+ /A−
and P is actually much more important in the case of the XY
universality class, where � is close to zero and therefore the
relative accuracy of � is much smaller than in the present
case.

In order to compute the quantities

Q�,+ = �A+f2nd,+
3 �57�

and

Q�,− = �A−f2nd,−
3 �58�

we have approximated the singular part of the energy density
by

Es�t� = E�t� − Ens − Cnst . �59�

Then we have computed

q�t� = t�2nd
3 �t�Es�t� . �60�

The quantity Q� is then given by

Q+ = ��1 − ��lim
t↘0

q�t� , �61�

Q− = ��1 − ��lim
t↗0

q�t� . �62�

We have fitted our data with the ansatz

q�t� = q� + at . �63�

In the high-temperature phase we find by fitting all data with
t�0.006 the result q�=0.19412�3�. We have redone this
analysis with shifted values of Cns and Ens to estimate the
effect on our result for q�. It turns out that the error is domi-
nated by the errors induced by the uncertainty of Cns and Ens.
We have also redone the analysis using our data for D
=0.641. We get an estimate for q� that is fully consistent with
that for D=0.655. We arrive at the final result

Q+ = ��1 − ��q� = 0.01899�10� . �64�

Performing a similar analysis we arrive at

Q− = 0.00487�2� . �65�
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V. COMPARISON WITH RESULTS GIVEN
IN THE LITERATURE

A. Monte Carlo simulations and high- and low-temperature
series

In Table III we confront our results with those of previous
Monte Carlo simulations8,9,12,13 with a comprehensive analy-
sis of high- and low-temperature series14 and the low-
temperature series estimate of u� given in Ref. 29. In Ref. 14
a parametric representation of the equation of state has been
used to obtain results for the critical isotherm and the low-
temperature phase from high-temperature series. For an ex-
haustive overview of the literature see Table 11 of Ref. 4.

In Refs. 8 and 9 we have simulated the spin-1/2 Ising
model on simple cubic lattices of a linear size up to L=120
and L=128, respectively. Also the authors of Ref. 13 have
simulated the spin-1/2 Ising model on the simple cubic lat-
tice. They have simulated at a large number of � values in
both phases of the model on lattices of a size up to L=128.
In Ref. 12 the �4 model on the simple cubic lattice has been
simulated at �=1.1, which is the estimate of �� obtained in
Ref. 30. The authors have simulated lattices up to the size
L=120. In addition to simulations at a vanishing external

field h=0, they have simulated h�0 at the critical tempera-
ture. This allowed them to compute additional universal am-
plitudes ratios that we do not discuss here.

Essentially our results confirm those of the previous work.
Even in the worst case, the deviation between our result and
that of the other works summarized in Table III is less than
three times the combined error.

B. Field theoretic methods

In Table IV we have summarized results obtained from
the 	 expansion and perturbation theory in three dimensions
fixed. Mostly we have taken these results from Table 12 of
Ref. 4. Note that in Ref. 36 the field theoretic methods have
been used in connection with a parametric representation of
the equation of state. In Ref. 37 A+C+ /B2=0.0594�11� is
given. By using the value of Q+ given, e.g., by Ref. 38 Qc
can be computed. Here we only report those amplitude ratios
that we have computed in this work. For a comprehensive
list of amplitude ratios see Table 12 of Ref. 4. Essentially the
field theoretic results are consistent ours, albeit their accu-
racy is clearly lower than ours. The errors for Q+ given by
Refs. 33 and 38 seems to be underestimated.

TABLE III. Results for universal amplitude ratios obtained by high- and low-temperature series expan-
sions of three different improved lattice models �Ref. 14� and Monte Carlo simulations of the spin-1/2 Ising
model �Refs. 8, 9, and 13� and the improved �4 model �Ref. 12�. In all these cases a simple cubic lattice has
been studied.

Ref. A+ /A− C+ /C−
f2nd,+

f2nd,−

fexp,−

f2nd,−
Q+ Q− u� Qc

Here 0.536�2� 4.713�7� 1.939�5� 1.020�5� 0.01899�10� 0.00487�2� 14.08�5� 0.3293�2�
29 14.25�12�
14 0.532�3� 4.76�2� 1.956�7� 0.01880�8� 0.00472�5� 0.3315�10�
8 4.75�3� 1.95�2� 1.017�7� 14.3�1� 0.328�5�
9 0.560�10�
12 4.756�28� 1.935�14� 0.326�3�
13 0.532�7�

TABLE IV. Results for universal amplitude ratios obtained by using the 	-expansion �	� and perturbation
theory in 3D fixed. For the definition of the amplitude ratios and a discussion see the text.

Ref. Method A+ /A− C+ /C−
f2nd,+

f2nd,−
Q+ u� Qc

31 	 4.8 1.91

32 	 0.55 4.8

33 	 0.01966�17�
34 	 0.44 4.9 0.0223

35 	 0.524�10�
36 	 0.527�37� 4.73�16�
37 3D 0.541�14� 4.77�30� 0.331�9�
38 3D 0.01968�15�
39 3D 0.540�11�
40 3D 4.72�17� 2.013�28� 14.2

36 3D 0.537�19� 4.79�10�
41 3D 0.0203
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C. Experiments

Here we just mention the results of two experimental
works to give the reader an idea of the accuracy that can be
reached. Studying a mixture of succinonitrile and water the
authors of Ref. 42 found A+ /A−=0.536�0.005 and Q+
=0.0187�0.0013. Studying the antiferromagnet FeF2, the
authors of Ref. 43 found A+ /A−=0.53�0.01 and C+ /C−
=4.6�0.02. In particular, for A+ /A− the accuracy of the ex-
perimental studies is close to ours. The results of both studies
are consistent with ours, confirming universality. For a com-
prehensive summary of experimental results see Refs. 4 and
5.

VI. SUMMARY AND CONCLUSIONS

We have simulated the Blume-Capel model on the simple
cubic lattice at D=0.641 and 0.655 for a large number of
inverse temperatures � in a neighborhood of the critical
point. These values of D are close to D�=0.656�20�, where
the amplitudes of leading corrections to scaling vanish. We
have simulated lattices up to 3003 in the high temperature
phase and 500�2502 in the low-temperature phase.

Throughout we have chosen the linear size L of the lattice
such that L�10�2nd in the high temperature and L�20�2nd in
the low-temperature phase to avoid significant deviations
from the thermodynamic limit. In the high-temperature phase
at D=0.655 we have reached the correlation length �2nd
=26.698�7�. Using the data obtained in these simulations we
have extracted precise numerical estimates for a number of
universal amplitude ratios. We carefully estimated systemati-
cal errors caused by subleading corrections.

In Table III we have summarized our results and compare
them with previous estimates obtained from Monte Carlo
simulations or from high- and low-temperature series expan-
sions of lattice models. Our results are essentially consistent
with but more precise than previous estimates. The same
holds for the comparison with field theoretic methods. Also
the accuracy of experimental results given in the literature is
lower than ours.
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